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Abstract 
This paper is concerned with the initial-boundary value problem of scalar 
conservation laws with weak discontinuous flux, whose initial data are a func-
tion with two pieces of constant and whose boundary data are a constant 
function. Under the condition that the flux function has a finite number of 
weak discontinuous points, by using the structure of weak entropy solution of 
the corresponding initial value problem and the boundary entropy condition 
developed by Bardos-Leroux-Nedelec, we give a construction method to the 
global weak entropy solution for this initial-boundary value problem, and by 
investigating the interaction of elementary waves and the boundary, we clarify 
the geometric structure and the behavior of boundary for the weak entropy 
solution. 
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1. Introduction 

Consider the following initial-boundary value problem for scalar conservation 
laws: 
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where ( )0u ⋅  and ( )bu ⋅  are two bounded and local bounded variation 
functions on [ )0,+∞ , and the flux f  is assumed to be locally Lipschitz 
continuous. 

The initial-boundary value problem for scalar conservation laws plays an 
important role in mathematical modelling and simulation of practical problem 
of the one-dimensional sedimentation processes and traffic flow on highways [1] 
[2] [3] [4] [5]. The existence and uniqueness of global weak entropy solution in 
the BV-setting were first established by Bardos-Leroux-Nedelec [6] for the 
initial-boundary value problem of scalar conservation laws with several space 
variables by vanishing viscosity method and by Kruzkovs method [7], 
respectively. The core of studying the initial-boundary value problem of 
conservation laws is the boundary entropy condition which requires only that 
the boundary data and the boundary value of solution satisfy an inequality. This 
makes it very interesting to study the initial-boundary value problems of 
hyperbolic conservation laws. The interested reader is referred to [8]-[14] about 
other results of existence and uniqueness for the initial-boundary value problem 
of scalar conservation laws. For the initial-boundary value problem of systems of 
conservation laws, some progresses have been made in the past: Dubotis-Le Floch 
[10] discussed the boundary entropy condition, the authors in [15] [16] [17] [18] 
studied the boundary layers, Chen-Frid [19] proved the existence of global weak 
entropy solution for the system of isentropic gas dynamics equations by using 
the method of Compensated compactness and vanishing viscosity. 

For the geometric structure and regularity and large time behavior of solution 
of the initial value problem for scalar conservation laws, see [20] [21] [22] [23] 
[24] [25] etc. Due to the occurrence of boundary, the geometric structure of the 
solution of (1) is much more difficult than that of corresponding initial value 
problem. In recent years, for the case of the flux function belonging to C2- 
smooth function class, some results have been obtained in this regard. The 
authors in [1] [3] [26] constructed the global entropy solutions to the 
initial-boundary problems on a bounded interval for some special initial-boundary 
data with three pieces of constant corresponding to the practical problem of 
continuous sedimentation of an ideal suspension. Liu-Pan [27] [28] [29] studied 
the initial-boundary problem with piecewise smooth initial dada and constant 
boundary data for scalar convex conservation laws, they gave a construction 
method to the global weak entropy solution of this initial-boundary value 
problem and clarified the structure and boundary behavior of the weak entropy 
solution. Moreover, Liu-Pan also constructed the global weak entropy solution 
of the initial-boundary value problem for scalar non-convex conservation laws 
under the condition that the initial dada is a function with two pieces of constant 
and the boundary data is a constant function in [30] and by investigating the 
interaction of elementary waves and the boundary, they discovered some 
different behaviors of elementary waves nearby the boundary from the 
corresponding initial-boundary value problem for scalar convex conservation 
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laws. 
The purpose of our present paper is devoted to constructing the global weak 

entropy solution of the initial-boundary value problem (1) for scalar conservation 
laws with two pieces of constant initial data and constant boundary data under 
the condition that the flux function has a finite number of weak discontinuous 
points, and clarifying the geometric structure and the behavior of boundary for 
the weak entropy solution. 

The present paper is organized as follows. In Section 2, we introduce the 
definition of weak entropy solution and the boundary entropy condition for the 
initial-boundary value problem (1), and give a lemma to be used to construct the 
piecewise smooth solution of (1). In Section 3, basing on the analysis method in 
[27], we use the lemma on piecewise smooth solution given in Section 2 to 
construct the global weak entropy solution of the initial-boundary value problem 
(1) with two pieces of constant initial data and constant boundary data under the 
condition that the flux function has a finite number of weak discontinuous 
points, and state the geometric structure and the behavior of boundary for the 
weak entropy solution. 

2. Definition of Weak Entropy Solution and Related Lemmas  

In mathematics, a weak solution (also called a generalized solution) to an 
ordinary or partial differential equation is a function for which the derivatives 
may not all exist but which is nonetheless deemed to satisfy the equation in some 
precisely defined sense. There are many different definitions of weak solution, 
appropriate for different classes of equations. About the definition of weak 
solution for the equation of scalar conservation laws, see [31]. Generally 
speaking, there is no uniqueness for the weak solution of scalar conservation 
laws. Since the equation of scalar conservation laws arises in the physical 
sciences, we must have some mechanism to pick out the physically relevant 
solution. Thus, we are led to impose an a-priori condition on solutions which 
distinguishes the correct one from the others. The correct one is called the weak 
entropy solution. Following the papers [3] [6] [10] [12], we give the definition of 
weak entropy solution of the initial boundary value problem (1). 

Definition 1. A bounded and local bounded variable function ( ),u x t  on 
[ ) [ )0, 0,∞ × ∞  is called a weak entropy solution of the initial-boundary problems 
(1), if for each ( ),k ∈ −∞ ∞ , and for any nonnegative test function  

[ ) [ )( )0 0, 0,Cφ ∞∈ ∞ × ∞ , it satisfies the following inequality 

( ) ( ) ( )( )
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where  
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( )
1,      0

1,     0
x

sgn x
x
≥

= − <
 

For the initial-boundary value problems (1) whose initial data and bounded 
data are general bounded variation functions, the existence and uniqueness of 
the global weak entropy solution in the sense of (2) has been obtained, and the 
global weak entropy solution satisfies the following boundary entropy condition 
(3) (see [3] [6] [10] [12]). 

Lemma 1. If ( ),u x t  is a weak entropy solution of (1), then,  

( ) ( )
( )( ) ( )
( )

( ) ( )( ) ( )

0 ,
0 ,   or  0, 

0 ,

0 , , , 0 , , . . 0,

b

b

f u t f k
u t u t

u t k

k I u t u t k u t a e t

+ −
+ = ≤

+ −

∈ + ≠ + ≥

            (3) 

where ( ) ( )( ) ( ) ( ){ } ( ) ( ){ }0 , , min 0 , , ,max 0 , ,b b bI u t u t u t u t u t u t + = + +  .  
In what follows, we give a lemma for the piecewise smooth solution to (1), 

which will be employed to construct the piecewise smooth solution of (1). 
Before stating the lemma, we make the following assumptions to the flux f : 
(A1) f C∈ ; 
(A2) Its derivative function f ′  is a piecewise C1-smooth function with a 

finite number of discontinuous points 
idu , and there exist ( )idf u±′  such that 

( ) ( )i id df u f u− +′ ′< , where f−′  and f+′  represent the left and right derivatives 
of f  respectively; 

(A3) ( ) 0f u′′ > , 
idu u≠ . 

Lemma 2. Under the assumptions (A1)-(A3), a piecewise smooth function 
( ),u x t  with piecewise smooth discontinuity curves is a weak entropy solution of 

(1) in the sense of (2), if and only if the following conditions are satisfied: 
(1) ( ),u x t  satisfies Equation (1)1 on its smooth domains; 
(2) If ( )x x t=  is a weak discontinuity of ( ),u x t , then when ( )( ),u x t t  is  

not the discontinuous point of f ′ , then ( )( )( )d ,
d
x f u x t t
t

′=  and when  

( )( ),u x t t  is the discontinuous point of f ′ ,  

( )( )( ) ( )( )( )d d,   or  , ;
d d
x xf u x t t f u x t t
t t− +′ ′= =  

If ( )x x t=  is a strong discontinuity of ( ),u x t , then the Rankine-Hugoniot 
discontinuity condition  

( ) ( ) ( )d
d
x t f u f u

t u u
− +

− +

−
=

−
                     (4) 

and the Oleinik entropy condition 

( ) ( ) ( ) ( )f u f u f u f u
u u u u
− + −

− + −

− −
≤

− −
                 (5) 

hold, where ( )( )0,u u x t t± = ± , and u  is any number between u−  and u+ ; 
(3) The boundary entropy condition (3) is valid; 
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(4) ( ) ( )0,0  . . 0.u x u x a e x= ≥   
Lemma 2 is easily to be proved by Definition 1 and Lemma 1 (see [12] [32]). 
Notations. For the convenience of our construction work, we introduce some 

notations. Let ( )( ), ; ,R u u a b− +  denote a rarefaction wave connecting u−  and 
u+  from the left to the right centered at point ( ),a b  in the x t−  plane, 
abbreviated as ( ),R u u− + , and ( )( ), ; ,S u u a b− +  denote a shock wave ( )x x t=  
connecting u−  and u+  from the left to the right starting at point ( ),a b  in the 
x t−  plane, abbreviated as ( ),S u u− + , whose speed ( )x t′  is also denoted by  

( ),s u u− + , i.e., ( ) ( ) ( ) ( ), ,
f u f u

x t s u u
u u
− +

− +
− +

−
′ = =

−
 where ( )x x t=  satisfies the  

Rankine-Hugoniot condition (4) and the Oleinik entropy condition (5). 
It is well known that the solution of the shock wave ( ),S u u− +  centered at 

point ( ),a b  and the solution of the central rarefaction wave ( ),R u u− +  
starting at point ( ),a b  in the x t−  plane are respectively expressed as:  

( )

( ) ( ) ( )

( ) ( ) ( )

,     
,

,     

f u f u
u x a t b

u u
u x t

f u f u
u x a t b

u u

− +
−

− +

− +
+

− +

−
< + − −= 

− > + − −

 

and  

( )

( )( )

( ) ( )( ) ( )( )

( )( )

1

,                  

, ,      

,                  

u x a f u t b
x au x t f a f u t b x a f u t b
t b

u x a f u t b

− −

−
− +

+ +

′ < + −


−  ′ ′ ′= + − < < + −  − 
 ′> + −

 

where t b> .  

3. Construction of Global Weak Entropy Solutions  

In this section, with the aid of the analysis method in [27], the authors in [27] 
used the truncation method to construct the global weak entropy solution 
( ),u x t  of initial-boundary value problem for scalar conservation laws with 

C2-smooth flux function. This analysis method is basing on the tracing of the 
position of elementary waves (especially the shock wave) in the weak entropy 
solution ( ),v x t  for the corresponding initial value problem and the boundary 
entropy condition (3). According to [27], if ( ),v x t  does not include any shock 
wave or includes a shock wave whose position is not the following case: the 
shock wave lies in the second quadrant and the sign of the shock speed is changed 
from negative to positive before a finite time, then ( ) ( )

0, 0
, ,

x t
u x t v x t

> >
= ; 

otherwise we need to find some time 0t t=  and construct the local solution to 
this time, and then take the time 0t t=  as the new initial time to extend this 
local solution to t →∞ . We will construct the global weak entropy solution of 
(1) with two pieces of constant initial data and constant boundary data under the 
condition that the flux function has a finite number of weak discontinuous 
points by employing Lemma 2 and the structure of weak entropy solution to the 
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corresponding initial value problem. Moreover, we will also describe the 
interaction of elementary waves with the boundary and clarify the behaviors of 
the global weak entropy solution near the boundary. 

Consider the following initial-boundary problem:  

( )

( )

( )

0,      0, 0
,     0

,0
,      

0, ,          0

t x

m

u f u x t
u x a

u x
u x a

u t u t
+

−

 + = > >


< < =  >
 ≡ >

                   (6) 

where , mu u±  are constant, for 0x >  and , 0x a a≠ >  is a constant. We first 
consider the case that f  has only one weak discontinuous point, and then the 
case that f  has finitely many weak discontinuities. 

3.1. The Case That f Has Only One Weak Discontinuous Point  

Throughout this sub-section, the flux f  is assumed to satisfy (A1) and the 
following conditions: 

(A2)' f ′  is a piecewise C1—smooth function with one weak discontinuous 
point du , and there exist ( )df u±′  such that ( ) ( )d df u f u− +′ ′< ; 

(A3)' ( ) 0f u′′ > , du u≠ . 
We first discuss the initial boundary value problem (6) for the case of 

mu u u+ −= ≠ , which is called Riemann initial-boundary problem, written as  

( )
( )
( )

0,     0, 0
,0 ,        0

0, ,         0,

t xu f u x t
u x u x
u t u t

+

−

+ = > >
 ≡ >
 ≡ >

                   (7) 

where u u− +≠ . And then investigate (6) with mu u+≠ . For definiteness, it has 
no harm to assume that ( ) ( )0 0 0f f ′= =  and 0du <  in this sub-section. The 
other cases can be dealt with similarly. 

3.1.1. Riemann Initial-Boundary Problem  
When ( ) ( ) 0d du u u u− +− ⋅ − ≥ , (7) is degenerated into a corresponding problem 
with 2f C∈  (see [27]). We now construct the weak entropy solution of (7) 
only for the case of ( ) ( ) 0d du u u u− +− ⋅ − < . We divide our problem into two 
cases: (1) du u u− +< < ; (2) du u u+ −< < . 

Case (1) du u u− +< < .  
Consider the following Riemann problem corresponding to (7):  

( )

( ) ( )0

0,           , 0
,    0

,0 :
,    0.

t xv f v x t
u x

v x v x
u x
−

+

+ = − ∞ < < ∞ >


< = =  >

              (8) 

In this case, since the flux function has a weak discontinuity point du u= , the 
Riemann problem (8) includes only a rarefaction wave ( ) ( ), ,d dR R u u R u u− +=   
centered at point ( )0,0  of the x t−  plane. This rarefaction wave solution can 
be written as:  
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( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

1

1

,                  ( )

,      

,                  ,

,      

,                  

d

d d d

d

u x f u t
xf f u t x f u t
t

u f u t x f u tv x t
xf f u t x f u t
t

u x f u t

− −

−
− −

− +

−
+ +

+ +

′<


  ′ ′ ′≤ <   
 ′ ′≤ <= 
   ′ ′ ′≤ <   
 ′≥

 

Let ( ) ( )
, 0

, ,
x t

u x t v x t
>

= , then ( ) { }0 , min ,0u t u++ = , hence, it holds the 
boundary entropy condition:  

( )( ) ( )
( ) ( ) ( )( )0 ,

0 , 0 , , 0 , .
0 ,

f u t f k
k u u t k u t

u t k −

+ −
≤ ∀ ∈ + ≠ +  + −

 

It is easy to verify that ( ),u x t  also satisfies all other conditions in Lemma 2. 
Therefore, by Lemma 2, ( ),u x t  is the global weak entropy solution of (7). 

Case (2) du u u+ −< < .  
In this case, (8) includes only a shock wave ( ),S u u− +  at point ( )0,0  in the 

x t−  plane. This shock wave solution can be expressed as follows:  

( ) ( )
( )

,    ,
,

,    ,
u x s u u t

v x t
u x s u u t
− − +

+ − +

<
=  >

 

where ( ),s u u− +  is the speed of the shock ( ),S u u− + . Let ( ) ( )
, 0

, ,
x t

u x t v x t
>

= , 
then  

( ) ( )
( )

,     as  , 0
0 ,

,     as  , 0
u s u u

u t
u s u u
+ − +

− − +

≤
+ =  >

 

From Lemma 2, we can easily verify that ( ),u x t  is the global weak entropy 
solution of (7). 

3.1.2. The General Problem with mu u+≠  

Consider the following initial value problem corresponding to (6):  

( )

( ) ( )0

0,           , 0
,    0

,0 : ,    0
,    .

t x

m

v f v x t
u x

v x v x u x a
u x a

−

+

+ = − ∞ < < ∞ >
 <
 = = < <

 >

             (9) 

According to the solution structure of (9), we construct the global weak 
entropy solution of (6) with mu u+≠  by dividing our problem into five cases: 
(1) mu u u− += ≠ ; (2) mu u u− +< < ; (3) mu u u+ −< < ; (4) , mu u u− + < ; (5) 

,mu u u− +< . 
Case (1) mu u u− += ≠ .  
In fact, when mu u− = , ( ) ( ) 0d du u u u− +− ⋅ − ≥ , (6) becomes a problem with 

2f C∈ , which was discussed in [27]. We now investigate the case of 
( ) ( ) 0d du u u u− +− ⋅ − < . (9) is degenerated into a Riemann problem. 

If mu u u− += < , only a rarefaction wave ( ) ( ), ,d dR R u u R u u− +=  , centered 
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at ( ),0a  of the x t−  plane, appears in the weak entropy solution of (9). This 
rarefaction wave solution of (9) can be written as: 

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

1

,                           

,        

, ,                            

,         

,                    

d

d d d

d

u x a f u t
x af a f u t x a f u t

t
v x t u a f u t x a f u t

x af a f u t x a f u t
t

u

− −

−
− −

− +

−
+ +

+

′< +

− ′ ′ ′+ ≤ < + 
 

′ ′= + ≤ < +

− ′ ′ ′+ ≤ < + 
 

( )        .x a f u t+










 ′≥ +

 

Let ( ) ( )
, 0

, ,
x t

u x t v x t
>

= , where ( ),v x t  is the weak entropy solution of (9). It 
is easy to verify ( ),u x t  satisfies all conditions in Lemma 2, thus ( ),u x t  is the 
global weak entropy solution of (6). It includes only a rarefaction wave 

, 0x tR
>

, 
which will interact with the boundary 0x =  and be completely absorbed (if 

0u+ ≤ ) (see Figure 1(a) and Figure 1(b)) or partially absorbed (if 0u+ > ) (see 
Figure 1(c))by the boundary.  

If mu u u− += > , the weak entropy solution ( ),v x t  of (9) includes only a 
shock wave emanating at point ( ),0a  of the x t−  plane, which can be 
expressed as follow:  

( ) ( )
( )

,    ,
,

,    ,
u x a s u u t

v x t
u x a s u u t
− − +

+ − +

< +
=  > +

 

Let ( ) ( )
, 0

, ,
x t

u x t v x t
>

= , then by Lemma 2, it is also easy to verify that ( ),u x t  
is the global weak entropy solution of (6). It includes only a shock wave 

( )( ), ; ,0S u u a− + , which will interact with the boundary 0x =  and be absorbed 
(if ( ), 0s u u− + ≤ ) (see Figure 2(a)) or be far away from the boundary (if 
( ), 0s u u− + > ) (see Figure 2(b) and Figure 2(c)).  
Case (2) mu u u− +< < .  
If , m du u u± ≥ , or , m du u u± ≤ , (6) becomes a problem with 2f C∈ , see [27]. 

We now consider the following three cases: m du u u u− +< < < , d mu u u u− +< < < , 
and m du u u u− +< = < . 

When m du u u u− +< < < , two rarefaction waves ( ), mR u u−  and  
( ) ( )1 , ,m d dR R u u R u u+=  , centered at point ( )0,0  and ( ),0a , respectively, 

appear in the weak entropy solution ( ),v x t  of (9); when d mu u u u− +< < < ,  
 

 
Figure 1. The interaction of the rarefaction wave 

, 0x t
R

>
 with the boundary 0x = . 
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Figure 2. The interaction of the shock wave ( )( ), ; ,0S u u a− +  with the boundary 0x = . 

 
two rarefaction waves ( ) ( )2 , ,d d mR R u u R u u−=   and ( ),mR u u+ , centered at 
point ( )0,0  and ( ),0a , respectively, appear in the weak entropy solution 
( ),v x t  of (9); when m du u u u− +< = < , two centered rarefaction waves 
( ), dR u u−  and ( ),dR u u+ , centered at point ( )0,0  and ( ),0a , respectively, 

appear in the weak entropy solution ( ),v x t  of (9). The two rarefaction waves in 
( ),v x t , centered at point ( )0,0  and ( ),0a , respectively, will not overtake each 

other since the propagating speed of the wave front in the first wave is not 
greater than that of the wave back in the second wave. Let ( ) ( )

, 0
, ,

x t
u x t v x t

>
= , 

from Lemma 2, we can easily verify that ( ),u x t  is the global weak entropy 
solution of (6). 

When m du u u u− +< < < , ( ),u x t  includes only a rarefaction wave 
, 0x tR
>

, 
which will interact with the boundary 0x =  and be partially absorbed (if 

0u+ > ) or absorbed (if 0u+ ≤ ) by the boundary. 
When d mu u u u− +< < < , if ( ) 0mf u′ = , ( ),u x t  includes only the central 

rarefaction wave ( ),mR u u+  far away from the boundary 0x = ; if ( ) 0mf u′ > , 
( ),u x t  includes two central rarefaction waves 2 , 0x tR

>
 and ( ),mR u u+  far away 

from the boundary; if ( ) 0mf u′ < , ( ),u x t  includes only the central rarefaction 
wave ( )

, 0
,m x t

R u u+ >
, which will interact with the boundary and be partially 

absorbed (if 0u+ > ) or completely absorbed (if 0u+ ≤ ) by the boundary. 
When m du u u u− +< = < , ( ),u x t  includes only the central rarefaction wave 
( )

, 0
,d x t

R u u+ >
, which will interact with the boundary and be partially absorbed 

(if 0u+ > ) or completely absorbed (if 0u+ ≤ ) by the boundary. 
Case (3) mu u u+ −< < .  
The discussion for this case is the same as that of the corresponding case in 

[27]. 
Case (4) , mu u u− + < .  
When , du u u− + ≥ , or m du u≤ , then (6) is degenerated into the problem with 

2f C∈ . When du u− ≥ , then the discussion on this problem is the same as that 
of the case 2f C∈ . Hence, we only investigate the case of ,d m mu u u u u− +< < < . 

In this case, an initial rarefaction wave ( ) ( ), ,d d mR R u u R u u−=   centered at 
point ( )0,0  and an initial shock wave ( ),mS u u+  starting at point ( ),0a  
appear in the weak entropy solution ( ),v x t  of (9). In what follows, similar to 
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[33], we give the statement of interaction of the initial rarefaction wave R and 
the initial shock wave ( ),mS u u+ . The rarefaction wave R interacts with the 
shock wave ( ),mS u u+  lying on its right at some finite time 1t t= , and the 
shock ( ),mS u u+  will cross R after 1t t= . The initial shock wave curve is 
denoted as ( )x x t= , and the resulting shock after the interaction of R and 
( ),mS u u+  is still denoted as ( )x x t= , which is regarded as an extension of the 

original shock ( )x x t= . The right state of the resulting shock is a constant u+ . 
If u u+ −< , the shock ( )x x t=  will cross the whole of the initial rarefaction 
wave R completely at some finite time; if u u+ −= , the shock ( )x x t=  is able to 
cross the whole of R completely only when t →∞ ; if u u+ −> , it is impossible 
for this shock wave to cross the whole of R completely, but it is able to cross 
the right part of R: ( ), mR u u+  (if du u+ ≥ ) or ( ) ( ), ,d d mR u u R u u+   (if 

du u u− +< < ) when t →∞ . The shock ( ) ( )0x x t t= >  is a piecewise smooth 
curve. First, the shock wave ( ) ( )0x x t t= >  cross the right part ( ),d mR u u  of 
R with a varying speed of propagation during the penetration. If it is able to 
cross the whole of ( ),d mR u u  completely at some finite time, then it crosses the 
domain of constant state du u=  with a constant speed of propagation. When 
the shock ( ) ( )0x x t t= >  encounters the rightmost characteristic line of the 
rarefaction wave ( ), dR u u− , it begins to cross ( ), dR u u−  with a varying speed 
of propagation again. For the position of the shock ( ) ( )0x x t t= > , we have 
one of the following cases: 1) the shock ( )x x t=  is located in the first quadrant 
of the x t−  plane; 2) the shock ( )x x t=  enters the second quadrant from the 
first quadrant including the t-axis at some finite time and then keeps staying in 
the second quadrant. Let ( ) ( )

, 0
, ,

x t
u x t v x t

>
= , then by Lemma 2, ( ),u x t  is the 

global weak entropy solution of (6). 
We now state the interaction of the elementary and the boundary 0x =  for 

the global weak entropy solution of (6). When the shock ( )x x t=  in ( ),v x t  is 
in the first quadrant of the x t−  plane, the elementary wave in the solution 
( ),u x t  of (6) does not interact with the boundary 0x = ; when the shock wave 

( )x x t=  of ( ),v x t  enters the second quadrant from the first quadrant 
including the t-axis and then keeps staying in the second quadrant, the shock 
wave ( )x x t=  in ( ),u x t  interacts with the initial rarefaction wave 

, 0x tR
>

 on 
its right at 1t t= , and then crosses 

, 0x tR
>

 at its right at 1t t> , finally it collides 
with the boundary 0x =  and is absorbed by the boundary (see Figure 3(a) and 
Figure 3(b)).  

Case (5) ,mu u u− +<   
If , du u u− + ≤ , or m du u≥ , then (6) becomes a problem with 2f C∈  (see 

[27]). If du u u+ −≤ < , the discussion of the problem is the same as that of the 
case 2f C∈ . We only consider the case of m du u u+< <  in the following 
discussion. 

In this case, an initial shock wave ( ), mS u u−  starting at point ( )0,0  and an 
initial rarefaction wave ( ) ( ), ,m d dR u u R u u+  centered at point ( ),0a  in the  
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Figure 3. The interaction of the shock wave ( )x x t=  with the boundary 0x = . 

 
x t−  plane appear in the weak entropy solution ( ),v x t  of (9). We denote this 

initial shock wave curve by ( )x x t= . As in [33], the shock ( ), mS u u−  interacts 
with the rarefaction wave R on its right at some time 1t t=  and at 1t t> , it will 
cross R with a varying speed of propagation during the penetration. We denote 
the generating shock wave still by ( )x x t= , whose left state is a constant u− . If 
u u− +> , the shock wave ( )x x t=  will completely penetrate the initial 
rarefaction wave R at a finite time; if u u+ −= , the shock ( )x x t=  is able to 
cross the whole of R completely only when t →∞ ; if u u− +< , it is impossible 
for this shock wave to cross the whole of R completely, but it is able to cross the 
left part of R: ( ),mR u u− (if du u− ≤ ) or ( ) ( ), ,m d dR u u R u u− (if du u− > ) when 
t →∞ . After 1t t= , ( )x x t=  will cross the rarefaction waves on its right with 
a non-decreasing speed. The shock ( ) ( )0x x t t= >  is a piecewise smooth 
curve. During the process of penetrating ( ) ( ), ,m d dR R u u R u u+=  , it first 
crosses the leftmost part ( ),m dR u u  of R with a varying speed, and then crosses 
the constant state du u=  with constant speed. When the shock wave 

( ) ( )0x x t t= >  encounters the characteristic line of the leftmost characteristic 
line of the rarefaction wave ( ),dR u u+ , it again begins to cross the rarefaction 
wave ( ),dR u u+  with a varying speed. For the shock ( ) ( )0x x t t= > , it holds 
one of the following three cases: (a) when the initial shock speed ( ), 0ms u u− ≥ , 
the shock ( )x x t=  interacts with the initial rarefaction wave R in the first 
quadrant including the t-axis and keeps staying in the first quadrant after 
interaction (see Figure 4(a)); (b) when ( ), 0, 0ms u u u u− + −< < <  and  
( ) ( )f u f u− +≤ , the shock ( )x x t=  interacts with R in the second quadrant 

and remains in the second quadrant after interaction (see Figure 4(b)); (c) when 
( ), 0ms u u− < , if 0 , 0u u u+ − −≤ ≤ ≠  or 0 < u u− +≤  or 0u u+ −< < , 
( ) ( )f u f u− +> , the shock ( )x x t=  crosses the t-axis from the second 

quadrant at some finite time greater than 1t , and then enters the first quadrant, 
and keeps staying in the first quadrant after that finite time (see Figure 4(c) and 
Figure 4(d)).  

In sub-case (a) and (b), let ( ) ( )
, 0

, ,
x t

u x t v x t
>

= , then from Lemma 2, we can 
verify that ( ),u x t  is the global weak entropy solution of (6). The interaction of 
the elementary wave and the boundary 0x =  in the solution ( ),u x t  of (6) is 
stated as follows: For sub-case (a), when ( ), 0ms u u− > , the weak entropy  
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Figure 4. The interaction of the shock wave ( )x x t=  with the boundary 0x = . 

 
solution of (6) does not include the interaction of elementary waves and the 
boundary 0x = ; when ( ), 0ms u u− = , the rarefaction wave  

( ) ( ), ,m d dR R u u R u u+=   collides with the boundary 0x =  at time 1t t= , and 
the boundary 0x =  reflects a new shock wave tangent to the boundary itself at 
point ( )10,t , which is just the restriction of ( )x x t=  at 1t t>  and will 
penetrate R after 1t t= . For sub-case (b), the weak entropy solution of (6) only 
includes the rarefaction wave ( ) ( )

, 0
, ,m d d x t

R R u u R u u+ >
=  , which interacts 

with the boundary 0x =  at some time and is absorbed completely by the 
boundary. 

For sub-case (c), there exists ( )* ,0mu u∈  such that ( ) ( )*f u f u−= . 
Furthermore, there is * 1t t>  such that  

( ) ( )( )( )
*

*

*

0,    0
, 0, 0,    

0,    

t t
x t s u u x t t t t

t t
−

< < <
′ = + = =
> >

 

for * du u≠  and there are exist ( )* * 1 * *,t t t t t> <  such that  

( ) ( )( )( )
*

* *

*

0,    0

, 0, 0,    
0,    

t t

x t s u u x t t t t t
t t

−

< < <
′ = + = ≤ ≤
> >

 

for * du u= , where ( )x t′  is the speed function of the shock wave ( )x x t=  in 
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the weak entropy solution of (9). If we construct the solution of (6) by taking 
( ) ( )

, 0
, ,

x t
u x t v x t

>
=  as in sub-cases (a), (b), then this ( ),u x t  does not satisfy 

the boundary entropy condition (4) for 2t t> , where ( )( )2 * *t a f u t+′= − <  is 
the time at which the characteristic line with speed ( )( )( )* *0,f u x t t+′ +  from 
the point ( )( )* *,x t t  backward to x-axis intersects the t-axis (see Figure 4(c) 
and Figure 4(d)). Thus, by virtue of Lemma 2, it is not the weak entropy 
solution of (6). We need to reconstruct the solution of (6). Take  

( ) ( )2
2

,              0
,

, 0 ,   0
u x

v x t
v x t x
− <

=  − >
                  (10) 

as the new initial value of (9)1, then the solution ( ),v x t  of the initial value 
problem (9)1, (10) in ( ) ( )20, ,t∞ × ∞  includes only a new shock wave ( )x x t+=  
starting at point ( )20,t , whose original speed is zero and the left state is u− . 
When 2t t> , this shock crosses the rarefaction wave ( ) ( )*x a t f uR

+′− >  on its right 
with a varying positive speed of propagation in the first quadrant. Let  

( ) ( )
( )

2

2

, ,   0
,

, ,   ,
v x t t t

V x t
v x t t t

< <
=  ≥

 

then, from Lemma 2, this ( ) ( )
0, 0

, ,
x t

u x t v x t
> >

=  is the global weak entropy 
solution of (6). Now we give the statement of the interaction of the elementary 
and the boundary 0x =  in the solution ( ),u x t  of (6) (see Figure 4(c) and 
Figure 4(d)). For the problem (6), an initial rarefaction wave  

( ) ( ), ,m d dR R u u R u u+=   emanates from the point ( ),0a  on the x-axis. One 
part of R collides with the boundary 0x = , and then the boundary 0x =  
reflects a new shock wave ( )x x t+=  at 2t t=  with zero original speed, which 
will penetrate another part ( ) ( )*x a t f uR

+′− >  of R with a varying positive speed of 
propagation in the first quadrant. This shock is just that one in ( ),v x t . 

3.2. The Case That f Has Finitely Many Weak Discontinuous Points  

In this sub-section, the flux f  is supposed to satisfy the conditions (A1)-(A3). 
As an example, we discuss the case that f ′  has only two discontinuous points, 
and we can similarly deal with the case that f ′  has n discontinuous points. It 
has no harm to assume that ( ) ( )0 0 0f f ′= =  and 

1 2
0d du u< <  as in above 

sub-section.  

3.2.1. Riemann Initial-Boundary Problem 
We now construct the global weak entropy solution of (7) under the condition 
that 

1 2
,d du u  are located between u−  and u+ . If not so, see [27] or sub-Section 

3.1.1. 
Case (1) 

1 2
,d du u u u− +< < .  

In this case, since the flux function f  has two weak discontinuous points 

1 2
,d du u , (8) includes only a rarefaction wave  

( ) ( ) ( )1 1 2 2
, , ,d d d dR R u u R u u R u u− +=    centered at point ( )0,0  of the x t−  

plane. We can express this rarefaction wave solution as:  
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( )

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )

1

1 1 1

1 2

2 2 2

1

1

1

,                    

,       

,                   

,       ,

,                  

, 

d

d d d

d d

d d d

u x f u t
xf f u t x f u t
t

u f u t x f u t

xf f u t x f u tv x t
t

u f u t x f u t

xf
t

− −

−
− −

− +

−
+ −

− +

−

′<

 ′ ′ ′≤ < 
 

′ ′≤ <

 ′ ′ ′≤ <=  
 

′ ′≤ <

 ′  
 

( ) ( )

( )
2

       

,                     .

df u t x f u t

u x f u t

+ +

+ +















′ ′≤ <

 ′≥

 

Let ( ) ( )
, 0

, ,
x t

u x t v x t
>

=  then ( ) { }0 , min ,0u t u++ = . It is easy to verify that 
( ),u x t  is the global weak entropy solution of (7). 
Case (2) du u u+ +< < .  
In this case, only a shock wave ( ),S u u− +  starting at point ( )0,0  appears in 

the weak entropy solution of (8). This shock wave solution can be denoted as:  

( ) ( )
( )

,    ,
,

,    ,
u x s u u t

v x t
u x s u u t
− − +

+ − +

<
=  >

 

where ( ),s u u− +  is the speed of the shock wave ( ),S u u− + . Let  
( ) ( )

, 0
, ,

x t
u x t v x t

>
= , then  

( ) ( )
( )

,    if , 0
0 ,

,    if , 0
u x s u u

u t
u x s u u
+ − +

− − +

< ≤
+ =  > >

 

By Lemma 2, one can verify that ( ),u x t  is the global weak entropy solution 
of (7). 

3.2.2. The General Problem with mu u+≠  

For the initial boundary value problem (6) with mu u+≠ , we only investigate the 
case of 

1 2
0 ,m d du u u u u− +< < < < , ( ) ( )mf u f u−> , which is the most typical 

and complicated case. 
In this case, an initial shock wave ( ), mS u u− , emanating at point ( )0,0 , and 

an initial rarefaction wave ( ) ( ) ( )1 1 2 2
, , ,m d d d dR R u u R u u R u u+=   , centered at 

point ( ),0a , appear in the weak entropy solution ( ),v x t  of the corresponding 
initial value problem (9). We denote this shock by ( )x x t= , whose original 
speed of propagation is negative. The shock ( )x x t=  will interact with the 
rarefaction wave R on its right at some finite time 1t t= . This interaction will 
generate a new shock, still denoted by ( )x x t= . The left state of the resulting 
shock wave is u− . If u u− +> , the shock ( )x x t=  is able to cross the whole of 
R at finite time (see Figure 5(a)); if u u− += , the shock ( )x x t=  is able to cross 
the whole of R completely only when t →∞ ; if u u− +< , it is impossible for the 
shock to cross the whole of R completely, but it is able to cross the left part 

( ) ( ) ( )1 1 2 2
, , ,m d d d dR R u u R u u R u u+=    of R at t →∞  (see Figure 5(b)). After 

1t t= , ( )x x t=  will penetrate the rarefaction wave on its right with a  
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Figure 5. The interaction of the shock wave ( )x x t=  with the boundary 0x = . 

 
non-decreasing speed of propagation. The shock ( ) ( )0x x t t= >  is a piecewise 
smooth curve. 

During the process of its penetrating the rarefaction wave R, the shock wave 
( ) ( )0x x t t= >  first crosses the leftmost part ( )1

,m dR u u  of R with a varying 
speed of propagation, and then crosses the constant state 

1du u=  with constant 
speed. When the shock wave ( )x x t=  encounters the characteristic line of the 
leftmost characteristic line of the rarefaction wave ( )1 2

,d dR u u , it again begins 
to cross the rarefaction wave ( )1 2

,d dR u u  with a varying speed. And then it 
crosses the constant state 

2du u=  with constant speed. Finally, it crosses the 
rightmost part ( )2

,dR u u−  of R with a varying speed of propagation. 
In view of 

1 2
0 ,m d du u u u u− +< < < <  and ( ) ( )mf u f u−> , there exists 

( )* ,0mu u∈  such that ( ) ( )*f u f u−= . Furthermore, there is * 1t t>  such that  

( ) ( )( )( )
*

*

*

0,    0
, 0, 0,    

0,    

t t
x t s u u x t t t t

t t
−

< < <
′ = + = =
> >

 

for 
1 2* ,d du u u≠  and there are exist ( )0* * 1 0* *,t t t t t> < , such that  

( ) ( )( )( )
0*

0* *

*

0,    0
, 0, 0,    

0,    

t t
x t s u u x t t t t t

t t
−

< < <
′ = + = ≤ ≤
> >

 

for 
1* du u=  or 

2du , where ( )x t′  is the speed function of the shock wave 
( )x x t=  in the weak entropy solution ( ),v x t  of (9). The position of the shock 
( ) ( )0x x t t= >  is stated as follows: the shock ( )x x t=  lies in the second 

quadrant of the x t−  plane as ( )**0,t t∈ , and cross the t-axis at **t t= , and 
then enter and keep staying in the first quadrant (see Figure 5(a)), where 

( )** *t t>  is the unique time at which the shock ( )x x t=  and the t-axis axes 
intersect.  

In what follows, we construct the global weak entropy solution of (6). Let 2t  
denote the intersection time of the t-axis and the characteristic line with speed 

( )( )( )* *0,f u x t t+′ +  from the point ( )( )* *,x t t  backward to x-axis, namely, 
( )( )2 * *t a f u t+′= − < . First take ( ) ( )

, 0
, ,

x t
u x t v x t

>
= , then by lemma 2, this 
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( ),u x t  is the local weak entropy solution of (6) on ( ) ( )20, 0,t+∞ × . Next we 
will extend this ( ),u x t  to ( ) ( )0, 0,+∞ × +∞ . Consider the following Cauchy 
problem:  

( ) ( )

( ) ( )

2

2
2

0,         ,
,                0

,
, 0 ,     0

t xv f v x t t
u x

v x t
v x t x
−

+ = − ∞ < < +∞ >
 < =  − >

            (11) 

The weak entropy solution ( ),v x t  of (11) in ( ) ( )20, ,t+∞ × +∞  includes 
only a shock wave ( )x x t+=  starting at ( )20,t , whose original speed of 
propagation is zero. The shock ( )x x t+=  will cross this part of the rarefaction 
wave on its right: ( ) ( )*x a t f uR

+′− >  with a varying positive speed of propagation 
during the penetration in the first quadrant as 2t t> . Then by Lemma 2,  
( ) ( )

20,
, : ,

x t t
u x t v x t

> >
=  is the weak entropy solution of (6) on ( ) ( )20, ,t+∞ × +∞ .  

Thus we accomplish the construction of the solution to (6) (see Figure 5(b)). 
The weak entropy solution of (6) has the following geometric structure near the 
point ( )20,t : A part of the rarefaction wave  

( ) ( ) ( )1 1 2 2
, , ,m d d d dR R u u R u u R u u+=    centered at point ( ),0a  collides with 

the boundary 0x = , then the boundary reflects a new shock wave tangent to the 
boundary 0x =  at time 2t t= , which will penetrate another part ( ) ( )*x a t f uR

+′− >  
of R with a varying positive speed of propagation in the first quadrant. This 
shock is just that one in ( ),v x t . 

4. Conclusion  

This paper is mainly concerned about the initial-boundary value problem of 
scalar conservation laws with weak discontinuous flux, whose initial data are a 
function with two pieces of constant and whose boundary data are a constant 
function. Under this condition, the flux function has a finite number of weak 
discontinuous points, by using the structure of weak entropy solution of the 
corresponding initial value problem and the boundary entropy condition 
developed by Bardos-Leroux-Nedelec. We give a construction method to the 
global weak entropy solution for this initial-boundary value problem, and by 
investigating the interaction of elementary waves and the boundary. We clarify 
the geometric structure and the behavior of boundary for the weak entropy 
solution. 
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