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Abstract 
In the review we obtained a strict solution of problem of the sound diffraction 
by an elastic spheroidal shell, located near the interface of a liquid medium 
with an elastic solid medium. Calculation of the scattered sound field for ideal 
bodies (a spheroid and an elliptical cylinder) is performed. These bodies are 
placed on the interface between the liquid and the ideal medium; it is shown, 
that the main role is played not by interaction of scatterers (real and imagi-
nary), but by interference of their scattered fields. The spectrum of the scat-
tered impulse signal for the body in an underwater sound channel is calcu-
lated. It is shown, that at large distances the dominante role is played by the 
spectral characteristic of the channel itself. Based on the method of imaginary 
sources and imaginary scatterers, the solution of the current study is to solve 
the diffraction problem of sound pulse signals at ideal (soft) prolate spheroid, 
which is put in the plane waveguide with the hard elastic bottom. In the work, 
it is proved that with such a formulation of problems eliminated, there exists 
possibility of using the method of normal waves because pulses are bundies of 
energy and can therefore only be distributed to the group velocity which is 
inherent in just the method of imaginary sources. Calculations made in the 
article showed that imaginary sources with small numbers exert the effect of 
total internal reflection, as the result of the reflection coefficient V by the hard 
elastic bottom which is complex and the real part of V is close to 1.0 which 
corresponds to V absolutely hard bottom. Found sequences of reflected pulses 
for the elastic hard bottom and the absolutely hard bottom floor confirmed 
this approach. In the final part of the article, on the basis of the received re-
sults, a solution (the method integral equations) is given, which is a much 
more complex problem of the diffraction at the elastic non-analytical scatter-
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er, put in the plane waveguide with the hard elastic bottom. 
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1. Introduction 

In the series of problems on the study of the influence of media interfaces on 
characteristics of sound scattering by bodies, following variants are usually in-
vestigated: 

a) An interaction of a scatterer with a single interface between media; 
b) The scatterer in the field of interfracting modes of the underwater sound 

channel; 
c) The finding of the total scattered field of the system of real and imaginary 

sources and scatterers of the plane waveguide. 

2. Elastic Scatterer near Interface of Media 

The interaction of the scatterer with the interface between media is considered 
in the example of the problem of scattering of sound by an elastic spheroidal 
body located at the interface between a liquid an elastic medium [1]. Let the 
elastic gas-filled prolate spheroidal shell be placed near the boundary a liquid— 
an elastic medium (Figure 1). The axis of rotation of the shell is parallel to the 
plane boundary. We introduce two systems of spheroidal coordinates ξs, ηs, φs (s 
= 1, 2), the first of which (s = 1) we associate with the scatterer, the second (s = 2) 
with the interface plane. The beginning of the Cartesian coordinate system O2 
foci of the second spheroidal coordinate system are defined as projections re-
spectively O1 and foci of the first coordinate system on the plane of the boundary 
Z2Y2, so that inter-focus distance 2h0 is common for both coordinate systems. 
The interface plane is two coordinate half-planes ( 2 π 2ϕ′ =  and 2 π 2ϕ′′ = − ) 
coordinate system. In order to relate this solution to the solution of the diffrac-
tion problem on the elastic spheroidal shell, we simplify the formulation of the 
problem and assume that the wave vector k  of the incident wave is in the 
plane X1Z1 (and correspondly X2Z2), 0osϕ =   (see Figure 1). 

Now along with the potential ( )1
1Φ  of the wave, scattered by the shell, will 

appear the potential ( )2
1Φ  frothe elastic half-space: 

( ) ( ) ( ) ( )2 1
1 , , 1 2 , 1 2 2

0
2 , , cos .m n m n m n

m n m
K S C R C mη ξ ϕ

∞ ∞

= ≥

Φ = ∑∑            (1) 
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Figure 1. Elastic spheroidal shell near the liquid-elastic 
isotropic medium interface. 

 
The potential ( )2

1Φ  decomposes by radial functions of the first kind, this is 
due to the fact, that foci of the second coordinate system lie in the plane of the 
interface, physically this means that the interacting of scatterers are distorted by 
fields of two plane waves: an incident and reflected by an interface. Expansions 
of potentials of the shell are accompanied by expansions of potentials of an elas-
tic half-space: 

( ) ( ) ( ) ( )2 2

2 1
2 , , 2 , 2 2

1
2 , , sin ;m n m n t m n t

m n m
U M S C R C mη ξ ϕ

∞ ∞

= ≥

= ∑∑           (2) 

( ) ( ) ( ) ( )2 2

2 1
2 , , 2 , 2 2

0
2 , , cos ,m n m n t m n t

m n m
W N S C R C mη ξ ϕ

∞ ∞

= ≥

= ∑∑          (3) 

( ) ( ) ( ) ( )2 2

2 1
2 , , 2 , 2 2

0
2 , , cos ;m n m n l m n l

m n m
L S C R C mη ξ ϕ

∞ ∞

= ≥

Φ = ∑∑           (4) 

where 
2l

C  and 
2t

C —are wave dimensions of longitudinal transverse waves 
respectively. 

The potential of the incident wave Φ0 in two coordinate systems has a form [2] 
[3]: 

( ) ( ) ( ) ( ) ( )1
0 , 1 0 , 1 , 1

0
2 , , , cos , 1, 2 .n

m m n m n s m n s s
m n m

i S C S C R C m sε η η ξ ϕ
∞ ∞

−

= ≥

Φ = =∑∑   (5) 

The potential of a diffracted field ( ) ( )1 2
0 1 2ΣΦ = Φ +Φ +Φ  obeys simultaneously 

to boundary conditions on a surface of a shell and on a planar interface between 
a liquid and an elastic medium. To boundary conditions on a surface of a shell 
are supplemented by conditions on an inter-face between a liquid-elastic me-
dium: 

( ) ( )( ) ( ) ( )
2

1 2 2 22 2
0 0 1 1 2 2 2 π 2; π 2

2 ;lk k uϕϕ ϕ
λ λ µ

= −
Φ +Φ +Φ = Φ +           (6) 
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( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )2 2 2 2 2 2 2 2

π 2; π 2
0;h h u h h h u hϕ ξ ϕ ϕ ξ ϕ ξ ξ

ϕ
ξ ϕ

= −
∂ ∂ + ∂ ∂ =      (7) 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )2 2 2 2 2 2 2 2

π 2; π 2
0;h h u h h h u hϕ ξ ϕ ϕ ξ ϕ ξ ξ

ϕ
ξ ϕ

= −
∂ ∂ + ∂ ∂ =      (8) 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

11 1 2 2
0 1 1 2

12 2 2 2 2 2

π 2; π 2
,

h h

h h h h

ϕ ϕ

ξ η η η ξ ξ
ϕ

ϕ ϕ

ξ ψ η ψ

−−

−

= −

− ∂ ∂ Φ +Φ +Φ = ∂Φ ∂

 + ∂ ∂ − ∂ ∂ 

              (9) 

where λ2 and μ2—Lame coefficients of an elastic half-space; ( )2
lk —a wavt num-

ber of a longitudinal wave of an elastic half-space. 
In our formulation of a problem because of a panty of a solution respect a 

plane XZ boundary conditions for π 2ϕ = −  completely repeat conditions for 
π 2ϕ = + , that do not provide any additional information in this case. When 

substituting potential expansions into boundary conditions for a shell and a 
planar interface when an expansion coefficients is used an addition theorem for 
wave spheroidal functions [3], 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 , 3
, ,

1 1 , 3
, , , , ,

0

, , exp

, , ; ; , exp ,

p q j j p q j j j

n

m n s s m n p q j s js m n s s s
n m n

R C S C ip

R C Q C C l S C ip

ξ η ϕ

ξ θ η ϕ
∞

= =−

= ×∑ ∑
   (10) 

where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 , 3
, , ,

0,1 0,1

, , , 1 , 3

2

exp ;

r p t m
n q pq mn

m n p q r j t s
r t r p t m

r p p t m m p m
js js

Q i ' 'd C d C i

b Z kl P i p m

σ

σ

σ σ σ θ ϕ

+ + +∞ ∞
−

= = = + − −

+ + −

= − −

 × − 

∑ ∑ ∑




 

θjs—polar angle of a point Os—a beginning of a s-th coordinate system in an 
i-th system (Figure 2); l—a distance between Oj and Os; ( )pq

r jd C  and ( )mn
t sd C

—сoefficients of expansions f functions ( ), ,p q j jS C η  and ( ), ,m n s sS C η  by 
functions ( )p

r jP η  and ( )m
t sP η , which up to a constant factor coincide with 

normalized adjoint Legendre functions; ( ) ( )1Z j klσ σ= —spherical Bessel func-
tions; ( ) ( ) ( )3 1Z h klσ σ= —spherical Hanrtl functions of a first kind; coefficients 

( ), , ,r p p t m mbσ
+ +

  are obtained from coefficients ( ), , ,r p p t m mbσ
+ +  [3] taking into account 

a relationship ( )m
t sP η  and associated Legendre functions; a prime for signs Σ 

means that a summation is carried out on an ever basis r and t, if, respectively,  
g - p and n - m is even and r and t is odd, if g - p and n - m is odd. 

A strict solution can be obtained for another orientation of a spheroidal shell 
with respect to a plane bourder, namely, under a condition of perpendicularity 
of a rotation axis of a shell to a plane interface between media (Figure 3). We 
will consider this orientation in more detail, by replacing a spheroidal shell with 
an ideal prolate soft spheroid and an elastic half-space by an ideal medium (hard 
or soft) [4]. We will map a scatterer and a source mirror-wise with respect to a 
boundary and reduce a problem to diffraction of fields of two sources (real and 
imaginary) by two spheroidal scatterers (real and imaginary). Potentials Φs (S = 
1, 2) of waves scattered by spheroids are chosen in a form of expansions (taking 
into account an axial symmetry) [4]: 
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Figure 2. Systems of spheroidal coordinates associated inter-
face with two interacting scatterers. 

 

 
Figure 3. Ideal spheroid at an face. 

 

( ) ( ) ( ) ( )3
0, 0, 0,

0
, , , .s

s s s n n s s n s s
n

B S C R Cξ η η ξ
∞

=

Φ =∑             (11) 

Since spheroids (real and imaginary) are ideally soft, then on their surfaces 
( 0 01 02ξ ξ ξ= = ) is satisfied a homogeneous Dirichlet: 

0

2

0 ; 1,2
1

0 .s s
s

ξ ξ= =
=

Φ + Φ =∑                      (12) 

A potential of a falling plane wave is given by a decomposition: 

( ) ( ) ( ) ( ) ( )1
0 0, 0, 0,

0
, 2 , , ,1 , 1, 2.n

s s n s s n s s n s
n

i S C R C S C sξ η η ξ
∞

−

=

Φ = =∑      (13) 

Unknown coefficients 0,
s

nB  of expansions (11) are sought from an infinite 
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system of equations—boundary conditions (12) [4]: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

11 3 3
0, 0, 0, 0 0, 0 0 0

0

11 3
0 0, 0 0, 0

, , , ; ;

2 ,1 , , , 1, 2; 1,2; ,

s t
n q n s s n s s n q t s ts

q

n
n s n s s n s s

B B R C R C Q C C l

i S C R C R C s t s t

ξ ξ θ

ξ ξ

∞ −

=

−
−

 +  

 = − = = ≠ 

∑
  (14) 

where l—a distance between centers of coordinate systems O1 and O2 (Figure 3), 
in our case: 

12 210, πθ θ= =  
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3
0 0

,0, ,0 10 0
0

0,1 0,1

, ; ;

2 cos ;

n q t s ts

r j
r jn q q n

r t j s ts
r j r j

Q C C l

i ' 'd C d C i b h kl Pσ
σ σ

σ

θ

θ
+∞ ∞

− + −

= = = −

= ∑ ∑ ∑
 

( ) ( )2,0, ,0 00 .r jb rj Oσ σ=  

For a regularization of a system (14) with respect to unknown coefficients 

0,
s

nB  we introduce new unknown 0,
s

nX  from a ratio [4]: 

( ) ( )1
0, 0, 0 0,, .s s

n n s s nB R C Xξ=                      (15) 

As a result, an infinite system (14) for unknown 0,
s

nB  is reduced to another 
infinite system of relatively new unknown 0,

s
nX  [4]: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 3 3
0, 0, 0, 0 0, 0 0 0

0

13
0, 0, 0

, , , ; ;

2 ,1 , .

s t
n q q t t n s s n q t s ts

q

n
n s n s s

X X R C R C Q C C l

i S C R C

ξ ξ θ

ξ

∞ −

=

−
−

 +  

 = −  

∑
     (16) 

Further we find by a trunkaction method a solution of a regular system (16). 
Initially we calculated angular scattering functions ( )s sD θ  of two interacting 
spheroids distorting a field of a plane monochromatic wave. A Figure 4 shows  
 

 
Figure 4. Modules of angular characteristics of 
single and interacting spheroids. 

https://doi.org/10.4236/oalib.1104141


A. Kleshchev 
 

 

DOI: 10.4236/oalib.1104141 7 Open Access Library Journal 
 

moduluses of angular characteristics ( )s sD θ  of tnteracting spheroids (a curve 
1 refers to a first spheroid, a curve 2—to a second spheroid). A curve 3 depicts in 
another scale ( )D θ  of a single soft spheroid in an infinite medium. A scale 
had to be changed so that a curve 3 did not merge with curves 1 and 2. A curve 4 
characterizes a modulus ( )1D θΣ  of a total angular characteristic in coordi-
nates of a first spheroid (Figure 1): 

( ) ( ) ( ) ( )1 1 1 2 1 1exp cos .D D D iklθ θ θ θΣ = +  

Calculations were carried out at: 1 2 10.0C C= = , 01 02 0 1.005ξ ξ ξ= = = , a 
semi-focus distance 01 02 1мh h= = , 08l h= . An analysis of curves prestnted in 
Figure 4 shows that when selected parameters (C1, C2, l) an interaction of scat-
terers turned out to be smail, because of this curves 1, 2, 3 are so close to each 
other. A main role is played by interference effects (especially in a shadow re-
gion), so a curve 4 stands out sharply (again in a shadow region) agatnst a back-
ground of other curves. In a second stage (based on a calculation of a scattered 
field of two spheroids) were calculated angular characteristics ( )D θΣ  of a soft 
spheroid ( 0 1.005ξ = ; 10C = ), located at a distance 0 04 4 ml h= =  from an 
interface between liquid and an ideal medium. Results of calculations ( )D θΣ  
are shown in Figure 5. A curve 1 corresponds to an interface between liquid and 
soft media. A certain contribution to ( )D θΣ  is made by an imaginary source 
and associated with it interference fringes of both spheroids, physically intense 
scattering in an illuminated region anses because of a reflection of waves scat-
tered by spheroids by a plane interface between media. We must not forget that I 
this case we are not talking about a distortion of a plane traveling wave (as it was 
an unlimited medium), about a distortion of a standing wave field real and im-
aginary sources. 

A strict solution also has a problem of scattering of sound by a spheroidal 
half-body placed on an interface between a liquid and an ideal medium. With a 
mirror image of a scatterer and a source with respect to a plane boundary, we 
obtain a spheroidal scatterer located in a field of two sources (real and imaginary).  
 

 
Figure 5. Modules of angular characteristics of soft spheroid 
at an interface of media. 
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A phase of a wave potential from an imaginary source on a plane interface coin-
cides with a phase of a potential of an incident wave in this plane in a liquid 
borders on an ideally rigid medium and phases of these waves differ at a boun-
dary by 180˚ if a liquid borders on an ideally soft medium. In Figure 6 shows 
modules of angular characteristics ( )D θ  (in .different scales) of spheroidal 
half-bodies located on a boundary of a liquid with an ideal medium. A curve 1 
corresponds to half a hollow steel oblate spheroidal shell placed on a boundary 
of a liquid an ideally soft medium. Outher radial coordinate of a shell 

0 0.1005ξ = , internal 1 0.07669ξ− = , a wave size 7.1C = , an irradiation angle 

0 0θ =  (an axisymmetric problem). Two other curves (see Figure 6) relate to 
modulus of angular characteristics of a soft oblate hemispheroid bordering on 
soft (a curve 2) and hard (a curve 3) media at a same irradiation angle 0 0θ =  
and a wave size of a body 10.0C = , a radial coordinate of a soft oblate spheroid 

0 0.1005ξ = . 
In Figure 7 show relative cross sections for backscattering σ0 of oblate ideal 

hemispheroids located on interface between media, where n under ( );D θ ϕ  we 
mean a total angular characteristic (from real and iimaginary sources). Curves of 
Figure 7 correspond to axially radiation ( 0 0θ = ) of an oblate hemispheroid 
(soft or hard) with a radial coordinate 0 0.1005ξ = . Curves 1 and 3 refer to a 
hard hemispheroid placed at a boundary with a hard 1 and soft 3 media (a liquid 
we have designated by a number I, soft—by a number II, hard—a number III). 
Curves 3 and 4 correspond to a soft hemispheroid located at a boundary with 
soft 2 and hard 4 media. Curves 5 and 6 give an idea of a variation σ0 of hard 5 
and soft 6 oblate spheroids ( 0 0.1005ξ = ) in an infinite liquid medium. It is easy 
to see that if a hemispheroid and an ideal semibounded medium and same (hard  
 

 
Figure 6. Modules of angular characteristics of sphe-
roidal semi-bodies located an interface between media. 
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Figure 7. Relative cross sections for back-scattering of 
oblate spheroids. 

 
or soft, curves 1 and 2) that is, a half body represents only a violation of a shape 
of a boundary hides this unevenness and σ0 grows slowly and at smail wave di-
mensions close to zero and vise versa, for different materials of a hemispheroid 
and a semibouded ideal medium cross-sections σ0 are much larger (curves 3 and 
4) in an entre investigated range of wave dimensions. While acurves 5 and 6 tend 
asymptotically to a value of geometric acoustics, remaining curves increase inde-
finitely. Mathematical and physical explanations for this phenomenon were giv-
en in comments to Figure 5. 

Let us turn to passive characteristics (scattering indicatrix) of hemispheroids 
located on an interface between a liquid and an ideal medium. We imagine for 
this that on a fairly large distance from a boundary along a line LM a combined 
system (source-receiver) moves, while we are interested in a reflected signal to a 
point finding a combined system. A movement of a system is so slow that a 
Doppler effect can be ignored. Two orientations of half-bodies are possible 
which admit are depicted in Figure 8 and Figure 9. In Figure 10 (in different 
scales) presented modules ( )0D θΣ  for a prolate soft hemispheroid on a boun-
dary of a liquid with an ideally hard medium (a curve 1, its scale is shown to a 
left of a vertical axis, 0 1.005ξ = , 10С = ) and for an oblate hard hemispheroid 
on a boundary of a liquid with an ideally soft medium (a curve 2, its scale is 
shown to a right of a vertical axis, 0 0.1005ξ = ; 10С = ). A orientation of he-
mibodies corresponds to Figure 8, directions of rays—by a oblate coordinate 
system. In Figure 11 shows modules ( )0D θΣ for a prolate hard hemispheroid 
on a boundary of a liquid with a ideally soft medium (a curve 1, 0 1.005ξ = , 

10С = ) and for a oblate hard hemispheroid on a boundary of a liquid with a  
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Figure 8. The multual orientation of a combined sys-
tem and hemispheroid (1-st variant). 

 

 
Figure 9. The mutual orientation of a combined sys-
tem and hemispheroid (2-nd variant). 

 
ideally sofy medium (a curve 2, 0 0.1005ξ = ; 10С = ). A orientation of hemi-
bodies corresponds to Figure 9, directions of rays—by a prolate coordinate sys-
tem. An analysis presented scattering indicatrix shows an advantage of a second 
type orientation (see Figure 9), since in this case appears an intense non-mirror 
component, associated with sound reflection of an interface. At orientation of 
1-st type (see Figure 8), intensive back reflection at 0θ =  will be masked by 
reflection from a planar interface. 

We will pass from stationary (harmonic) irradiation to nonstationary radia-
tion in a form of sound pulses with a rectangular envelope and monochromatic  
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Figure 10. Modules of scattering indicatrics of soft hemispheroids. 

 

 
Figure 11. Modules of scattering indicatrics of hard hemispheroids. 
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filling. As before, we will consider interfaces of media of three types: a liq-
uid—an elastic bottom; a liquid—an ideally soft medium (Dirichlet condition); a 
liquid—an ideally hard medium (Neumann condition). 

If a scatterer (oblate hard spheroid) is placed at an interface between media (a 
liquid—an elastic bottom) at an observation point, come first an impulse of a 
mirror reflection from a scatterer. 

Figure 12, a shows a mirror reflection pulse ( )1 Sr t⋅Ψ  for a hard oblate 
spheroid when it is irradiated at an angle 1 30θ =  ; a normalized modulus of a 
spectrum of a pulse ( )1 Sr t⋅Ψ  is seen from Figure 12(b). After a while an ob-
servation point P will reach an pulse ( )tΣ ′Ψ  reflected from an elastic bottom 
and diffracted on a spheroid. 

Figure 13, a shows a pulse ( )tΣΨ , a normalized modulus spectrum ( )S νΣ  
of a pulse ( )tΣ ′Ψ , presented on a Figure 13(b). 

We orient a hard prolate hemispheroid in such a way that it’s a major semiax-
is will be in a plane of an interface between media. We calculate mirror-reflected 
pulses ( )tΣ ′Ψ  at an angle of incidence 1 60θ =   for two variants: 1) a hard 
prolate hemispheroid on a boundary with a hard medium; 2) a hard prolate  
 

 
(a) 

 
(b) 

Figure 12. A mirror reflection pulse ( )1 Sr t⋅ Ψ  (а); a normalized modulus of a 

spectrrum ( )SS ν  of a pulse ( )1 Sr t′⋅ Ψ  (b). 
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(a) 

 
(b) 

Figure 13. A diffracted pulse ( )tΣΨ  (а); a normalized modulus of a spectrum . 

( )S νΣ  of a pulse ( )tΣ ′Ψ  (b). 

 
hemispheroid on a boundary with a soft medium, In Figure 14 is presented a 
pulse ( )tΣΨ  (a) and a normalized modulus of a spectrum ( )S νΣ  for a first 
variant and in Figure 15 show same characteristics for a second variant 

We see in Figure 16 a diffracted pulse ( )tΣΨ  and a modulus of its spectrum 
( )S νΣ  in a direction of a mirror component for a hard oblate hemispheroid, 

located on a border of a liquid—an ideally soft mediumin such a way that its 
major axis lies in a plane of boundary. An irradiation angle remains a same. 

1 30θ =  . 
In Figure 17 shows a diffracted pulse ( )tΣΨ  in a direction of a mirror 

component and a modulus of its spektrum ( )S νΣ  for a soft prolate hemis-
pheroid placed on a border of a liquid—an ideally hard medium. Dimensions, 
orientation of a hemispheroid, a ratio of semi-axis in a same as in Figure 16. We 
note that for oblate and prolate hemispheroids located on a interface between 
media a diffracted pulse ( )tΣΨ  in a direction of a mirror component is ob-
tained as a result of an interference of two reflected signals (from a foor of a he-
mispheroid and a boundary itself), herefore it is designated as a diffracted pulse/

( )tΣΨ . 
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(a) 

 
(b) 

Figure 14. A mirror of reflection pulse ( )tΣΨ  for a hard prolate hemisphe-

roid on a boundary with a hard medium (a); a normalized modulus of aspec-
trum ( )S νΣ  (b). 

 

 
(a) 

 
(b) 

Figure 15. A mirror reflection pulse ( )tΣΨ  for a hard prolate hemispheroid 

on a boundary with a spft medium (a); a normalized modulus of a spectrum 
( )S νΣ  (b). 
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(a) 

 
(b) 

Figure 16. A mirror reflection pulse ( )tΣΨ  for a hard oblate hemispheroid (a); a nor-

malized modulus of a spectrum ( )S νΣ  of a pulse ( )tΣΨ  (b). 

 

 
(a) 

 
(b) 

Figure 17. A mirror reflection pulse ( )tΣΨ  for a soft prolate hemispheroid (a); a nor-

malized modulus of a spectrum ( )S νΣ  of a pulse ( )tΣΨ  (b). 
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A picture of a reflection of sound by a spheroidal body located at a boundary 
of a liquid—an elastic bottom, we supplement it with angular scattering charac-
teristics ( ),R θ ϕ  for a stationary sound signal with a fixed frequency. In Figure 
18 shows a modulus ( )1 ,R θ ϕ  of an angulare characteristic upon irradiation 
of a soft prolate spheroid with a plane wave at an angle 1 60θ =   and a modulus 

( ),R θ ϕΣ  of an angulare characteristic upon irradiation with a plane wave re-
flected from a bottom. 

 

 
(a) 

 
(b) 

Figure 18. Modules of angular characteristics of a sound scattering by an ideal spheroid 
in free medium (a) and in a presence of a liquid—an elastic bottom boundary. 
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3. Ideal Spheroid in An Underwater Sound Channel 

A study of an effect of two boundaries on a field of a spheroidal scatterer will be-
gin withan ideal spheroid placed in an underwater sound channel with 
non-reflecting boundaries [5] and irradiated with a pulsed signal with monoch-
romatic filling [6]. At a depth z0 of such a waveguide we place a point source of a 
rulsed signal and at a horizontal distance r from it and at a depth z2—a spheroid-
al scatterer (Figure 19(a)). A velocity profile of sound in a symmetrical un-
der-water sound channel is shown in Figure 19(b). A receiver of a scattered 
signal is compatible with a source, that is we will consider a combined system 
and find a spectrum of a scattered signal at this point. Since by a condition a ve-
locity of sound depends only on a vertical coordinate z, in a horizontal plane 
rays are not bent and in each vertical half-plane, passing through a center of a 
scatterer a sound field will be independent of adjacent half-planes, and each 
half-plane there will be complex coefficients of excitation of a sound channel 
modes. A result, in each of these half-planes one observes an interference pattern 
of modes independent of neighboring half-planes. We are interested in a field in 
one vertical half-plane P containing a coincident point of a source-receiver and a 
center of a scatterer. Since a scattered field in this half-plane does not depend on 
a behavior of this field in all other half-planes, we shall take it to be a same in all 
vertical yalf-planes and equal to a field in half-plane P. Approximately (without 
taking into account an effect of a medium on an angular scattering characteristic) 
a spectrum of a scattered signal at a location of a source will be equal to [6]: 

( ) ( ) ( ) ( )12
2 0 1 , 1 1

1 1
exp π 2 ,

mNM

m n m nm m nm
m n

S r P P D i r rω ρ ω κ κ−

= =

 = − + − ∑∑     (17) 

where: ( ) ( ) ( )1
0 2 0m m m mP p z zρ ϕ ϕ−= ; pm—a mode excitation coefficient m; 

( )2m zϕ —a intrinsic wave-guide function determined by boundary conditions;  
 

 
Figure 19. A mutual arrangement of a spheroidal scatterer and a source in a sound 
channel (a) and a profile of a velocity of sound in a sound channel with non-reflecting 
boundaries (b). 
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ρ0—density at source and receiver depth; ( ) ( ) ( )2 2 01nm n nP z zρ ϕ ϕ= ; ρ2—  
density at a depth of a center of a scatterer; ( )nmD ω —space-transfer function of 
body scattering for a m-th mode of a source and a n-th mode of a scatterer; κm 
and κnm—horizontal components of wave numbers of modes of an incident and 
scattered waves res-pectively; M—a largest admissible source mode; N—a largest 
admissible scatterer mode for m-th mode of a source. 

A dependence of a velocity of sound on a coordinate z for a symmetric wave-
guide (see Figure 19(b)) has a form [5]: 

( ) ( )1 2
.c z p z q= +  

We will find a spectrum ( )2S ω  at a combined point of a source and receiver 
for a ideal soft scatterer in a forn of a prolate spheroid with a coordinate of an 
outher surface 0 1.005ξ = . We place a source (receiver) on an axis of a symme-
tric waveguide ( 2 0 0z z= = ), a major axis of a spheroid being perpendicular to 
an axis Z. An interfocus spheroid distance 2h0 is assumed equal to 9.7 m. A 
source generates a pulse signal with a duration 0 0.05 sτ =  at a frequency 

0 400 Hzf =  ( 8.0С = ). Space-transfer function ( )nmD ω  is determined by a 
frequency and angular (in a plane XOZ) characteristics of a spheroid scattering. 
With a chosen velocity profile of a sound (see Figure 19(b)) a largest angle be-
tween a wave vectors in an incident and scattered waves is approximately 16˚. 
Referring to an amplitude-phase angular characteristic of a scattering ( );D θ ϕ  
of a soft spheroid in a plane XOZ ( 90 , 0θ η= = ) (see Figure 20) we note that  
 

 
Figure 20. Amplitude-phase characteristic of sound 
scattering by a soft spheroid. 
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even with a maximum wave size ( 10.0C = ) used in calculations  
( ) ( ) ( )90 ; 90 ; exp 90 ;D D iϕ ϕ ψ ϕ =  

    (an angular characteristic) is practically 
non-directional within angles 0 16φ = ÷   (see Figure 20). Such an approach, in 
which modes of an underwater sound channel are considered in a form of plane 
waves irradiating our spheroidal scatterer is also approximate. Curve 1 in Figure 
20 refers to б, ( )90 ;D ϕ , curve 2 characterizes a phase ( )90 ;ψ ϕ  increased 
for all angles φ by π. At lower wave dimensions characteristics will be even closer 
to circular. Therefore, taking into account a first assumption about uniform 
scattering in a horizontal plane, we can assume that each incident wave from a 
set of admissible modes will scatter a body uniformly in all directions (as 
non-directional scatterer) with an angular constant excitation coefficient ( )D ω  
into which a shace-transfer function ( )nmD ω . As a result, a spectrum of a scat-
tered signal will be calculated by a formula [6]: 

( ) ( ) ( ) ( )12
2 0 1

1 1
exp π 2 .

M M

m nm m nm
m n

S D r P P i r rω ω ρ κ κ−

= =

 = − + − ∑∑     (18) 

4. Diffraction Pulse Sound Signal on the Soft Prolate  
Spheroid Located in Plane Waveguide with the  
Hard Elastic Bottom 

We turn to a familiar problem of the diffraction of pulses on spheroial bodies I 
the plane waveguide [7] [8] [9] [10], retairing the upper boundary condition Di-
richlet, waveguide dimensions and scatterer with respect to boundaries, replas-
ing only ideal hard lower boundary on the elastic isotropic bottom. Physical pa-
rameters of the lower medium will correspond to фthe isotropic elastic bottom, 
but in their values, they will be very close to parameters of transversely-isotropic 
rock—a large gray siltstone [11]. The longitudinal wave velocity in this material 
is 4750 m/s, the transverse wave velocity—2811 m/s. When used in this case the 
method of imaginary sources need to enter the reflection coefficient V for the 
each source [10], when displaying sources relative to the upper border sources, 
as before [7] [11] [12] [13] [14] [15], will change the sign on the opposite, which 
corresponds to a change of phase by π. 

It is known to [10], that the imaginary sources method boundary conditions 
are not fulfilled strictly on any of borders of the waveguide even in the case of 
ideal boundary conditions of Dirichlet and Neumann. For the better fulfillment 
of these conditions in diffraction problems [7] [11] [12] [13] [14] [15] [16] were 
introduced imaginary scatterers by mirroring their relatively waveguide bounda-
ries. Likewise conduct imaginary scatterers and in our problem and compare the 
sequence of reflected pulses [12] [13] [16] in the case of ideal borders and in 
presence of a hard elastic bottom in the waveguide. In [10] shows that the me-
thod of imaginary sources applicable in the case where the reflection coefficient 
V will be a function of the angle of the incidence of the wave from a source rela-
tive to the normal to the boundary. In our case this angle will be determined by 
the mutual position of the source (real or imaginary) and the scatterers (real or 
imaginary), which falls the wave from the source. Since the receiver is combined 
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with a real source Q, the sequence of reflected pulses will be determined by the 
quantity and amplitudes of reflected signals (from different scatterers) having 
the same propagation time from sources to scatterers and from scatterers to the 
point Q. Parameters of the waveguide, the position of the real source Q (com-
bined with the receiver) and the real scatterer remained unchanged compared 
[12] [13] [16]: L = 1000 m, H = 400 m, the real source Q and real scatterer are 
located at the depth of 200 m., the scatterer is the ideal soft prolate spheroid with 
the semi-axes ratio a/b = 10 (a = 0.279 m) and its axis of a rotation is perpendi-
cular to the plane of the figure (see Figure 21). The formula for the reflection 
coefficient 0NV , where N—the number of a source, is given in [10]. For the cal-
culatio9nof first five of reflected pulses us needed following reflection coeffi-
cients: 03V  in the direction of the first (real) scatterer 01, 05V  in the direction 
of the second (imaginary) scatterer 02, 06V  in the direction of same the second 
scatterer. 
 

 
Figure 21. The mutual disposition of the pulse point-soirces and 
scatterers in the plane waveguide. 
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As a result of simple calculations with the help of [7] obtain:  

03 0.9989 0.0633V i= + ; 05 0.9989 0.0633V i= + ; 06 0.6238 0.7897V i= + . All 
three coefficients have turned complex, which mesns the total internal reflection 
at the boundary liquid-hard elastic bottom, therefore all three modules of reflec-
tion coefficients are equal 1.0 and real parts of first two coefficients are close to 
+1.0, which is typical for the boundary liquid-absolutely hard bottom. The re-
sulting sequence of calculations of first five reflected pulses is shown in Figure 
22. We compare them to the sequence in Figure 23 for ideal boundaries [12] [13] 
[16]: 1st and 4th pulsews of Figure 22 are identical with first and second pulses of 
Figure 23, as for for 2nd, 3rd and 5th pulses in Figure 22 in the case of ideal 
boundaries and symmetrical location of real a source and a scatterer relatively of 
boundaries of the waveguide, they are compensated each reflected pulses, i.e. 2nd, 
3rd and 5th pulses (see Figure 22) show the difference in sequences of reflected 
pulses when replacing an absolutely hard bottom on an elastic hard bottom. 

A similar pattern is observed for anisotropic bottom, such as silicon, in wich 
quasi-longitudinal wave velocity of about 8300 m/s and quasi-transverse wave 
velocity of about 5700 m/s, with the secjnd quasi-transverse wave do not occur 
because of the problem statement [9]. Because of the high velocities of qua-
si-longitudinal and quasi-transverse waves total internal reflection effect at the 
anisotropic bottom manifest itself even more strongly than the isotrohic bottom. 
 

 
Figure 22. The normalized series of first five reflected impulses in the waveguide with the 
hard elastic bottom. 
 

 
Figure 23. The normalized series of first three reflected impulses with the harmonic fill-
ing in the point Q. 
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5. Diffraction Pulse Sound Signal on Non-Analytical Elastic 
Scatterer Put in Plane Waveguide with Hard Elastic 
Bottom 

Based on the obtained solution, consider a more general problem of the diffrac-
tion of the pulsed sound signal on an elastic scatterer as a finite cylindrical shell, 
supplemented with two hemispherical shells (Figure 24) and placed in the wa-
veguide with an elastic hard bottom (Figure 5), using the method of integral 
equations [16]-[21]. We note that a similar problem can be solved with the help 
of other methods: the boundary element method [20] [22]; T-matrix method 
[23]; the method of a potential [24]; the finite element method [25]; the method 
of Green’s functions [26]. 

The first stage will solve the problem of the diffraction of a harmonic wave on 
a such shell. The density of the material of the shell is ρ1, the Lame’s coeffi-
cients—λ and μ. The shell was filled in the internal liquid medium with the den-
sity ρ2 and the sound velocity C3 and it was placad in the external liquid medium 
with the density ρ0 and the sound velocity C0. At the shell falls the plane har-
monic wave with pressure pi under the angle Θ0 and with the wave vector k . 

As was shown in [16]-[21], the initial equation is integral equation, having the 
sense of the generalized Huygen’s principle, for the displacement vector ( )u r  
of the elastic shell: 

( ) ( ) ( ) ( ) ( ){ } ( )ˆ; ; d , ,
S

G n S V′ ′ ′ ′ ′ ′= − Σ ∈  ∫∫u r t r r r u r r r r r       (19) 

where ( ) ( )n̂ T′ ′ ′=t r r  is the stress vector; ( ) ( )ˆ ˆn n′ ′ ′ ′ ′≡ =r n r  is the single 
vector of the external along the relation to S normal; ( )T ′r  is the stress tensor 
of the isotropic material; ( );G ′r r  is the displacement Green’s tensor; ( );′Σ r r  
is the stress Green’s tensor; if r  concerns to the point of the surface S, in the 
left part of the Equation (19) will stand ( ) 2′u r . 

The displacement vector ( )u r , the stress tensor ( )T r , the displacement 
Green’s tensor (Figure 25). 
 

 
Figure 24. The elastic shell in the form of the terminal cylinder with the 
semi-spheres. 
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Figure 25. The mutual disposition of the impulse point-sources and scatterers in the 
plane waweguide. 

 
The displacement vector ( )u r , the stress tensor ( )T r , the displacement 

Green’s tensor ( );G ′r r  and the stress Green’s tensor ( );′Σ r r  were con-
nected between themselves by the following correlations [16] [21]: 

( ) ( ) ( ) ,T Iλ µ= ∇ + ∇ + ∇r u r u u                  (20) 

where L TI I I= + ; ( ) 2
LI = ∇∇ ∇ ; 0L TI I⋅ = ; ( ) 2

TI I= − ∇ ∇ ∇   , LI  and 

TI  are the longitudinal and transverse single tensors for the Hamilton’s opera-
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tor ∇ ; 

( ) ( ) ( ) ( ); ; ; ; ;I G G Gλ µ′ ′ ′ ′= ∇ + ∇ + ∇  ∑ r r r r r r r r          (21) 

( ) ( ) ( ){
( ) ( ) }

2
2 2

1 2

; 1 4π

,

tG k Ig k

g k g k

ρ ω′ ′= −

 ′ ′ ′+∇ − − − ∇ 

r r r r

r r r r
              (22) 

where k1 and k2 are the wave numbers of the longitudinal and transwerse waves 
in the material of the shell; ( ) ( )2 2exp 4πg k ik′ ′ ′− = − −r r r r r r  is the 
Green’s function. 

The second integral equation presents the Kirchhoff integral for the diffracted 
pressure ( )1p PΣ  in the external medium: 

( ) ( ) ( )( ){ ( )

( ) ( )} ( )

1 1 0 0

2
0 0 0 1

exp

exp d 4π ,
aS

a i

C P p P p Q n ikr r

ikr r S p Pρ ω

Σ Σ ′  = − ∂ ∂  

′ − + 

∫∫

un
       (23) 

where ( ) ( ) ( )1 1 1i sp P p P p PΣ = + ; ( )1sp P  is the scattered pressure in the point 
P1; C(P1) is the numerical coefficient, equal 2π, if 1 aP S∈  and 4π, if P1 out Sa; Sa 
is the external surface of the shell; Q is the point of the external surface of the 
shell. 

For the pressure ( )2 1p M  in the internal liquid medium in the point M1 is 
got the third integral equation: 

( ) ( ) ( )( ){ ( )

( ) ( )}

1 2 1 2 3 3

2
3 3 0

exp

exp d ,
bS

b

C M p M p Q n ikr r

ikr r Sρ ω

′ ′  = ∂ ∂  

′ −  

∫∫

un
         (24) 

where Q′  is the point of the internal surface of the shell; 

( ) 1
1

1

4π, if out ;
2π, if ;

b

b

M S
C M

M S


=  ∈
 

Sb is the internal surface of the shell. 
To the integral Equations (19), (23) and (24) are added the boundary condi-

tions on the external (Sa) and internal (Sb) surfaces of the shell: 
1) at the both surfaces of the shell the tangent stresses are equally null: 

0; 0; 1,2;
a bi iS S iτ τ= = =                    (25) 

2) the normal stress nσ ′  at the external surface of the shell is equally the dif-
fracted pressure pΣ, but at the internal surface is equally the pressure p2 

2; ;
a bn nS Sp pσ σ′ ′Σ= =                    (26) 

In the conformity with the conditions (7) and (8) the stress vector ( )′t r  in 
the Equation (1) is equal: 

( ) ( ) 2; ;
a bS Sp pΣ′ ′ ′ ′= =t r n t r n                (27) 

3) the continuity of the normal component of the displacement at the both 
boundaries of the shell: 
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( )( )

( )( )

2
0

2
2 2

1 ;

1 .
a

b

n S

n S

u p n

u p n

ρ ω

ρ ω

′ Σ

′

′= ∂ ∂ 


′= ∂ ∂ 

                (28) 

The substitution of integral Equations (19), (23) and (24) in the boundary 
conditions gives the system of equations in terms of unknown functions pΣ, p2 
and the components of the displacement vector u  at the both surfaces of the 
shell. To obtain numerical solution of this system the integral equations are re-
placed the quadrature formulas and the grid of the nodal points is chosen at 
both surfaces of the shell as well as it has be done for the ideal non-analytical 
scatterers [16] [17]. 

For choosing boundary conditions we will have the integrals of the two types: 
the integrals with the isolated special point and the integrals which are consi-
dered of the sence of the principal meaning. The method of the calculation of the 
second types was described in [16]. 

Thus calculated reflection characteristics of the harmonic signal with fre-
quency ν  can determine the spectral reflectance function ( )2πSS ν  and it 
can help be applying a Fourier transform we obtain a temporary function of the 
reflected pulse ( )S t′Ψ  [27]: 

( ) ( ) ( )2π

0

1 Re 2π e d 2π
π

i t
S St S νν ν

∞
+′Ψ = ∫              (29) 

Similarly using spectral reflectance characteristics of elastic bodies of sphe-
roidal form [16] [28] [29] [30] [31], we can compute sequences of reflected 
pulses in the waveguide with hard elastic bottom and for their. 

6. Conclusions 

In the first part of the review we investigate an interaction of a scatterer and an 
interface between media; it is shown that a main role in this is played by interfe-
rence effects. The second part of the review is devoted to a study of a spektrum 
of a scattered field of an ideal prolate spheroid placed in an underwater sound 
channel with non-reflecting boundaries. The third part of the review demon-
strates the effect of a bottom structure on a series of pulses, reflected from a 
spheroidal body located in a plane waveguide. 

As a result of the research we can draw three conclusions: 
1) During studying propagation and diffraction of pulse signals in a plane 

waveguide, one needs to use the method of imaginary sources as pulses like 
bundles of energy spread to any directions (including and along the axis of the 
waveguide) with the group velocity which does not exceed the sound velocity, 
namely the group velocity based the method of imaginary sources; 

2) Replacing the hard elastic bottom on the absolutely hard bottom is accepta-
ble to those sources (real and imaginary) from which waves in the fall to the 
hard elastic bottom try total internal reflection. 

3) We have adopted the model of image sources and image scatterer is gute 
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acceptable (due to internal reflection), at least, for first five calculated reflected 
pulses in a plane wave-guide with hard elastic bottom. 
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