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Abstract 
Controversy exists on the magnitude and variability of farm nutrient balances 
and quality of arable land in sub-Saharan Africa with Kenya among those af-
fected negatively. This study investigates quality of arable land by fitting mul-
tivariate multilevel model to farm nutrient balance data collected from five 
agro-climatic zones of Kenya (arable lands). Objectives of the study were to 
investigate the magnitude and variability of Nitrogen, Phosphorus and Potas-
sium (NPK) farm nutrient balances in arable lands of Kenya, study effects of 
agro-climatic zones on nutrient balances and to determine effects of house-
hold resource endowments on NPK nutrient balances. The study concludes 
that agro-climatic zones differ with respect to farm nutrient balances; that li-
vestock resource endowments and hired labour have positive effects on the 
magnitude and direction of farm nutrient balances; and that household own-
ership of large capital resources do not guarantee a positive effect on farm nu-
trient balances. The study recommends integration of sound livestock practices 
and application of agro-climatic zone differentiated interventions in future 
strategies for addressing farm nutrient balances and arable land quality, and the 
use of large sample sizes and relevant factors/covariates in future analysis to 
shed additional insights on farm nutrient balances and on how arable land qual-
ity can be improved. 
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1. Introduction 

Seminal studies conducted at national and regional levels in sub-Saharan Africa, 
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using nutrient balance approach, have indicated declining arable land quality 
with severe net nutrient losses of the order of 10 kg Nitrogen, 4 kg phosphates 
and 10 kg potash per hectare annually [1] with Kenya being one of the countries 
with net nutrient losses [1]. Empirical roots of nutrient balance studies are 
widely acknowledged [2]. However, opinions are divided on the extent and in-
tensity of nutrient mining and variability; whether farmers’ achievements con-
tradict nutrient depletion scenarios [3]; whether levels of nutrient mining differ 
by agroecological zones and land use systems; whether underlying factors exist 
to explain direction and magnitude of nutrient balances [4]; and how nutrient 
balances can be scaled-up. 

One of the reasons why consensual accounts on nutrient balances remain in-
tractable and illusive and at times anecdotal [5] is the limited use of rigorous sta-
tistical techniques to i) handle dependency in data and to reduce biases asso-
ciated with variance estimates and inflation of Type I error [6] [7], ii) to quantify 
between study variability [8] and iii) to handle multiple outcomes/effect sizes 
simultaneously [9]. Nutrient balance studies are inherently associated with my-
riad challenges: inadequate systematic replication in space or in time [10], de-
pendencies in multiple outcomes, multicollinearity in independent variables, 
non-homogeneity in data, and missing values, and inadequate application of sta-
tistical techniques that can deal with nested or clustered data associated with 
such studies that use complex survey designs [11] [10]. This study explores ap-
plication of multivariate multilevel models in a meta-analysis of nutrient bal-
ances and thereby contributes to addressing the above challenges and controver-
sies. Application of statistical procedures for meta-analysis was previously a do-
main of the health Sector but has recently been adopted in other disciplines [12]. 
Meta-analysis statistical techniques have a potential to address challenges and 
controversies by pooling and analyzing multiple studies together thereby im-
proving statistical power and reducing the likelihood of type II error (failure to 
determine a difference that truly exist); increasing precision of estimates [13]; 
relating outcome heterogeneity to explanatory covariates and factors, and iden-
tifying large scale-patterns even when obscured by local factors, thereby mini-
mizing the danger of over-extrapolation from single context-based studies [14]. 

Approaches to model estimation in meta-analysis vary widely. Descriptive 
analysis and paired t-test have been used in meta-analysis of nutrient balances 
drawn from 57 studies in Africa and concluded that there were positive soil ni-
trogen and potassium balances in some spots in Africa [5] while there was nu-
trient mining in others. Descriptive analysis has been used to identify drivers of 
tropical deforestation from 152 previous studies [15], Ordinary Least Squares 
have been used in analysis of returns to agricultural research and development 
from 289 studies [16], a binomial test has been used in meta-analysis of the dif-
ferences in environmental impacts between organic and conventional farming 
based on 59 previous studies [17] and vote counting has been used in me-
ta-analysis of agroforestry adoption based on 32 studies from 32 countries [18]. 
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Classical meta-analysis that estimates model parameters in addition to within- 
and-between study variability (random effects model) [19] [20] has also been 
used in a meta-analysis of the effects of woody and herbaceous legumes on ma-
ize yield in sub-Saharan Africa based on 94 studies from West, East and South-
ern Africa and concluded that inorganic fertilisers gave better maize grain yield 
response than legume trees and green manures, natural fallows and unfertilized 
maize in that order; and that “global maize yield response to legumes was signif-
icantly positive and higher than unfertilized maize and natural vegetation fal-
lows” [21]. 

Current methods of meta-analysis, however, have several limitations [10] [11]: 
Inadequacies in modeling multiple outcomes simultaneously, in addressing de-
pendencies in multiple outcomes (use incorrect standard errors), in dealing with 
non-linear correlations and non-homogeneity in data and in handling nested or 
clustered data [11], yet these challenges characterise nutrient balance studies 
where response variables (outcomes) are often multivariate and have dependen-
cies. Furthermore, methods such as vote counting and sign tests have been dep-
lored due to their low power and the fact that they ignore sample size and effect 
magnitude [22] while descriptive statistics do not provide a framework to ex-
plore the effects of multiple covariates and factors on the dependent variables. 

Possible approaches to modeling multiple outcomes of nutrient balances, tak-
ing into account the above challenges, include: multivariate fixed and random 
effects models, structural equation models, and multilevel models for modeling 
primary data among others [23]. Although the fore-mentioned methods offer a 
potential in meta-analysis, they have not been applied to nutrient balance stu-
dies. Further, the application of multivariate fixed and random effects models 
are constrained by limited availability of within-study correlation and variances 
for estimating the variance-covariance matrix required in the model when 
summary statistics are used in meta-analysis and when there are no individual 
participant data to estimate required variance-covariance matrix [23]. A “work- 
around” that has been proposed to estimate “missing” correlations in such situa-
tions include the use of estimates from similar published work, conducting sen-
sitivity analyses for possible ranges of correlations and the use of Bayesian hie-
rarchical models with vague priors in a Markov Chain Monte Carlo (MCMC) 
framework among others [23]. 

In this study we demonstrate that multivariate multilevel models can be used 
in meta-analysis of farm nutrient balance data arising from complex surveys that 
involve multi-stage sampling, stratification and unequal sampling probabilities 
[24]. A previous meta-analysis of 54 studies using multilevel models, and 
through application of simulation studies for comparison, has shown that de-
pendencies and heterogeneity at different model hierarchy can be effectively ac-
counted for and that multiple outcomes can be modeled simultaneously using 
multivariate multilevel models [6]. Multilevel models also have a potential to es-
timate variances and standard errors correctly for nested data, model relation-
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ships between information at different levels of model hierarchies; and has abili-
ty to improve estimation and predictions and to analyse repeated measures data 
among others [25]. 

This study uses individual participant data from multiple related cross-sectional 
surveys on nutrient balances from five different agro-ecological zones of Kenya 
to investigate the quality of arable land by estimating the magnitude and varia-
bility of Nitrogen, Phosphorus and Potassium (NPK) nutrient balances, assess-
ing whether agro-climatic zones differ with respect to NPK nutrient balances 
and determining the effects of household resource endowments on NPK nu-
trient balances. To meet the research objectives, the study fitted a two-level mul-
tilevel model (multivariate multilevel model) with random intercept to farm nu-
trient balance data in a meta-analysis that used Iterative Generalised Least 
Squares (IGLS), an equivalent maximum likelihood method [26] [27], to esti-
mate model parameters as described in the R-package R2MLwiN. 

2. Methodology 
2.1. Dataset 

NUTrient MONitoring (NUTMON) data is used in this study. NUTMON is part 
of on-going research to investigate land quality and sustainability of smallholder 
farming systems in the tropics. The data used comprise 14 separate studies, from 
5 research initiatives that used NUTMON methodology in different agro-climatic 
zones of Kenya. A single research initiative working in “n” agro-climatic zones 
was considered to have “n” separate studies (where n = number of studies). Stu-
dies which did not use multi-stage sampling to identify study participants were 
excluded from the analysis (on-farm and on-station experiments excluded). 

The data comprised 349 observations (individual smallholder farm-households). 
About 42% and 25% of the smallholder farm-households in the dataset were 
from semi-humid to semi-arid (ACZ4), and semi-arid areas (ACZ5) of Kenya 
respectively. Farm households from humid (ACZ1), sub-humid (ACZ2) and 
semi-humid (ACZ3) areas accounted for 12%, 15% and 7% of total households 
in the dataset respectively. The arid (ACZ 6) and very arid (ACZ 7), with very 
low potential for plant production, were not represented in the dataset (Table 
1). 

The 349 observations have 3 dependent variables: N full balance (kg ha−1); P 
full balance (kg ha−1); and K full balance (kg ha−1) and 18 selected independent 
variables (factors/covariates). The latter were measured at two levels: 1) at level 
of individual farmers (household resource endowments); and 2) at agro-climatic 
zone level (Table 2). 

2.2. General Analysis Methods 

The study used the following general analysis methods: 
1) Determined whether a two-level multi-level model with multiple outcome 

variables (multivariate multi-level model) is required for the NUTMON dataset. 
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Table 1. Study areas in Kenya and number of observations (farm-households). 

Study 
acronym 

Humid 
(ACZ1) 

Sub-humid 
(ACZ2) 

Semi-humid 
(ACZ3) 

Semi-humid to 
semi-arid (ACZ4) 

Semi-arid 
(ACZ5) 

Total 

ENSET 

INMASP 

LEINUTS 

NUTSAL 

VARINUTS 

Total 

0 

0 

36 

0 

6 

42 

0 

46 

0 

0 

6 

52 

18 

0 

0 

0 

6 

24 

9 

59 

0 

71 

6 

145 

9 

0 

35 

36 

6 

86 

36 

105 

71 

107 

30 

349 

 
Table 2. Factors and covariates used as independent variables in this study. 

 Description 
Number of  
variables 

Explanations 
 

1A Level 1 factors/covariates   

1.1 Household Resource 
endowment 

17 Comprise labour, land units, livestock, nutrient 
stocks and crop and livestock diversity 

2 Level 2   

2.1 Agro-climatic zone (ACZ) 1 ACZ1 (Humid), ACZ2 (Sub-humid), ACZ3 
(Semi-humid), ACZ4 (Semi-humid-to-Semi 
arid), ACZ5(Semi-arid) 

 Total variables 18  

 
2) Based on (1) above, applied a two-level multi-level model (multivariate 

multi-level model) to: 
Estimate an aggregate magnitude and variability of nutrient balances across 

agro-climatic zones that cover arable lands of Kenya; 
Determine whether agro-climatic zones differ from each other in terms of 

NPK nutrient balances; and to  
Identify the effects of household resource endowments on NPK nutrient bal-

ances.  

2.3. Determining Necessity of a Two-Level Multi-Level Model 
(Multivariate Multilevel Model) 

The study fitted a two-level multilevel model (multivariate multilevel model) 
without predictors (variance component model) to NUTMON dataset to deter-
mine whether multilevel modeling was needed at all for this dataset. Intra-class 
correlation Coefficient (ICC) and Design effect were calculated to aid in model 
output interpretation.  

The multilevel equations for the variance component model were specified as 
follows:  

Level 1: ij oj ijy β= +   

Level 2: oj oo ojβ γ= +   

Written in (mixed model) form by substitution of the level-2 equation into the 
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level-1 equation, the model is:  

ij oo oj ijy γ= + +                          (1) 

where:  

ijy  = Individual response variable for ith farmer (level-1) in jth agro-climatic 
zone; 

ojβ  = Random intercept for jth agro-climatic zone (mean of all individual 
farmers in jth agroclimatic zone) 

ooγ  = Random intercept for all j agro-climatic zones (grand mean of all js) 

ij  = Residual effect (variation) for ith farmer around the mean of jth agrocli-
matic zone (random effect) 

oj  = Residual effect (variation) for jth agro-climatic zone around the grand 
mean (of all agro-climatic zones ie across all js) 

( )2~ 0,ij eN σ ; 2
eσ  is the variance at individual farmer (level-1) 

( )2~ 0,oj uN σ ; 2
uσ  is the variance at agro-climatic zone (level-2) 

The study used Iterative Generalised Least Squares (IGLS) estimation algo-
rithms in R2MLwiN package, to return estimates for random coefficients and 
their standard errors, estimates for deviance statistics and for variances and co-
variances for single and two level models (Table 3). 

The study calculated Study Design Effect1 for the two level model as follows: 

( )Design effect 1 1 ICCcn= + −  

where: 
 

Table 3. Two-level multilevel variance component model compared with a single level 
model (fixed part of the model). 

2[1]*Level-structure  
of the model 

Fixed part Coefficient Std. Err 

95% Confidence Interval 

Lower 
boundary 

Upper 
boundary 

2[1]*Two-level 
multilevel model 

Nitrogen balance −11.92 17.93 −47.06 23.22 

 Phosphorus balance 9.85 4.56 0.92 18.78 

 Potassium balance 5.47 6.29 −6.85 17.79 

 Deviance statistic 10,461    

 No. of observations 349    

One-level model Nitrogen balance 2.57 4.37 −11.14 6 

 Phosphorus balance 9.72 1.77 6.25 13.2 

 Potassium balance 6.46 3.13 0.33 12.59 

 Deviance statistic 10,657.2    

 No. of observations 349    

 

 

1Quantifies the effects of violating the assumption of independence on standard error estimates; 
Multiplier to be applied to standard errors to correct for negative bias that results from nested data. 
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cn  = Average number of farmers per study; In this case (349/14) = 28.1 
ICC = Intraclass correlation coefficient (at level 2); an estimate of proportion 

of variance at level-2 
ICC at level-2 was estimated separately for Nitrogen, Phosphorus and Potas-

sium farm nutrient balances using:  
2

2 2ICC u

e u

σ
σ σ

=
+

                         (2) 

where  
2
eσ  = Residual variance at level-1 
2
uσ  = residual variance at level-2 
2 2
e uσ σ+  = Total variance at level-2 

The design effects for each nutrient balance were greater than 2.0 (Table 4). 
Previous analysis has shown that a design effect greater than 2.0 indicates the 
need for multilevel modeling [28]. Thus, the preliminary analysis indicates that 
multilevel modeling is appropriate for this nutrient balance dataset and a 
two-level multilevel model (multivariate multilevel) is suitable for this purpose; 
and is therefore applied in subsequent analyses in line with the objectives of this 
study. 

2.4. Estimating Magnitude and Variability of Nutrient Balances 

To estimate an aggregate magnitude and variability of nutrient balances across 
agro-climatic zones of Kenya, the study used Equation (1), describing a variance 
component model. Iterative Generalised Least Squares (IGLS) in R2MLwiN 
package used to quantify the parameters of the model, returned parameter esti-
mates shown in (Table 3), Section 2.3.  

Similarly, variability of nutrient balances (heterogeneity) at level-1 and at level- 
2 model hierarchy were estimated using Variance Partitioning Coeffcient 
(VPC)/Intra-class correlation coeffcient (ICC) using Equation (2) (see explana-
tion in Section 2.3): 

( )
( )

( ) ( )
2

e 2 2 2 2

var
VPC ICC

var var
ije

e u e u

σ
σ σ σ σ

= =
+ +


            (3) 

where  
( )2~ 0,ij eN σ ; 2

eσ  is the variance at individual farmer (level-1) 
( )2~ 0,oj uN σ ; 2

uσ  is the variance at agro-climatic zone (level-2) 
 

Table 4. Design effect for NPK nutrient balances. 

Nutrient balance cn
 ICC Design effect 

Nitrogen 28.1 0.48 14 

Phosphorus 28.1 0.21 6.7 

Potassium 28.1 0.11 4 

cn  = Average no. of farmers per study; ICC = Intraclass correlation Coeffcient. 
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2.5. Determining Whether Agro-Climatic Zones Differ from Each 
Other with Respect to NPK Nutrient Balances 

To determine whether agro-climatic zones differ from each other with respect to 
nutrient balances, Equation (1) describing a variance component model was 
used. Parameter estimates were obtained in a similar way as in Section 2.3. The 
parameter estimates are presented in Table 3.  

Further, in assessing whether agro-climatic zones differ from each other, the 
study determined whether the variance ( 2

uσ ) of the random component of the 
intercept in Equation (1), oj , was different from zero. A 95% confidence inter-
val for the variance of oj  was used to aid model output interpretation. Also, a 
likelihood ratio test was conducted by comparing the deviances of a model with 

oj  and one without oj  to assess whether 2
uσ  (variance at level-2: agrocli-

matic zone) is significant. The null hypothesis for the latter was 2 0uσ = , so we 
do not need oj  in the model (Ho: no agro-climatic zone variation or cluster 
effect exists and restricted or single model is “the true model”).  

Natural log used in Likelihood ratio test:  

( ) ( )0 1 0 12 log 2log with 1dfLR L L D D= − − − = −
 

where: 

0 Likelihood value for a single level model ie without ojL =   
1 Likelihood value for a two-level model ie with ojL =   
0 Deviance statistics for a single level model- without ojD =   
1 Deviance statistic for a two-level model ie with ojD =   

The p-value associated with the Likelihood ratio (LR) test statistic was deter-
mined from Chi Square distribution (with 1 degree of freedom). 

2.6. Effects of Household Resource Endowments  
on Nutrient Balances 

The study fitted a two-level multilevel model (multivariate multilevel model) to 
NUTMON dataset to determine the effects of household resource endowments 
on NPK nutrient balances. The household resource endowments in Table 2 were 
added to the model as explanatory variables (in the fixed part of the model) and 
the intercepts at level-1 and level-2 model hierachy allowed to vary resulting in 
arandom intercept model. Slopes for the explanatory variables were not allowed 
to vary since they were fitted to the fixed part of the model only.  

The multilevel equations for this model was specified as follows: 
Level 1: ij oj kj kij ijy Xβ β= + +  , (for 1,2,3, ,349i =  ; 1,2,3,4,5j = ; 

1, 2,3, ,18k =  ) 
Level 2: oj oo on onj ojZβ γ γ= + +  ; kj koβ γ=  
Written in mixed model form by substitution of the level-2 equations into the 

level-1 equation, the model is:  

ij oo on onj ko kij oj ijy Z Xγ γ γ= + + + +                  (3) 
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where at level-1:  

ijy  = Individual response variable for ith farmer (level-1) in jth agro-climatic 
zone; 

ojβ  = Random intercept for jth agro-climatic zone (mean of all individual 
farmers in jth agroclimatic zone); each agro-climatic zone is assumed to have a 
different intercept coeffcient, ojβ  

kijx  = A vector of k predictor variables for the ith farmer in jth agro-climatic 
zone 

kjβ  = A vector of k regression coeffcients associated with the predictor va-
riables in jth agro-climatic zone: 

1 1

2 2

3 3;

ij j

ij j

ij jkij kj

kij kj

X
X
Xx

X

β
β
ββ

β

   
   
   
   = =
   
   
   
   

 

 

ij  = Residual effect (variation) for ith farmer in jth agro-climatic zone 
where at level-2: 

ooγ  = Random intercept for all five agro-climatic zones (grand mean of all j 
groups); The ( ojβ )s’ are considered to vary randomly around a grand mean of 
all j groups ( ooγ ) at level-2 

onjZ  = A vector of n predictor variables measured at agro-climatic zone level 
(level-2 or j-level) 

onγ  = A vector of n regression coefficients associated with the predictor va-
riables at agro-climatic zone level (non-random coefficients): 

1 1

2 2

3 3

0

;

o j o

o j o

o jonj on o

nj on

Z
Z
ZZ

Z

γ
γ

γ γ

γ

   
   
   
   = =
   
   

     




 

oj  = Residual effect (variation) for jth agro-climatic zone; ie the deviation of 
the intercept of jth agro-climatic zone from overall intercept of all agro-climatic 
zones (all js)  

koγ  = A vector of k (fixed) regression coefficients indicating that the coeffi-
cients of Level-1 predictors ( kjβ ) do not vary across agro-climatic zone level  
(non-random slopes at level-2): 

1 10

2 20

3 30

0

j

j

jhj

kj k

β γ
β γ
ββ γ

β γ

   
   
   
   = =
   
   

     




 

hjβ : all j values of hβ  are fixed (do not vary across agro-climatic zone) and 
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are estimated as a single coefficient 0hγ  at level-2, for 1,2,3, ,h k=  ; 
1,2,3,4,5j =  

3. Results and Discussion 
3.1. Magnitude and Variability of Nutrient Balances 
3.1.1. Magnitude and Direction of Nutrient Balances 
The two-level multilevel model (multivariate multilevel model) without predic-
tors (variance component model) fitted to the dataset returned the mean NPK 
nutrient balances, see (Table 3). The mean nitrogen nutrient balance of −11.9 kg 
ha−1 (with 95% confidence interval: −47.0, 23.2) tended to corroborate results of 
aggregate seminal studies that have reported negative (direction) nitrogen bal-
ances at national level [1]. This further confirms that arable land quality in 
Kenya is being degraded through declining farm nitrogen, though the observed 
figure was not statistically significant (confidence interval includes zero). The 
mean aggregate phosphorus (9.8 kg ha−1; p < 0.01; 95% Confidence Interval of 
0.9, 18.8) and potassium balances (5.5 kg ha−1; 95% Confidence Interval of −6.9, 
17.8) were however positive contrary to seminal aggregate studies that reported 
negative nutrient balances at national level [2]. 

3.1.2. Variability of Nutrient Balances 
The Variance Partitioning coefficients (adjusted Intra-class correlation coeffei-
cients) for NPK nutrient balances at different levels of model hierarchy are 
summarised in Table 5 while absolute values of variances and covariances are 
shown in Table 6. 

For farm nitrogen nutrient balance, 48% of the variation lies between agro- 
climatic zones (between agro-climatic zone variability) while 52% of variation lie 
between farms. For each of the nutrient balances studied, a high proportion of 
total variation was from between-farm variability, 52%, 79% and 89% for nitro-
gen, phosphorus and potassium respectively. 

Based on residual variances of each nutrient balance and covariances at level 1 
(farm level; Table 3), the study observed high positive correlations between Ni-
trogen and phosphorus nutrient balances (r = 0.8), Nitrogen and potassium nu-
trient balances (r = 0.82) and moderate correlations between phosphorus and 
potassium nutrient balances (r = 0.68). These results imply a high dependence 
between effect sizes at level 1 of the study, dependence that cannot be ignored 
during analysis. Similarly at level 2, the study observed high dependence be-
tween variables as measured by correlations: Nitrogen-phosphorus (r = 0.75),  

 
Table 5. Variance partitioning coefficient/Intra-class correlation coeffients for NPK nu-
trient balances. 

VPC Nitrogen balance Phosphorus balance Potassium balance 

Level 2 (Agro-climatic zone) 

Level 1 (Farm) 

0.48 

0.52 

0.21 

0.79 

0.11 

0.89 
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Table 6. Two-level multilevel variance component model compared with a single level 
model (random part of the model). 

Random effects parameters Coeffients Standard error [95% Conf. Interval] 

Agro-climatic zone (Level-2) 

Var Nitrogen 

Cov Nitrogen-Phosphorus 

Var Phosphrus 

Cov Nitrogen-Potassium 

Cov Phosphorus-Potassium 

Var Potassium 

Farms (Level-1) 

Var Nitrogen 

Cov Nitrogen-Phosphorus 

Var Phosphrus 

Cov Nitrogen-Potassium 

Cov Phosphorus-Potassium 

Var Potassium 

 

4462.54 

779.81 

244.42 

1175.58 

291.61 

408.43 

 

4927.10 

1689.60 

901.30 

3215.90 

1151.30 

3149.10 

 

1763.88 

392.18 

112.36 

564.17 

144.99 

212.66 

 

380.90 

147.70 

69.70 

277.70 

111.40 

242.70 

 

1005.33 

11.13 

24.19 

69.8 

7.44 

-8.38 

 

4180.50 

1400.20 

764.80 

2671.70 

932.80 

2673.30 

 

7919.74 

1548.49 

464.65 

2281.36 

575.79 

825.24 

 

5673.70 

1979.00 

1037.90 

3760.10 

1369.70 

3624.80 

var = Variance; Cov = Covariance 
 

Nitrogen-potassium (r = 0.87) and Phosphorus-potassium (r = 0.92). 

3.2. Agro-Climatic Zones and Nutrient Balances 

The study assessed whether agro-climatic zones differ from each other, on aver-
age, with respect to farm nitrogen, phosphorus and potassium balances. This 
was explored preliminarily by looking at variance partitioning coefficient (VPC) 
and two tests i) assessing whether the variance of the random components of the 
intercept differ from zero and by ii) conducting likelihood ratio test. 

Variance partitioning coefficient (VPC) measures the proportion of total va-
riance which lies at the Agro-climatic zone level (level-2). Interpreted as VPC, 
48%, 21%, and 11% of variation in nitrogen, phosphorus and potassium farm 
nutrient balances lie between agro-climatic zones respectively (Table 5; Table 
6). This indicates that agro-climatic zones substantially differed with respect to 
NPK farm nutrient balances. 

Suppose Agro-climatic zones were to differ only slightly or not at all, then the 
agro-climatic zone j values of oj  (Equation (1)) should differ little from each 
other and or exhibit low-to-no variance. However, a 95% confidence levels for 
random part of the model (Table 6) indicated that variances for farm nitrogen 
(95% CI: 1005.33, 7919.74) and phosphorus (95% CI: 69.8, 2281.36) were signif-
icantly different from zero (Table 6). This indicates that there were significant 
differences between agro-climatic zones with respect to nutrient balances. 

The study further used likelihood ratio test to tringulate the observation above 
as variances are known to have positively skewed sampling distributions while 
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95% confidence intervals assume assymptotic normal sampling distribution and 
may not be reliable. A likelihood ratio test done by comparing a model with 
agroclimatic zone effects (with oj ) and one without oj , to assess whether 2

uσ  
(variance at level-2: agroclimatic zone) is significant returned: 

( ) ( )0 1 0 12 log 2log
10657 10461 196.2 with 1df

LR L L D D= − − − = −

= − =  
The p-value associated with the Likelihood (LR) test statistic (Chi Square val-

ue of 196.2) with 1 degree of freedom is 0.0001. Since the p-value is very small, 
we reject the null hypothesis (Ho: no agro-climatic zone variation or cluster ef-
fect exists and restricted or single model is “the true model”) and conclude that a 
gro-climatic zone variation exists and is significant ( )( 2 1, 349 196.2,Nχ = =

)0.01p< . This further confirms that there were significant differences between 
agro-climatic zones with respect to farm nutrient balances. 

3.3. Household Resource Endowments and Nutrient Balances 

A two-level multilevel model (multivariate multilevel model) fitted to the dataset 
(see Section 4) to test the hypothesis: All household resource endowments do 
not have an effect on the magnitude of full N, P and K nutrient balances re-
turned results shown in Table 7. 

The observation that more than one household resource endowment variable 
has an effect on NPK nutrient balances provides a strong evidence against the 
null hypothesis (e.g. Value of livestock (0.0005 kg N ha−1, p < 0.001); cropping 
family labour (−0.05101kg K ha−1, p < 0.01), Table 7. We thus reject the null 
hypothesis and conclude that at least one household resource endowment has an 
effect on the magnitude of full N, P and K farm nutrient balances (Table 7). 

A negative relationship between family labour for cropping and NPK nutrient 
balances was observed (Table 7) with cropping family labour having a signify- 

 
Table 7. Effects of household resource endowments on NPK nutrient balances. 

Household resource endowment 
Nitrogen  
(kg ha−1) 

Phosphorus  
(kg ha−1) 

Potassium  
(kg ha−1) 

Constant 

Average slope% (AVGSLOPE) 

20 cm Number of secondary production units 

(SPUNo: Number of livestock types) 

Tropical Livestock Units (TLUNo) 

Value of livestock (VALLVST: in Ksh) 

Total capital owned (CAPTOT: In Ksh) 

Cropping family labour (LABCROP: in days) 

Land rent received (VRENTOUT: in Ksh) 

Hired labour for RU-Cash (LABHIRUC: in Ksh) 

−14.61 

−1.57** 

 

9.86** 

−4.77*” 

0.0005*** 

−0.00001*” 

−0.03545 

0.00001 

0.01325 

16.07** 

−0.50*” 

 

1.32 

−1.35 

0.0002** 

−0.00001**** 

−0.01307 

0.00013*** 

0.02318** 

13 

−1.61**** 

 

7.36*** 

−2.65 

0.00047**** 

−0.00001*** 

−0.05101** 

−0.00004 

0.02078 

****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; *”p < 0.1 
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cant effect (negative) on potassium balance. A unit change in cropping family 
labour lowering potassium nutrient balance by 0.05101 kg K ha−1 (p < 0.01). Al-
though smallholders in Kenya rely heavily on family labour to manage their 
farms [29] this labour input may be for multiple purposes and not necessarily for 
strategic farm nutrient management alone. 

Contrary to Cropping family labour, hired labour for redistribution units 
(LABHIRUC) had a positive effect on the direction of NPK nutrient balances. It 
significantly predicted phosphorus (P) balances with a unit change in LABHIRUC 
resulting in a change of 0.023 (p < 0.01) units in phosphorus balances. 

Average slope of land, though a biophysical factor, was considered a proxy to 
land endowment resource quality. Farmers’ management practices and prices 
farmers are willing to offer for a given piece of land tend to differ depending on 
slope percentage, perceived degradation and ease of management attributed to 
slope effect. The study observed a negative correlation between average slope 
(%) of land and NPK nutrient balances and that average slope was significantly 
and negatively correlated with nitrogen balances. 

The study observed mixed results with regards to effects of household re-
source capital on nutrient balances. While the effects of “total capital owned” 
significantly lowered NPK nutrient balances, livestock-related capital (value of 
livestock) had significant positive effect (Table 7). Thus, the study has indicated 
that it is the type of capital (e.g. livestock) owned and not the volume and total 
value of household capital that may be important in determining nutrient bal-
ances, though previous studies indicate that resource-rich farmers have a high 
chance of returning positive nutrient balances in their farms should they employ 
nutrient adding, recycling and conserving technologies and practices [30]. 

4. Conclusions and Recommendations 

Based on a two-level multilevel (multivariate multilevel) model fitted to the nu-
trient balance dataset, this study has shown that farm nitrogen mining is taking 
place and is putting the quality of arable land in Kenya at stake. However, and 
contrary to on-going narratives on blanket existence of widespread nutrient 
mining in Kenya, evidences from this study indicate that farm phosphorus and 
potassium balances are not always negative. 

Agro-climatic zones are characterised by different biophysical potentials that 
may influence farm nutrient balances to different degrees. The study draws the 
conclusion that farm nitrogen, phosphorus and potassium balances do differ 
between agro-climatic zones classified as arable land in Kenya. For example, va-
riances for farm nitrogen and phosphorus were significantly different from zero 
across agro-climatic zones. The same was corroborated by likelihood ratio test. 
This serves to indicate the necessity of designating agro-climatic zone specific 
nutrient management interventions to address declining quality of arable land 
rather than the use of blanket intervention approaches. 

Household resource endowments and resource flow and allocation patterns 

https://doi.org/10.4236/ojs.2017.76069


D. D. Onduru, F. Onyango 
 

 

DOI: 10.4236/ojs.2017.76069 985 Open Journal of Statistics 
 

have a potential to influence farm nutrient balances. This study explored the ef-
fects of household resource endowments on nutrient balances in arable land. 
The study concludes that livestock household resource endowments is an im-
portant determinant of nutrient balances at smallholder farm level, thus recom-
mends improvement of livestock practices at farm level not only to improve on 
farm nutrient balances but also to increase farm-profitability. However, it is fur-
ther noted that ownership of large volumes of capital (total value of capital) and 
family labour resources do not automatically translate into positive effects on 
farm nutrient balances, but rather it is the type of capital owned (e.g. livestock) 
and what use it has been put to that matters. 

The study generated interesting results and demonstrated that multivariate 
multilevel models can be used to conduct meta-analysis of farm nutrient bal-
ances and to explore arable land quality despite the small sample size. Future 
studies with large sample sizes and a large pool of relevant factors and covariates 
are, however, required to further give higher order insights beyond this study. 
This can be reinforced by meta-analysis that focuses on summary statistics and 
the use of simulation modeling to summarise inferences by random numbers 
rather than by point estimates and standard errors. 
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