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Abstract 
There are few numerical techniques available to solve the Bagley-Torvik equa-
tion which occurs considerably frequently in various offshoots of applied ma-
thematics and mechanics. In this paper, we show that Chelyshkov-tau method 
is a very effective tool in numerically solving this equation. To show the accu-
racy and the efficiency of the method, several problems are implemented and 
the comparisons are given with other methods existing in the recent literature. 
The results of numerical tests confirm that Chelyshkov-tau method is superior 
to other existing ones and is highly accurate. 
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1. Introduction 

Recently, the fractional derivative has attracted a lot of attentions due to widely 
applied in various fields of physics and engineering. Fractional derivative is an 
excellent tool to describe memory and genetic characteristics of various 
materials and processes. Many phenomena in various fields of science and 
engineering such as control, porous media, electrochemistry, viscoelasticity, 
electromagnetic, etc. can be described by Fractional differential Equation (FDE). 
The evolution of effective and perfectly appropriate method for numerically 
solving FDEs has received great attention over the past years. 

In this paper, we develop a new approach called Chelyshkov-tau method for 
solving Bagley-Torvik equation of the form 

( ) ( ) ( ) ( ) ( ) [ ]3 2
2 1 0 , 0,1A u x A u x A u x f x x′′ + + = ∈           (1) 

subject to the boundary conditions  
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( ) ( ) ( ) ( )
1

0
0 1 , 0,1j j

ij ij i
j

u u iα β γ
=

+ = =∑                 (2) 

where 2 0A ≠  represents mass of the thin rigid plate immersed in a Newtonian 
fluid, 1A  is constant depending on area of the thin rigid, viscosity and density 
of fluid and 0A  represents stiffness of the spring. ( )f x  is a given function. 
( )u x  represents motion of the rigid plate. The questions of existence and 

uniqueness of the solution to this initial value problem have been discussed in [1] 
[2], so there is no need to go into these matters here. 

Several numerical and analytical methods of Equation (1) were considered by 
many authors, such as finite difference method [3], collocation method based on 
Müntz polynomials [4], Tau approximate [5], Adomian decomposition method 
[6] [7], variational iteration method [8], the generalized block pulse operational 
matrix [9], homotopy perturbation method [10] [11], generalized differential 
transform method [12], Legendre-collocation method [13], Laplace transforms 
[14], Fourier transforms [15], eigenvector expansion [16], fractional differential 
transform method [17] [18], the fractional iteration method [19], power series 
method [20], Bessel collocation method [21], wavelet [22] and the Haar wavelet 
method [23]. 

Orthogonal polynomials play an important role in mathematics as well as in 
applications in mathematical physics, engineering and computer science. 
Chelyshkov polynomials are the most recent set of orthogonal polynomials. 
Chelyshkov polynomials have become increasingly important in numerical 
analysis. The efficiency of the method has been officially established by many 
researchers [24] [25]. With these backgrounds, we extend Chelyshkov-tau 
method for solving Bagley-Torvik equation of Equation (1). 

The efficiency and accuracy of the numerical scheme is assessed on specific 
test problems. The numerical outcomes indicate that the method yields highly 
accurate results. The numerical solutions are compared with analytical and other 
existing numerical solutions in the literature. 

The paper is organized as follows. Section 2 preliminarily provides some 
definitions which are crucial to the following discussion. In Section 3 we apply 
Chelyshkov-tau method for solving the model equation. In Section 4, we present 
numerical examples to exhibit the accuracy and the efficiency of the present 
method. where the numerical results presented in this paper are computed by 
Matlab programming. The conclusion is presented in the final section. 

2. Preliminaries 
2.1. Basic Definitions of Fractional 

In this section, we introduce the basic necessary definitions and primary facts of 
the fractional calculus theory which will be more used in this work [26] [27]. 

Definition 1. The Riemann-Liouville fractional integral operator J α  of 
order α  on a usual Lebesgue space [ ]1 ,L a b  is given by  
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( ) ( ) ( ) ( )1

0

1 d
t

J t t s s sααψ ψ
α

−= −
Γ ∫  

Some characteristics of this operator are:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

0 , , , , 0

1
, 1

1

J t t J J t J t J J t J J t

J t s t s

α β α β α β β α

µ α µα

ψ ψ ψ ψ ψ ψ α β

µ
µ

α µ

+

+

= = = ≥

Γ +
− = − > −

Γ + +

 

The Riemann-Liouville fractional derivative operator Dα  is given by  

( ) ( )( )d
d

m
mD t J t

t
α αψ ψ− =  

 
 

where m is an integer, provided that 1m mα− < ≤ . 
However, its derivative has Some drawbacks when we try to make a model for 

a real phenomenon using fractional differential equations. Therefore, we will 
provide a modified fractional differential operator Dα  proposed by by Caputo 
[28]. 

Definition 2. The Caputo derivative definition is defined as  

( ) ( ) ( ) ( ) ( )1

0

1 d , 1 < ,
x m mD t t s s s m m m

m
ααψ ψ α

α
− −= − − ≤ ∈

Γ − ∫     (3) 

Hence, 0α >  and m is the smallest integer greater than or equal to α . For 
the Caputo fractional derivative we have 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

1

0

0, is constant ,

,

0 ,
!

0 for ,

1
, for .

1

im
i

i

D c c

D J t t

t s
J D t t

i

D t
t

α

α α

α α

α β
β α

ψ ψ

ψ ψ ψ

β α

β
β α

β α

−
+

=

−

=

=

−
= −

<   
= Γ +

≥   Γ + −

∑              (4) 

It can be said when α ∈ , the Caputo differential operator matches with the 
integer-order differential operator.  

For more details on fractional derivative definitions, theorems and its 
properties, you can see [26] [27]. 

2.2. Some Properties of Chelyshkov Polynomials  

We first review some important concepts and basics of the Chelyshkov function 
and conclude useful results that are important to this paper. Recently, these 
polynomials have established by Chelyshkov in [29] [30] [31] [32] [33], which 
are orthogonal over the interval [0,1] , and are explicitly defined by  

( ) ( )
0

1
1 , 0,1, ,

N j
i N k

Nj
i

N j N j k
C x x j N

i N j

−
+

=

− + + +  
= − =  −  
∑        (5) 

This gives the Rodrigues formula  
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( ) ( ) ( )1
1

1 1 d 1 , 0,1, ,
! d

N j
N jN j

Nj j N jC x x x j N
N j x x

−
−+ +

+ −
 = − = −

  

and the orthogonality condition of Chelyshkov polynomials [32] is  

( ) ( )1

0

1 , for , , 0,1, , , 1
1d

0, for .
Nj Nk

j k j k N N
j kC x C x x

j k

 = = + + += 
 ≠

∫


    (6) 

Also it follows from this relation that  

( )1 1

0 0

1d d
1

j
NjC x x x x

j
= =

+∫ ∫  

By using the Cauchy integral formula for derivative and the Rodrigues type 
representation, we can get the integral relation  

( ) ( )
( )

2

12 1 1

11 1 d
2π

N jN j

Nj N jj

s s
C x s

i x s x

−+ +

− ++ Ω −

−
=

−
∫  

such that the point 1s x−= . lies in closed curve 1Ω . 
Chelyshkov polynomials ( )NjC x  provide a natural way to solve, expand, and 

interpret solutions. Actually, these polynomials can be expressed in terms of the 
Jacobi polynomials ( ),

kP α β  by the following relation,  

( ) ( ) ( )2 ,1 1 2 , 0,1, ,jj
Nj N jC x x P x j N−= − =   

Let function ( )u x , square integrable in [ ]0,1 , can be expressed in terms of 
Chelyshkov polynomials as  

( ) ( ) ( )
0

,
N

N j Nj
j

u x u x a C x
=

≅ = ∑                    (7) 

where the coefficients ja  are the unknown Chelyshkov coefficients and 
, 0,1, ,NjC j N=   are Chelyshkov orthogonal polynomials of the degree N such 

that 2N ≥ . Also,  

( )

( ) ( )

0

0

( ) ,
N

N j Nj
j

N

N j Nj
j

u x a C x

u x a C x

=

=

′ ′=

′′ ′′=

∑

∑
                      (8) 

Then we can convert the solution expressed by (7) and its derivative (8) to 
matrix form  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2

2
2

or

d
or

d
d

or
d

u x x u x C

x
u x u x C

x
x

u x u x C
x

= =      

′ ′= =      

′′ ′′= =      

C A X A

C
A XM A

C
A XM A

            (9) 

where 

[ ] ( ) ( ) ( ) ( ) ( )0 0 1 2, , andN N N N NNa a x C x C x C x C xτ= =   A C   

and 
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( ) ( )

2

1 1

0 1 0 0
0 0 2 0

1 , 0 0 0 0
0 0 0
0 0 0 0

N

N N

x x x
N

+ × +

… 
 …
  = =   

… 
…  

X M 
 

if N is odd, 

1 0 0 0
0

2 1 2 0 0
1 0 1

2 1 2 1 2 0
1 2 1 0 1

2 1 1 2 1 1 2 1
1 1 1 1

N N
N

N N N N
N N

N N N N N
N N N N
N N N N N
N N N N

+  
  
  

+ − +     −     −     
=

−        −        − − −        
+ − + +        − −       − −        

C





    





( ) ( )1 1

1
N N+ × +

 
 
 
 
 
 
 
 
 
 
 
 
 

 

if N is even, 

1 0 0 0
0

2 1 2 0 0
1 0 1

2 1 2 1 2 0
1 2 1 0 1
2 1 1 2 1 1 2 1

1 1 1 1

N N
N

N N N N
N N

N N N N N
N N N N

N N N N N
N N N N

+  
  
  

+ − +     −     −     
=

−        −        − − −        
+ − + +        − −       − −        

C





    





( ) ( )1 1

1
N N+ × +

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Theorem 1. For ( )Nj xC  defined in (5) then the finite series can be converted 

( ) ( ) ( ) ( ) ( ) ( )3 2 3 2 3 2

0

N

N j Nj
j

u x u x a C x
=

≅ = ∑  

into matrix form  
( ) ( ) ( )3 2 3 2u x  =  XD CA                     (10) 

where 

( )

( )

( )

( )

( ) ( )

3 2

3 2 3 2

3 2

1 1

0 0 0 0 0 0
0 0 0 0 0 0

3
0 0 0 0 0

3
2

4
0 0 0 0 0

5
2

1
0 0 0 0 0

2 1
2 N N

x

x

N
x

N

−

−

−

+ × +

 
 
 

Γ 
  Γ  

  
 Γ

=  
  Γ   

 
 

Γ + 
… −  Γ    

D









      

(11) 
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Proof. The proof is straightforward using Equation (4).  

3. The Description of Chelyshkov Scheme 

Let us seek the solution of (1) expressed in terms of Chelyshkov polynomials as 

( ) ( ) ( )
0

.
N

N n Nn
n

u x u x a C x
=

≅ = ∑  

Replacing each terms of (1) with the corresponding approximations defined in 
(7), (8) and (10) and we obtain the following theorem. 

Theorem 2. If the assumed approximate solution of the boundary-value 
problem (1)-(2) is (3), the discrete Chelyshkov-tau system for the determination 
of the unknown coefficients { } 0

N
n na

=
 is given by 

( ) ( ) ( ) ( ) ( ) ( )2 3 2
2 1 0

0 0 0 0

N N N N

n Nn n Nn n Nn n Nn
n n n n

A a C x A a C x A a C x f C x
= = = =

+ + =∑ ∑ ∑ ∑      (12) 

Equation (12), which can be written in the matrix form  
( )3 22

2 1 0A A A+ + =XM CA XD CA XCA XCF              (13) 

where  

[ ]0 1, , , Nf f f τ=F 
 

The residual ( )NR x  for Equation (13) can be written as  

( ) ( )3 22
2 1 0NR x A A A = + + − X M CA D CA CA CF            (14) 

As in a typical tau method [34] we generate N-1 linear equations by applying  

( ) ( ) ( ) ( )1

0
, d 0, 1,2, , 1N Nn N NnR x C x R x C x x n N= = = −∫ 

      (15) 

The boundary condition is derived from Equation (2) and matrices for 
conditions are  

( ) ( )
1

0
0 1 , 0,1j j

ij ij i
j

iα β γ
=

+ = =∑ X M CA X M CA             (16) 

Equations (15) and (16) generate 1N +  set of linear equations, respectively. 
These linear equations can be solved for unknown coefficients of the vector A . 
Consequently, ( )u x  given in Equation (7) can be calculated.. 

4. Numerical Results 

In this section, we apply the Chelyshkov-tau method to various problems which 
were collected from the open literature [13] [35] [36] [37] [38]. Our primary 
interest is to compare our method with other methods on the same problems. 
All computations were carried out using Matlab on a personal computer. In the 
examples, the maximum absolute error at points is taken as  

Chelyshkov Exact ChelyshkovE u u= −  

Example 1: [21] Consider the linear BVP  
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( ) ( ) ( ) ( )3 2 1, 0 1u x u x u x x x′′ + + = + < <  

subject to the boundary conditions  

( ) ( )0 1 and 1 2u u= =  

whose exact solution is  

1u x= +  

the approximate solution ( )u x  by the truncated Chelyshkov polynomial for 
2N =  is  

( ) ( ) ( ) ( )0 20 1 21 2 22u x a C x a C x a C x= + +  

Here, we have  

( )3 2

3 2

3 0 0 0 1 0 0 0 0
412 4 0 , 0 0 2 , 0 0 0
π10 5 1 0 0 0 0 0 x−

     
     = − = =     
     −     

C M D  

2

1
3
51 ,
4
35
12

x x

 
 
 
  = =   
 
 
  

X F                    (17) 

By applying Equation (15) We obtain  

0 1 2
23 16 10 8 2 8 1 0
3 3 3 37 π 7 π 35 π

a a a
     

+ − + + + − =          
     

       (18) 

By applying Equation (16), we have  

03 1 0a − =                            (19) 

0 1 2 2 0a a a− + − =                        (20) 

By solving Equations (18)-(20), we get  

0 1 2
1 5 35, ,
3 4 12

a a a= = =  

Thus we can write  

( )

2

2

2

10 12 3
1 5 35 5 4 1
3 4 12

x x
y x x x x

x

 − +
  = − + = +      

 

which is the exact solution. 
Example 2: [13] [35] [36] Consider the linear BVP  

( ) ( ) ( ) ( ) ( )3 2
2 1 0 , 0 1A u x A u x A u x f x x′′ + + = < <  

with initial conditions  

( ) ( )0 0 and 0 0u u′= =  
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which is known to have analytical solution as  

( ) ( ) ( ) ( )

( ) ( )

3 30

2 10 1
1 3,202 2 22 2

d

11
!

x

kk
kk

k
k

u x G x f G x

A Ax E x
A k A A

τ τ τ

∞
+

+=

= −

−    
= −   

   

∫

∑
 

where ( ) ( ),
kE uλ µ  is the kth derivative of the Mittag-Leffler function with 

parameters λ  and µ  given by  

( ) ( ) ( )
( ),

0

!
, 0,1,2,

!

j
k

j

j k y
E y k

j j kλ µ λ λ µ

∞

=

+
= =

Γ + +∑   

and the ( )3G x  three-term Green’s equation. Let 2 1A = , 1 0 0.5A A= =  and 
( ) 8f x = . 
Table 1 exhibits a comparison between the exact, the results obtained by using 

Chelyshkov tau for 14N =  with analogous results of Çenesiz et al. [35] for 
underlying the generalized Taylor collocation method (GTCM) and Setia [36], 
who used second kind Chebyshev wavelet method (CWM) and with analogous 
results of El-Gamel and Abd El-Hady [13] for underlying Legendre-collocation 
method. 

Figure 1 displays the estimated absolute error function for 14N =  with the 
present method. 

Example 3: [13] [19] Now we turn to IVP  

( ) ( ) ( ) ( )3 2 3 2 387 1, 0 1
π

u x u x u x x x x x′′ + + = + + + < <  

subject to the boundary conditions  

( ) ( )0 1 and 0 1u u′= =  

whose exact solution is  

( ) 3 1u x x x= + +  

 
Table 1. Results for Example 2. 

x Analytical solution [35] Chelyshkov 14N =  Ref [35] Ref [36] Ref [13] 

0.1 0.036487 0.036453 0.036485 0.036665 0.036471 

0.2 0.140639 0.140575 0.140634 0.140795 0.140615 

0.3 0.307484 0.307403 0.307476 0.307622 0.307434 

0.4 0.533284 0.533252 0.533271 0.533404 0.533225 

0.5 0.814756 0.814860 0.814735 0.814861 0.814661 

0.6 1.148837 1.149069 1.148805 1.148927 1.148733 

0.7 1.532565 1.532870 1.532521 1.532643 1.532424 

0.8 1.963029 1.963440 1.962974 1.963094 1.962874 

0.9 2.437334 2.437829 2.437455 2.437386 2.437134 
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Figure 1. Error plot between analytical and Chelyshkov results for Example 2. 
 

Table 2 exhibits a comparison between the results obtained by using 
Chelyshkov tau for 8N =  with analogous results of Mekkaoui and Hammouch 
[19] for underlying the variational iteration method (VIM), the fractional 
iteration method (FIM) and with analogous results of El-Gamel and Abd 
El-Hady [13] for underlying Legendre-collocation method. 

Figure 2 displays the estimated absolute error function for 8N =  with the 
present method. 

Example 4: [38] Consider the linear BVP  

( ) ( ) ( ) ( ) ( )3 28 13 , 0 1
17 51

u x u x u x f x x′′ + + = < <  

where  

( ) ( ) ( )1 48 7
89250 π

f x p x x q x
x
 = +   

( ) 4 3 216000 32480 21280 4746 149p x x x x x= − + − +  

and  

( ) 5 4 3 23250 9425 264880 448107 233262 34578q x x x x x x= − + − + −  

and subject to the boundary conditions  

( ) ( )0 0 and 1 0y y= =  

whose exact solution is  

( ) 5 4 3 229 76 339 27
10 25 250 125

y x x x x x x= − + − +  

Table 3 exhibits a comparison between the absolute errors obtained by using 
Chelyshkov tau for 8N =  with analogous errors of Rehman and Ali Khan [38] 
for underlying Haar wavelets method. 

Figure 3 displays the estimated absolute error function for 8N =  with the 
present method.  
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Figure 2. Error plot between analytical and Chelyshkov results for Example 3. 
 

 
Figure 3. Error plot between analytical and Chelyshkov results for Example 4. 
 
Table 2. Results for Example 3.  

x Exact solution Chelyshkov tau 8N =  Ref [19] Ref [13] 

0.10 1.101000 1.101000 1.103763 1.101000 

0.25 1.265625 1.265625 1.269040 1.265625 

0.50 1.625000 1.625000 1.623997 1.625000 

0.75 2.171875 2.171875 2.166900 2.171875 

1.00 3.000000 3.000000 2.994988 3.000002 

 
Table 3. Results for Example 4. 

x Haar wavelets ( 256N = ) [38] Chelyshkov tau ( 8N = ) 

0.1 6.49908E−7 5.92720E−14 

0.2 6.35657E−7 1.18400E−13 

0.3 3.71584E−7 1.77249E−13 

0.4 9.48220E−7 2.35568E−13 

0.5 1.59573E−6 2.17578E−13 

0.6 1.05494E−6 2.92504E−13 

0.7 6.34678E−7 3.82671E−13 

0.8 1.88690E−6 3.82256E−13 

0.9 3.13999E−6 2.90107E−13 
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5. Conclusion 

In this paper, Chelyshkov operational matrix of fractional derivative has been 
derived. Our approach was based on the tau method. The proposed technique is 
easy to implement efficiently and yield accurate results. Moreover, only a small 
number of Chelyshkov polynomials is needed to obtain a satisfactory result. In 
addition, an interesting feature of this method is to find the analytical solution if 
the equation has an exact solution that is polynomial functions. Numerical 
examples are included and a comparison is made with an existing result. 
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