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Abstract 
Presently, an ongoing outbreak of the monkeypox virus infection that began 
in Bayelsa State of Nigeria has now spread to other parts of the country in-
cluding mostly States in the South-South with the Nigerian Ministry of Health 
confirming 4 samples out of the 43 sent for testing at WHO Regional Labora-
tory in Dakar, Senegal. This reminds us that apart from the eradicated small-
pox, there are other poxviruses that pose potential threat to people in West 
and Central Africa. In this paper, we developed a mathematical model for the 
dynamics of the transmission of monkeypox virus infection with control strate-
gies of combined vaccine and treatment interventions. Using standard approach-
es, we established two equilibria for the model namely: disease-free and endem-
ic. The disease-free equilibrium was proved to be both locally and globally asymp-
totically stable if 0 1R <  using the next-generation matrix and the comparison 
theorem. While the endemic equilibrium point existed only when 0 1R > , was 
proved to be locally asymptotically stable if 0 1R >  using the linearization plus 
row-reduction method. The basic reproduction numbers for the humans and 
the non-human primates of the model are computed using parameter values to 
be 6

0, 9.1304 10hR −= ×  and 3
0, 3.375 10nR −= ×  respectively. Numerical simula-

tions carried out on the model revealed that the infectious individuals in the human 
and non-human primates’ populations will die out in the course of the proposed 
interventions in this paper during the time of the study. Sensitivity analysis car-
ried out on the model parameters shows that the basic reproduction numbers of 
the model which served as a threshold for measuring new infections in the host 
populations decrease with increase in the control parameters of vaccination 
and treatment. 
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1. Introduction 

Monkeypox is an infectious disease caused by the monkeypox virus [1]. Mon-
keypox virus is a zoonotic viral disease that occurs primarily in remote villages 
of Central and West Africa in proximity to Tropical Rainforest where there are 
more frequent contacts with infected animals [2]. The monkeypox virus which is 
closely related to variola virus was first identified by Magnus et al. (1959) as the 
causal agent in two outbreaks of pox infections in cynomolgus monkeys that 
were then received by the Statens Serum-institut, Copenhagen, Denmark, from 
Singapore [3] [4]. Human monkeypox is clinically related to smallpox as the two 
infections are difficult to distinguish from [2]. Monkeypox is usually transmitted 
to humans from rodents, pets and primates through contact with animal blood 
or bites [2] [5]. The infection can also be found in Gambian pouched rats (Crice-
tomys gambianus), dormice (Graphiurus sp.) and African squirrels (Heliosciurus 
and Funisciurus) [2]. Transmission of monkeypox virus occurs when a person comes 
into contact with the virus from an infected animal, human or material contami-
nated with the virus [5]. The virus enters the body through broken skin (even if 
not visible), respiratory tract or the mucous membranes (eyes, nose or mouth) [5]. 
Animal to human transmission may occur by bite or scratch, bush meat prepa-
rations direct contact with body fluids or lesion material such as through conta-
minated bedding. Human to human transmission is thought to occur primarily 
through large respiratory droplets which generally cannot travel more than few 
feet, and therefore, prolonged face-to-face contact is required [5]. Other methods 
of transmission in this category include direct contact with body fluids or lesion 
material materials [5]. 

In humans, the symptoms of the monkeypox virus infection are similar to but 
milder than the symptoms of smallpox. The infection usually begins with fever, 
headache, muscle ache and exhaustion [5] [6]. The main difference between symp-
toms of smallpox and monkeypox is that monkeypox causes lymph nodes to swell 
(lymphadenopathy) while smallpox does not [5]. The incubation period for mon-
keypox is usually 7 - 14 days but can range from 5 - 21 days [5].  

Evidence of viral infection in humans with monkeypox virus was first identi-
fied in the Democratic Republic of Congo (DRC), formerly known as Zaire, in 
the town of Basankusu, Equateur Province in the year 1970 [3]. A second out-
break of the infection occurred in the DRC/Zaire in 1996-1997 [5]. In 2003, a small 
outbreak of human monkeypox virus in United States occurred among owners 
of pet prairie dogs [5]. The outbreak originated from Villa Park, Illinois, outside 
of Chicago, when an exotic animal dealer kept young prairie dogs in close proxim-
ity to an infected Gambian pouched rat imported from Ghana, where a total of 
71 people were reportedly infected with no deaths [5]. A more recently, an out-
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break of the monkeypox virus infection has occurred in the Bayelsa State of the 
Federal Republic of Nigeria [6]. The Nigeria Centre for Disease Control (NCDC) 
has confirmed 4 cases out of the 43 suspected samples of the monkeypox virus 
infection sent the World Health Organization (WHO) Regional Laboratory in 
Dakar, Senegal, with 32 close contacts of the cases placed under clinical watch [6] 
[7]. 

Between 1970 and 1986, 404 cases of monkeypox virus were reported in 7 West 
and Central Africa countries (DRC, Ivory Coast, Sierra Leone, Cameroon, Cen-
tral African Republic, Liberia and Nigeria) among mainly children [8]. There are 
several promising antiviral drugs under development which may offer therapeu-
tic benefit for monkeypox patients of which Cidofovir has demonstrated protec-
tion in challenge studies performed under animal models [8]. There is no known 
monkeypox vaccine in circulation as at now, but the smallpox vaccine (vaccinia) 
which has demonstrated protection against monkeypox with about 85% vaccine 
efficacy could be used in monkeypox-endemic areas [8]. The known complica-
tions of the smallpox vaccine, that is, the increase of the HIV/AIDS prevalence 
in monkeypox-endemic environments are to be watched when using the small-
pox vaccine for immunization [8]. 

Currently, there is not much on the modeling aspect of the monkeypox virus 
infection [9]. But, the work in [9] provides framework for studying the transmis-
sion dynamics of the pox-like viruses with monkeypox as case study where they 
divided the host into primates transmitting the virus to humans through contact 
with infected rodents, which is a probability function, and human-to-human with 
increased transmission rate which is also a probability function of contacts with 
infected rodents or humans. Another mathematical modeling work for the trans-
mission dynamics of smallpox virus with control interventions can be traced to 
[10], where they studied the dynamics of the virus in human host only, sustain-
ing the virus from contact with an infected rodent or human. They studied the 
dynamics on different modeling schemes of SIR and SEIR approaches. In [11], 
control measures on respiratory pathogens may include any or all of the policies; 
quarantine, infection control precautions, case identification and isolation and 
immunization interventions. 

Therefore, this paper is set out to review the existing work of [9] by incorpo-
rating control interventions of treatment and vaccination, and latency/exposure 
period on the trends of successive chains of progression in both primates and hu-
man hosts since the monkeypox virus infection has incubation rates in the hu-
mans [5] and the primates (on assumption). 

2. Model Formulations 
2.1. Description of the Model 

The model in this paper divides the host population into two; the non-human pri-
mates and/or some wild rodents, and the humans host population. The non-human 
primate population was further divided into Susceptible ( )nS , Exposed/Latent 
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( )nE , Infected ( )nI  and Recovered ( )nR  subpopulations. The non-human pri-
mates and/or some wild animals are recruited into the Susceptible ( )nS  class at a 
constant birth rate nΛ  and become exposed to the monkeypox virus after get-
ting into contact with an infected non-human primate at a rate nλ  with 

1
n

n n
n

I
N

λ β=                           (1) 

where 1nβ  is the product of effective contact rate and probability of the non-human 
primate getting infected per contact. After incubation of the virus is achieved, 
the exposed primate proceeds to the infected class ( )nI  at a rate nν . The infected 
animals in ( )nI  are capable of either; infecting other animals when they come 
into contact, die due to the disease at a rate nd  or recover naturally with per-
manent immunity at a rate nρ  and move into ( )nR . All non-human primates 
in the model experience natural mortality rate nµ . 

The total human host population was also divided into Susceptible ( )hS , Vac-
cinated ( )hV , Exposed/Latent ( )hE , Infected ( )hI  and Recovered ( )hR  hu-
man subpopulations. The Susceptible humans are recruited into ( )hS through 
birth and migration at a constant rate hΛ . A susceptible individual is either vac-
cinated against the monkeypox virus at a rate hα  and move to ( )hV  with perma-
nent immunity or become exposed to the monkeypox virus after getting into 
contact with an infected human or non-human primates at a rate hλ  with 

2
n h

h n h
n h

I I
N N

λ β β= +                       (2) 

where 2nβ  is the product of the effective contact rate and probability of the 
human being infected per contact with an infectious non-human primate ani-
mal, and hβ  is the product of the effective contact rate and the probability of 
the human being infected with monkeypox virus after getting into contact with 
an infectious human per contact. After the incubation period, the Exposed hu-
man in ( )hE  proceeds to the infected class ( )hI  at a rate hν . Individuals in 
( )hI  either die due to the virus at a constant rate hd  or recover with permanent 
immunity after receiving treatment at a rate hρ  into ( )hR . All individuals in 
the human subpopulations suffer a natural mortality at a constant rate hµ . All pa-
rameters in the model are strictly nonnegative and will assume values presented 
in Table 1 during simulations and sensitivity analysis. The schematic diagram of 
the model in this description is presented in Figure 1 below. 

2.2. Model Equations 

From the description of the model and the schematic diagram presented in Fig-
ure 1 above, we derived the following model equations 

( )n n n n nS Sµ λ′ = Λ − +                       (3) 

( )n n n n n nE S Eλ µ ν′ = − +                      (4) 

( )n n n n n n nI E d Iν µ ρ′ = − + +                    (5) 
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Table 1. Model parameter values. 

Parameter Value Source 

nΛ  0.2 Assumed 

hΛ  0.029 [7] 

nµ  0.1 Assumed 

hµ  0.02 [7] 

nd  0.2 Assumed 

hd  0.1 [7] 

nρ  0.3 Assumed 

hρ  0.83 [7] 

nν  0.3 Assumed 

hν  0.095 [4] 

hα  0.1 Assumed 

1nβ  0.0027 [7] 

2nβ  0.00252 [7] 

hβ  0.000063 [7] 

 

 
Figure 1. Schematic model diagram. 
 

n n n n nR I Rρ µ′ = −                         (6) 

( )h h h h h hS Sµ λ α′ = Λ − + +                    (7) 

h h h h hV S Vα µ′ = −                         (8) 

( )h h h h h hE S Eλ µ ν′ = − +                     (9) 

( )h h h h h h hI E d Iν µ ρ′ = − + +                   (10) 
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n h h h hR I Rρ µ′ = −                         (11) 

( )n n n n nN t S E I R= + + +                     (12) 

( )h h h h h hN t S V E I R= + + + +                   (13) 

Subject to the following nonnegative initial conditions: 

( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0n n n nS E I R≥ ≥ ≥ ≥              (14) 

( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0 0h h h h hS V E I R≥ ≥ ≥ ≥ ≥          (15) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 and
0 0 0 0 0 0

n n n n n

h h h h h h

S E I R N
S V E I R N

+ + + ≤
+ + + + ≤

          (16) 

3. Model Analysis 

The model analysis begins by showing that all feasible solutions of the model are 
uniformly bounded in a proper subset of Ω . Thus the feasible region 

( )

( )

4

5

, , , :

, , , , :

n
n n n n n

n

h
h h h h h h

h

S E I R N

S V E I R N

µ

µ

+

+

Λ ∈ ≤
Ω =  Λ ∈ ≤






              (17) 

is considered. Therefore, after differentiation of (12) and (13), and proper subs-
titutions, we have: 

( )d
d
n

n n n n n n n n
N t

N d I N
t

µ µ= Λ − − ≤ Λ −              (18) 

and; 

( )d
d
h

h h h h h h h h
N t

N d I N
t

µ µ= Λ − − ≤ Λ −              (19) 

Applying [12] on the differential inequalities in (18) and (19), we obtained: 

( ) ( ) ( )

( ) ( ) ( )

0 e 1 e

0 e 1 e

n n

h h

t tn
n n

n

t th
h h

h

N t N

N t N

µ µ

µ µ

µ

µ

− −

− −

Λ ≤ + −

 Λ ≤ + −


               (20) 

where ( )0nN  and ( )0hN  are the initial populations of the non-human  

primates and the humans respectively. Therefore, 0 n
n

n

N
µ
Λ

≤ ≤  and 0 h
h

h

N
µ
Λ

≤ ≤  

as t →∞ . This implies that, n

nµ
Λ

 and h

hµ
Λ

 are upper bounds for ( )nN t  and 

( )hN t  respectively, as long as ( )0 n
n

n

N
µ
Λ

≤  and ( )0 h
h

h

N
µ
Λ

≤ . Hence, the  

feasible solution of the model equations in (3)-(13) enters the region Ω  which 
is a positively invariant set. Thus, the system is mathematically and epidemio-
logically well-posed. Therefore, for an initial starting point x∈Ω , the trajectory 
lies in Ω , and so it is sufficient to restrict our analysis on Ω . Clearly, under the 
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dynamics described by the model equations, the closed set Ω  is hence a positively 
invariant set. 

3.1. Model Equilibrium Points 

Using standard approaches, the model disease-free 0ε  and endemic ε∗  (which ex-
isted only when 0 1R > ) equilibrium points are established as follows: 

( )0 , , , , , , , ,

, ,0,0,0, ,0,0,0

h h h h h n n n n

h h h n

h h h h h n

S V E I R S E I Rε

α
α µ µ α µ µ

=

 Λ Λ Λ
=  

+ + 

              (21) 

( ), , , , , , , ,h h h h h n n n nS V E I R S E I Rε ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ =                  (22) 

where: 

( )
h

h
h h h

S
µ α λ

∗
∗

Λ
=

+ +
, 

( )
h h

h
h h h h

V α
µ µ α λ

∗
∗

Λ
=

+ +
, 

( )( )
h h

h
h h h h h

E λ
µ ν µ α λ

∗
∗

∗

Λ
=

+ + +
, 

( )( )( )
h h h

h
h h h h h h h h

I
d

ν λ
µ ρ µ ν µ α λ

∗
∗

∗

Λ
=

+ + + + +
,  

( )( )( )
h h h h

h
h h h h h h h h h

R
d

ρ ν λ
µ µ ρ µ ν µ α λ

∗
∗

∗

Λ
=

+ + + + +
, 

( )
n

n
n n

S
µ λ

∗
∗

Λ
=

+
, 

( )( )
n n

n
n n n n

E λ
µ ν µ λ

∗
∗

∗

Λ
=

+ +
, 

( )( )( )
n n n

n
n n n n n n n

I
d

ν λ
µ ν µ λ µ ρ

∗
∗

∗

Λ
=

+ + + +
, 

( )( )( )
n n n n

n
n n n n n n n n

R
d

ρ ν λ
µ µ ν µ λ µ ρ

∗
∗

∗

Λ
=

+ + + +
 with  

1
n

n n
n

I
N

λ β
∗

∗
∗= , 2

n h
h n h

n h

I I
N N

λ β β
∗ ∗

∗
∗ ∗= + , 

n n n
n

n

d IN
µ

∗
∗ Λ −
=  and h h h

h
h

d IN
µ

∗
∗ Λ −
= . 

3.2. Local Stability Analysis of the Model 
3.2.1. Local Stability of the Disease-Free Equilibrium (DFE) Point 
The basic reproduction number of the model was computed using the next-generation 
matrix as defined in [13] and [14]. It is defined to be largest eigenvalue or spec-
tral radius of the characteristic equation 1 0FV Iψ− − = . Using the notations in 
[13] for the model system (3)-(11), the associated matrices F  and V  for the new 
infectious terms and the remaining transition terms, evaluated at the disease-free 
equilibrium are respectively given by 

( ) ( )

1

2

0 0 0
0 0 0 0

0 0

0 0 0 0

n

h n n h h

n h h h h

F

β

β µ β µ
α µ α µ

 
 
 
 Λ=
 Λ + + 
  

              (23) 
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and 

( )
( )

( )
( )

1 0 0
0 0

0 0 0
0 0

n n n

n n n n

h h

h h h h

d
V

d

µ ν β
ν µ ρ

µ ν
ν µ ρ

 + −
 − + + =  +
 

− + +  

      (24) 

Therefore; 

( )

( ) ( )( ) ( ) ( )( )

1 1

1

2 2

0 0

0 0 0 0

0 0 0 0

n n n

n n n n

h n n n h n n h h h h h

n n h h n n n n h h h h h h h h h h

y d

FV

y d y d

ν β β
µ ρ

β ν µ β µ β ν µ β µ
α µ µ ρ α µ α µ µ ρ α µ

−

 
 + + 
 

=  
Λ Λ 

 Λ + Λ + + + + + + +
 
  

 (25) 

where ( )( )n n n n n ny dµ ρ µ ν= + + + , ( )( )h h h h h hy dµ ρ µ ν= + + + . 
Hence, the basic reproduction numbers of the model are given by: 

{ }0 0, 0,,n hR R R=  

where 0,nR  and 0,hR  are the monkeypox induced reproduction numbers for 
non-human primates and humans respectively and are given as: 

( )( )
1

0,
n n

n
n n n n n

R
d

ν β
µ ρ µ ν

=
+ + +

                  (26) 

( )( )( )0,
h h h

h
h h h h h h h

R
d

ν β µ
µ ρ µ ν α µ

=
+ + + +

              (27) 

Theorem 1: The disease-free equilibrium is locally asymptotically stable if 

0 1R < , and unstable if 0 1R >  with { }0 0, 0,max ,n hR R R= . 

3.2.2. Local Stability of the Endemic Equilibrium (EE) Point 
The local stability will be established using linearization method. Therefore, the 
Jacobian matrix J  of the model equations is given as: 

( )
( )

( )

( )

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

n

n n

n n

n n

h h

h h

h h

h h

h h

x m
x m

j

J n w z

n w
j

µ
µ ν
ν

ρ µ
µ α

α µ
µ ν
ν

ρ µ

 − + −
 − + 
 −
 

− 
 = − − + + −
 

− 
 − + 
 −
 − 

 (28) 

where 1n n

n

Ix
N
β ∗

∗= , 1n n

n

Sm
N
β ∗

∗= , 2n h

n

Sn
N

β ∗

∗= , 2n n h h

n h

I Iw
N N
β β∗ ∗

∗ ∗= + , h h

h

Sz
N
β ∗

∗= ,  

( )h h h hj dµ ρ= + +  and ( )n n n nj dµ ρ= + + . 
Next, we used elementary row-operations as used by [15] and [16] to row- 
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reduce (28) to an upper triangular matrix and obtained the following eigenva-
lues: 

( )1 n xψ µ= − +                         (29) 

( )( )2 n n nxψ µ µ ν= − + +                     (30) 

3 nrψ = −                           (31) 

4 n nrψ µ= −                          (32) 

( )5 n h hr wψ µ α= − + +                      (33) 

( )6 h n h hr wψ µ µ α= − + +                     (34) 

( )( )2
7 n h h h hr wψ µ α µ ν= − + + +                  (35) 

( )( )2
8 h n h h h hj r wψ µ α µ ν= − + + +                 (36) 

( )( )2
9 h h n h h h hj r wψ µ µ α µ ν= − + + +                (37) 

where ( )( )n n n n n n nr j x mµ µ ν µ ν = + + −  .  
Therefore, since the real part of all the eigenvalues iψ , for 1, 2, ,9i =   are 

negative, the endemic equilibrium is locally asymptotically stable from the fol-
lowing theorem: 

Theorem 2: The endemic equilibrium is locally asymptotically stable if 0 1R < , 
and unstable if 0 1R >  with { }0 0, 0,max ,n hR R R= . 

3.3. Global Stability Analysis of the Disease-Free Equilibrium  
Point 

Theorem 3: The disease-free equilibrium is globally asymptotically stable if 0 1R <  
and unstable if 0 1R >  

Proof: By the comparison theorem, the rate of change of the variables 
representing the infectious classes in the model can be compared in the follow-
ing inequality: 

( ) 1 1 2 2 3

1

n n n n n

n n n n n

h h h h h

h h h h h

E E E E E
I I I I I

F V M M
E E E E E
I I I I I

θ θ θ

′         
         ′         ≤ − − − −
         ′
         ′         

        (38) 

where F  and V  are defined in (23) and (24) respectively, 
0

1 01 h

h

SM
N

= − , 

0

2 01 h

h

VM
N

= − , 1 2,θ θ  and 3θ  are nonnegative matrices. And since 0 0
h hS N≤ ,  

then 0 0
h hV N≤ . Therefore, from (38) we get: 

( )

n n

n n

h h

h h

E E
I I

F V
E E
I I

′   
   ′   ≤ −
   ′
   ′   

                       (39) 

Therefore the matrix ( )F V−  is obtained as: 
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( )

( )
( )

( ) ( ) ( )
( )

1

2

0 0
0 0

0

0 0

n n n

n n n n

h n n h h
h h

n h h h h

h h h h

d
F V

d

µ ν β
ν µ ρ

β µ β µ
µ ν

α µ α µ

ν µ ρ

 − +
 − + + 
 Λ− =

− + 
Λ + + 

 − + + 

  (40) 

From the matrix in (40), let ψ  be an eigenvalue. Then, the characteristic eq-
uation ( ) 0F V Iψ− − =  gives the following eigenvalues: 

( )( )10 1n n n n n n ndψ µ ρ µ ν β ν = − + + + −                 (41) 

( )11 n n ndψ µ ρ= − + +                        (42) 

( )( ) ( )12
h n h

h h h h h
h h

d β ν µ
ψ µ ρ µ ν

α µ
 

= − + + + − 
+  

             (43) 

( )13 h h hdψ µ ρ= − + +                        (44) 

Therefore, all the four eigenvalues of the matrix in (40) have negative real 
part, showing that the matrix (40) is stable if 0 1R < . Consequently, using the 
model equations in (1)-(13), ( ) ( ), , , 0,0,0,0n n h hE I E I ⇒  as t ⇒∞ . Thus by 
the comparison theorem as used in [17], ( ) ( ), , , 0,0,0,0n n h hE I E I ⇒  as t ⇒∞ . 
Evaluating the model system (3)-(11) at 0n n h hE I E I= = = =  gives 

( )
0 h
h

h h

S
α µ
Λ

=
+

, 
( )

0 h h
h

h h h

V α
µ α µ
Λ

=
+

, 0 n
n

n

S
µ
Λ

=  and ( ) ( ), 0,0n hR R ⇒  as  

t ⇒∞  for 0 1R < . Hence, the disease-free equilibrium is globally asymptotical-
ly stable for 0 1R < . 

4. Numerical Simulations and Sensitivity Analysis of  
Parameters 

4.1. Numerical Simulations for the Model 

In this section, numerical simulations for the model were carried out using the 
parameter values in Table 1. Some of these parameters were sourced from ex-
isting literatures where available, and assumed for the purpose of illustrations to 
fit the model analysis where otherwise. We used MATLAB R2012b encoded with 
ODE45 solver to simulate the model system using the parameters and an initial 
population of 250nS = , 125nE = , 75nI = , 50nR = , 8000hS = , 5000hV = , 

3000hE = , 2000hI =  and 2000hR = . 

4.2. Sensitivity Analysis of Parameters in the Model 

Sensitivity indices allow us to measure the relative change in a variable when a 
parameter changes. The normalized forward sensitivity index of a variable to a 
parameter is the ratio of the relative change in the variable to the relative change 
in the parameter [18]. When the variable is a differentiable function of the pa-
rameter, the sensitivity index may be alternatively defined using partial deriva-
tives from the following: 
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Definition: The normalized forward sensitivity index of a variable τ  that de-
pends, differentially, on a parameter p , is defined as: 

p
p

p
τ τ

τ
∂

ϒ = ×
∂

                          (45) 

We computed the sensitivity index of each parameter involved in 0R  using 
the parameter values in Table 1. 

The indices with positive signs show that the value of 0R  increases when the 
corresponding parameters are increased and indices with negative signs indi-
cates that, the value of 0R  decreases with increase in the corresponding para-
meters. This analysis is done to ascertain which parameters dominate the results 
of our analysis. Therefore, some parameters are deliberately excluded out of the 
sensitivity analysis due to their relative low importance in the actual disease 
transmission process. For example, the natural births, deaths in both humans 
and the non-human primates. The results of the analysis are presented in Table 
2. 

Therefore, it is clear from the Table 2 above, that 0R  will decrease with in-
crease in the values of the control parameters hα  and hρ  since the sensitivity 
indices of these parameters are negative. 

5. Results and Discussions 
5.1. Results 

The results of the analysis for the model were presented in Section 3 of this pa-
per. The results of the numerical simulations for the model and sensitivity anal-
ysis of the model parameters using parameter values in Table 1 were presented 
in Figure 2 and Table 2 of Section 4 respectively. The computed basic reproduc-
tion numbers for the model using parameter values in Table 1 were 

3
0, 3.375 10nR −= ×                         (46) 

6
0, 9.1304 10hR −= ×                        (47) 

 
Table 2. Numerical values of sensitivity indices for model parameters in 0R  and hλ

∗ . 

Parameter Symbol Sensitivity Index 

nd  −0.133 

hd  −0.089 

nρ  −0.15 

hρ  −0.105 

nν  +0.25 

hν  +0.17 

hα  −0.83 

1nβ  +1.00 

2nβ  +0.168 

hβ  +1.00 
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                                        (i) 

Figure 2. Results of simulations with vaccination and treatment interventions, where 3
0, 3.375 10nR −= ×  and 

6
0, 9.1304 10hR −= × . 

 
Clearly, from (45) and (46), 0, 1nR <  and 0, 1hR < , suggesting that the dis-

ease-free equilibrium is both locally and globally asymptotically stable while the 
endemic equilibrium of the model is locally asymptotically stable from our anal-
ysis. 

The sensitivity indices of the model parameters in Table 2 evaluated using the 
parameter values in Table 1 suggest that, the indices with positive signs increas-
es the value of 0R  when the corresponding parameters are increased and indic-
es with negative signs decreases the value of 0R  with increase in the corres-
ponding parameters. 

5.2. Discussions 

In this paper, we studied the dynamics of the transmission of the monkeypox 
virus infection under the combined vaccine and treatment interventions using 
the work of [9] as frame. An additional compartment representing the Latent or 
Exposed populations of the non-human primates and the humans was added to 
the existing work by [9] due to the identified fact in [5], that monkeypox virus 
has incubation rates. As seen in the model diagram, the vaccine was adminis-
tered on the susceptible human population with the assumption it confers per-
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manent immunity against monkeypox virus infection at an initial rate of 0.1hα = . 
This low vaccination rate was used due to the identified increase in the preva-
lence of HIV/AIDS in its endemic environment as a result. However, the sensitivi-
ty analysis carried out in the model revealed that, if the control parameters of the 
treatment hρ  and vaccination hα  are increased, the basic reproduction num-
bers of the model which serves as the threshold for measuring new monkeypox 
virus infections among the two interacting populations will decrease. 

The results of the numerical simulations carried out for the model using pa-
rameter values in Table 1 shows that, the infectious classes in both non-human 
primates and humans will be wiped out in the time considered by this study, whe-
reby each of the infectious population becomes asymptotic to zero. This mean 
that, the disease-free equilibrium as seen in Figure 2, is asymptotically stable both 
locally and globally. Figure 2(e) and Figure 2(f) shows the susceptible human 
population decreasing exponentially while the vaccinated human population was 
growing exponentially up to equilibrium level before it started decreasing re-
spectively. This can be explained as; due to the administration of the vaccine, the 
susceptible human population will continue to decrease resulting into most of 
the individuals in the class being vaccinated. Besides, the susceptible humans al-
so suffer natural mortality. While increase in the vaccinated class can be explained 
from the continuous vaccination being carried out on the susceptible humans 
and the decrease in the population as seen in the Figure 2(f) was due to the fact, 
the compartment was only recharged by the low vaccination rate hα  and the 
class also suffers natural mortality. This fact suggests that, the vaccine rate can be 
increased for greener results and the vaccine should be re-administered when-
ever there is an outbreak of the virus in the future. 

The treatment intervention as seen in Figure 2(i) caused the recovered class 
to grow exponentially up to equilibrium level, and which then started decreas-
ing. This is due to the fact that the recovered human population is recharged by 
treating the infected humans. And this means that, when the infected human pop-
ulation approaches zero, the recovered class dies out exponentially, and besides, 
humans recover with permanent immunity and that recovered class also suffers 
natural mortality. As seen in Figure 2(d), the recovered non-humans class grows 
exponentially up to equilibrium and then dies out exponentially in the absence 
of an infected non-human primate. This population becomes asymptotic to zero 
with a smooth curve. 

6. Conclusion 

In this paper, we developed a mathematical model for the dynamics of transmis-
sion of the monkeypox virus infection with combined interventions of vaccination 
and treatment. We carried analysis on the developed model. The disease-free equi-
librium was found to be both locally and globally asymptotically stable if 0 1R <  
and unstable if 0 1R > . Using parameter values obtained from existing literatures, 
we carried out numerical simulations and sensitivity analysis for the model and 
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the parameters respectively. The simulations results revealed that, the disease will 
be eradicated from both humans and the non-human primates with the proposed 
interventions of the model in due time. Sensitivity analysis revealed that, the in-
terventions offer an optimal control on the monkeypox virus infection in the hu-
man population with increase in the control parameter rates of vaccination and 
treatment. 
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