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Abstract 
In this paper, we develop a method for evaluating one dimensional singular 
integrals (weakly, strongly, and hyper-singular) that converge in the sense of 
Cauchy principal value and Hadamard finite part integrals. A proof of con-
vergence of this method is also provided. 
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1. Introduction 

Many problems in engineering and science require evaluating singular integrals. 
The problem considered in this paper is of practical interest in many areas. For 
example, in electromagnetic and acoustic wave scattering, the boundary integral 
equations have singular kernels, see [1]-[6]. In fluid and solid mechanics, phy-
sicists and engineers face the same problem, see [7] [8]. Thus, the study of such 
integrals plays an important role in engineering and science. 

The one dimensional singular integrals are defined in the literature as follows 

( )
( )

( )d , , , 0,
b

pa

u t
t s a b p

t s
∈ >

−
∫                 (1) 

in which ( )u t  is a continuous function. These integrals are classified by the 
order of singularity. If 1p < , the integral is called weakly singular. If 1p = , the 
integral is strongly singular. If 1p > , the integral is called hyper-singular, see 
[9]. In other words, an integral is called weakly singular if its value exists and 
continuous at the singularity. An integral is called strongly singular if both the 
integrand and integral are singular. An integral is called hyper-singular if the 
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kernel has a higher-order singularity than the dimension of the integral. For 
strongly singular integrals, they are often defined in terms of Cauchy principal 
value, see [10]. For hyper singular integrals, they are often interpreted as 
Hadamard finite part integrals, see [11]. 

There are many special methods developed to treat singular integral problems 
since numerical integration routines often lead to inaccurate solutions. For 
example, to deal with the singularities in surface integral equations, the method 
of moments regularizes the singular integrals by sourcing them analytically for 
specific observation point [12] [13]. Other methods include Gaussian quadrature 
method which has high-order of accuracy with a non-uniform mesh [14] [15], 
Newton-Cotes method which has low-order of accuracy with a uniform mesh 
[16] [17] [18], Guiggiani’s method which extracts the singular parts of the 
integrand and treat them analytically [19], sigmoidal transformation which 
transforms the integrand to a periodic function [20] [21], and Duffy’s  

transformation which cancels the singularity of type 1
t

 [22]. Most of these  

methods can be characterized in three categories: singularity subtraction, 
analytical transformation, and special purpose quadrature. 

In this paper, we present an alternative approach for evaluating one 
dimensional singular integrals (weakly, strongly, and hyper-singular) which 
converge in the sense of Cauchy principal value and Hadamard finite part 
integrals. In addition, a proof of convergence of this method is outlined in 
Section 2 to serve as a theoretical basis for the method. In Section 3, the detailed 
implementations of our method are described for integrals over the standard 
interval [−1,1] and arbitrary interval [a,b]. 

2. Approximation of Singular Integrals  

Let ( )d
D

S f x x= ∫  be a singular integral. Without loss of generality, the  

singularity can be assumed to be at zero. We assume that the integral S  has a 
finite value in the sense of principal value or Hadamard finite part integral, or in 
other words, this integral converges. 

Let ( ): \ 0D D B=  , where ( ) { }0 : :B x x= <  , where 0> . Then there 
exists numbers ( ),nη   and ( ) ,0ja j n≤ ≤ , such that  
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where ,0jU j n≤ ≤ , are Chebyshev polynomials of second kind  
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Since the integral S  converges, ( )0lim d 0
D

f x x S↓ − =∫


 . Fix 0 0> , there  

exists a ( )0δ   such that  
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For a fixed 0=  , there exists an n such that  
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That means S  can be approximated by ( ) ( )0

0
0 dn

j jj D
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
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Let us summarize the result.  
Theorem 1. Let ( )d

D
S f x x= ∫  be a singular integral that converges. Suppose 

0x  is its singularity in D . Then, for any 0> , there exists ( ) 0δ > , n , and 
( ) ,0ja j n≤ ≤ , such that  
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3. Methods for Computing Singular Integrals 
3.1. Integrals over [ ]1,1−   

In this section, we present a method for evaluating singular integral of the type  

( )1

1
d .S f x x

−
= ∫                           (8) 

For a more general integral, we will extend this method in Section 3.2. 
From Section 2, we need to find the coefficient ja  such that  
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Since jU  are Chebyshev polynomials of second kind, they admit some nice 
properties  
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Now consider the following summation with 0 1i n≤ ≤ −   
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Thus, the coefficient ia  can be computed by  
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3.2. Integrals over [a,b]  

In this section, we extend the method presented in Section 3.1 to singular 
integrals over arbitrary interval [ ],a b   
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Note that  
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Therefore, we just need to recompute the coefficients ia  in this formula  
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Let [ ],x a b∈  and [ ]1,1y∈ − . Define  
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the roots of ( )nU y  in [ ]1,1− . Then, using this change of variable formula to 
find the corresponding collocation points kx  in [ ],a b   

, 1 .
2 2k k

b a b ax y k n− +
= + ≤ ≤                  (24) 

Let  
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Then the coefficients ia  can be computed as follows. Consider the following 
summation with 0 1i n≤ ≤ −   
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4. Conclusion 

In this paper, we investigated one dimensional singular integrals. A method is 
developed for evaluating weakly, strongly, and hyper singular integrals which 
converge in the sense of Cauchy principal value and Hadamard finite part 
integrals. The convergence of this method is proved and the detailed 
implementations are provided. One of the advantages of this method is that it is 
simple and relatively easy to implement. This method can serve as an alternative 
approach to other special methods in the literature. 
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