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Abstract 
Hydrocephalus is a heterogeneous, neurological condition characterized by 
altered flow of cerebrospinal fluid (CSF) that can occur at any age. Neuropa-
thological changes associated with hydrocephalus are dependent on the age of 
onset, rate of ventricular enlargement, and the etiology. Hydrocephalic brain 
damage is also influenced by contributions from both mechanical forces and 
metabolic changes, which increases the heterogeneity of the condition. How-
ever, as ventriculomegaly progresses, the surrounding brain tissue is com-
pressed within the cranial vault, elevating intracranial pressure and eventually 
leading to severe brain damage. From this perspective, it makes sense that pe-
riventricular brain regions are the initial sites of damage as ventricular dilata-
tion occurs. The following review of neuropathological changes in hydroce-
phalus will first discuss cellular and region specific damage from the ventricles 
and outward towards the cortex and brainstem. This will be followed by vas-
cular and hypoxic changes associated with the condition. Both types of brain 
impairments are dependent on the severity of the condition, and they will be 
described accordingly. 
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1. Introduction 

Hydrocephalus is a heterogeneous, neurological condition that can occur at any 
age. The neuropathological consequences of hydrocephalus are dependent on 
the age of onset, rate of ventricular enlargement, and the etiology [1] [2] [3] [4]. 
Even gene expression has been shown to change in the hydrocephalic rat brain 
depending on the age of onset and duration of the condition [5]. Brain damage 
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associated with the condition is also varied with contributions from both me-
chanical forces and metabolic changes that are difficult to distinguish [6]; how-
ever, as ventriculomegaly progresses, the surrounding brain tissue is compressed 
within the cranial vault, leading to increased intracranial pressure and eventually 
severe brain damage. From this perspective, it makes sense that periventricular 
brain regions/structures are the initial sites of damage as ventricular dilatation 
occurs. The following description of neuropathological changes in hydroce-
phalus will first discuss cellular and region specific damage from the ventricles 
and outward towards the cortex and brainstem. This will be followed by vas-
cular and hypoxic changes associated with the condition. Both types of brain 
damage/impairment are dependent on the severity of the condition, particularly 
before therapeutic intervention commences.  

2. Structural, Regional, and Cellular Changes  
2.1. Ependymal Layer 

The ependyma is a layer of cells that surrounds the ventricles of the brain and 
central canal of the spinal cord. These cells proliferate and differentiate during 
prenatal and early postnatal development with minimal proliferative activity in 
adult mammals, and they may have critical protective barrier functions during 
neural tube formation and neurodevelopment; however, their function in adult 
brains and response to injury are not well known [7] [8] [9] [10] [11]. When hy-
drocephalus occurs, it is possible for the ependymal layer to remain intact [12], but 
it is typically affected ranging from being stretched or torn [13] [14] to being com-
pletely abolished [10], which is referred to as ependymal denudation [15] [16] [17] 
that leaves only small collections of cells to line the ventricular wall [8] [18]. Ani-
mal models have shown that ependymal distortion and damage can commence by 
around 12 hours following CSF obstruction in the ventricles [19] [20] [21]. The 
different columnar and cuboidal ependymal cells can stretch but remain intact 
[22] [23], possibly as a protective mechanism, but this is limited by the severity of 
ventriculomegaly and rate at which expansion occurs [24]. Ependymal damage al-
so ranges based on the brain regions it lies deep to, where ependyma overlaying 
the periventricular white matter at the dorsolateral angle and roof of the lateral 
ventricles [21] [25] and septum pellucidum [22] are the most severely affected. 
Such damage is subsequently followed by an inflammatory response with macro-
phages emerging on the ependymal surface [3] [26]. Several studies have shown an 
inability for ependymal cells to regenerate after hydrocephalus develops [17] or is 
induced [24] [27] [28], but there is evidence that increased mitotic activity of ex-
isting ependymal cells occurs after hydrocephalus induction [22]. Thus, ependyma 
damage occurs early after ventricular expansion, and it is not certain whether 
ependymal layer regrowth is possible, particularly as ventriculomegaly worsens.  

2.2. Subventricular Zone 

The brain region adjacent to the ependyma is the subependymal zone (SEZ) or  
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Figure 1. Cortical layering during development and adult cerebral cortex. CP—cortical 
plate; Ep—ependymal layer; IZ—intermediate zone; MZ—marginal zone; SP—subplate; 
SZ—subventricular zone; VZ—ventricular zone; WM—white matter. Image adapted 
from Stiles & Jernigan (2010). “The basics of brain development.” Neuropsychol. Review, 
20: 327-348, Figure 9b [262]. 

 
subventricular zone (SVZ) Figure 1. It is a thin area that persists from the em-
bryonic germinal eminence (GE) that forms the lateral wall of the lateral ven-
tricles, but it is virtually nonexistent over the third ventricle, cerebral aqueduct, 
and fourth ventricle [29] [30]. It is the site of neurogenesis where cell prolifera-
tion of newly formed brain cells continues into adulthood and is continually sent 
to different areas of the brain, including neurons through the rostral migratory 
stream to the olfactory bulbs and in the dentate gyrus of the hippocampus, as 
well as glial cells to the corpus callosum and cerebral cortex [31]. It has a strictly 
controlled cytoarchitecture containing astrocytes, small blood vessels, and three 
types of neural stem cells (NSCs) including self-renewing pluripotent precursors, 
neuroblasts or neuronal progenitor cells (NPCs), and oligodendrocyte precur-
sors (OPCs) that are spatially located in specific positions [30] [31] [32] [33]. In 
humans and experimental models of hydrocephalus, periventricular reactive gli-
osis occurs within and surrounding the SEZ/SVZ, which may involve either or 
both hyperplasia or hypertrophy of glial cells [8] [17] [19] [34]-[39]. Various 
studies have also shown changes in cell numbers and mitotic activity within this 
region associated with hydrocephalus, where some studies have shown increased 
cell quantity [28] and cell proliferation [22] [40]. More recent work tends to 
show appreciable thinning and disorganization of the SVZ, along with a sub-
stantial decrease in cell proliferation overall [35] [37] [41] [42] [43] [44], as well 
as impaired mitotic cell cycling and migration of germinal cells away from the 
SVZ [45] [46], which may be associated with aberrant expression of neurotro-
phic factors in the ventricular zone (VZ) [43] [47] [48]. These impairments 
could disrupt neuronal organization [49], but human fetuses with hydrocephalus 
often exhibit no abnormalities in the germinal matrix and cortical organization 
[6]. There is also an increase in oligodendrocyte [40] and activated cell death in 
the SVZ and periventricular regions [44], as well as a decrease in Olig2-positive 
cells that could be indicative of glial precursor or mature oligodendrocyte li-
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neage [35]. Overall, the SEZ/SVZ is an important proliferative brain region that 
seems to be affected greatly by ventricular expansion.  

2.3. Periventricular Axons and White Matter 

With hydrocephalus, primary destruction of periventricular axons and white 
matter occurs early after onset with ventricular expansion causing physical 
stretching and compression to eventual axonal destruction as brain damage 
progresses [4] [50]. In humans and animal models, severe hydrocephalus is asso-
ciated with appreciable corpus callosum thinning and compression of periventri-
cular and subcortical white matter [4] [6] [14] [17] [35] [40] [41] [51]-[56]. Cal-
losal injury is caused primarily by stretching, but dorsal grooving of the corpus 
callosum can occur from impingement on the falx cerebri [57], and such dam-
ages can lead to hemispheric disconnection [58] [59]. Destruction of the corpus 
callosum and fimbria/fornix in rat and human brains produces myelin degrada-
tion products and correlates with motor and cognitive deficits [60], whereas cal-
losal size in hydrocephalic patients showed no correlation to cognition [61]. 
Compared to adults with hydrocephalus, early-onset hydrocephalus tends to 
show more compression of periventricular regions surrounding the occipital 
horn of the lateral ventricles because their expansion is more pronounced early 
in life [62] [63]. Axonal injury and focal petechial hemorrhage can occur in 
acute hydrocephalus, particularly at the angles of the ventricles [6]. Axonal de-
generation and damage are commonly reported in hydrocephalic brains [28] 
[35] [55] [56] [64] [65] [66], where axonal cytoskeletal damage occurs through a 
calcium-mediated activation of proteolytic enzymes [67], and varicose enlarge-
ments of damaged but intact axons that are immunoreactive for amyloid pre-
cursor protein can be observed shortly after the onset of hydrocephalus [6] [68]. 
Chronic hydrocephalus is also associated with a loss or disconnection of axons 
[68] [69] [70], and degenerative changes can occur in human corticospinal tracts 
and animal spinal cords [4] [6] [60] [65] [71] [72]. Myelin loss occurs seconda-
rily to axonal damage and loss [3] [39] [73] [74] [75], which may be caused by 
periventricular white matter edema [56] [76] [77] or related to elevated CSF le-
vels of pro-apoptotic factor soluble FasL [78], but these remain uncertain. Mye-
lin deposition in the young rat, cat, and infant brain is delayed by hydrocephalus 
[40] [51] [79] [80] [81], and myelin turnover is increased in chronic hydroce-
phalus [60]. There is also increased oligodendrocyte and apoptotic cell death, as 
well as reactive astroglial and microglial changes and phagocytosis that occur in 
the white matter [3] [35] [40] [51] [52] [73] [82]. 

2.4. Extracellular Spaces and Water Content  

In the periventricular region, human and animal studies have shown that the 
hydrocephalic brain is edematous in association with increased intracranial 
pressure [83] [84] [85]. Brain tissue water content is elevated as far as 3 mm 
from the ventricle surface in hydrocephalic animals [86] [87] [88] [89] [90]. 
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Extracellular spaces in the brain and periventricular white matter have been his-
tologically shown to be enlarged in humans [91] [92] and animals [56] [73] [93], 
but these have only been verified ultrastructurally to 200 μm from the ventricu-
lar surface [13] [22] [55] [94]. Numerous researchers believe that increased 
extracellular spaces may serve as diffusional pathways for “displaced CSF” based 
on using tracer agents from the ventricles into periventricular parenchyma [95] 
[96] [97] [98], but this is not certain because the brain produces extracellular 
fluid that flows into CSF spaces [99]. Alternately, research with hydrocephalic 
mice [100] [101] and rats [102] found compression of extracellular spaces in the 
gray matter of the cortex, while humans showed increases [103] that are not 
present in the caudate nucleus [22] [23]. However, it should be noted that some 
changes might be artifactual in some of these studies based on tissue fixation 
methods. Meanwhile, studies with hydrocephalic humans [104] and animals 
[105] [106] [107] have also shown decreased water content in the whole brain, 
cortex, and/or gray matter. CSF outflow and clearance of metabolic waste prod-
ucts and neurotransmitters are decreased in the hydrocephalic brain, and these 
extracellular changes further disrupt the microenvironment, which could im-
pede neuronal function [4] [8] [108] [109].  

2.5. Cerebral Cortex and Subcortical Regions 

The cerebral cortex and subcortical structures are also affected by hydrocepha-
lus, particularly as ventriculomegaly becomes more severe, where cortical thin-
ning and distention are prevalent, along with stretching of the septum pelluci-
dum [17] [19] [110]. In young infants with ventricular enlargement, cortical 
thinning is most apparent in the occipital regions [3] [8], and some infants may 
develop polygyria due to intrasulcal cortical unfolding [6] [111]. The cortical 
subplate can be disrupted, which could lead to subtle developmental abnormali-
ties [42] [112]. Ventricular expansion can lead to cortical compression, which 
could eventually cause destruction of deep layers of the cortex, focal cortical 
dysgenesis, and neuronal loss, particularly if the white matter is completely de-
stroyed [3] [6] [8] [39] [51] [73] [113]-[118]. The infundibular recess of the hy-
pothalamus is typically enlarged in hydrocephalic children [119] [120] [121]. It 
has also been documented that hydrocephalus could impair the functional or-
ganization of the brain in children, along with disrupted structural brain devel-
opment [122]. In this regard, microgyria has been found in hydrocephalic hu-
mans [121], as well as impaired NPC proliferation and migration in some infants 
[49]. Severe hydrocephalus can eventually cause swollen dendrites and axons, a 
decrease in dendritic spines and branching or even elimination of neuronal 
dendrites in the cortex and hippocampus [123]-[128] corresponding to an ac-
cumulation or loss of synaptic vesicle proteins (such as synaptophysin) and a 
loss of synapses [40] [127] [129] [130] [131] [132] and atrophy of the cerebral 
cortex and basal ganglia [8] [51] [64] [92].  

Histological changes in the cerebral cortex are subtle and have often been 
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overlooked [3] [8], but neuronal pyknosis and degeneration have been found in 
children and adults with hydrocephalus [133] [134], as well as cytoplasmic vacu-
olization in the hippocampus [135]. Hydrocephalic animal models have identi-
fied similar findings, as well as shrunken and dark cell changes, swelling, cell 
loss, and membrane disruption of neurons in the cerebral cortex, hippocampus, 
septal area, caudate nucleus, thalamus, and hypothalamus [8] [56] [64] [119] 
[121] [136]-[143]. Chronic severe hydrocephalus is also associated with reactive 
astrogliosis in the cortex, as well as neurofibrillary tangles in cortical, hippo-
campal, and brainstem neurons [8] [114] [144]-[149]. Reactive changes can oc-
cur in neurons as well, which may be protective, including upregulation of bcl-2, 
growth-associated protein-43 (GAP-43), nerve growth factor, and other protec-
tive proteins [5] [150] [151] [152] [153]. Meanwhile, neurochemical changes in 
the septohippocampal system of hydrocephalic patients [154]-[159] and animals 
[160] [161] [162] [163] are associated with memory and learning impairments. 
However, one study found that memory dysfunction in hydrocephalic adults was 
associated with septohippocampal changes when it was due to aqueductal steno-
sis, whereas memory deficits in normal pressure hydrocephalus appeared related 
to prefrontal structural damage [164]. Hydrocephalus may also impair neuronal 
function by changing neural conduction along functional pathways [165]-[170], 
impeding long-term potentiation [127] [171], and decreasing the responsiveness 
or size of neurons in the visual cortex [138] [172]. Other damage has been do-
cumented along the visual pathway due the ventricular enlargement including 
damage to the geniculo-cortical pathway/optic radiations, distention of the pi-
neal recess of the third ventricle leading to upward gaze palsy, or even ischemic 
damage due to compression of the posterior cerebral artery [169] [173] [174] 
[175] [176] [177]. Hydrocephalus is also associated with changes in the concen-
trations or function of different neurotransmitters, neuropeptides, and receptors 
[8] [157] [178]-[188], disrupting the clearance of various metabolites from the 
brain [108] [118] [189] [190], and inducing neuroendocrine disturbances by al-
tering hormone production or secretion that may be due to distortions of the 
pituitary or hypothalamus [191]-[196].  

2.6. Cerebellum and Brainstem 

There are also neuropathological changes in the cerebellum and brainstem. The 
shape of the cerebellum is distorted in people with spina bifida and hydrocepha-
lus [197]. Although the Chiari II malformation is associated with cerebellar, 
brainstem, and fourth ventricle deformities [17] [198] [199] where subsequent 
hydrocephalus often develops, this malformation likely occurs secondary to 
myelomeningocele instead of ventriculomegaly [200] [201]. There may be ab-
normal degeneration and stunted growth of the central lobes of the cerebellum, 
which seems to develop normally at first [202], which could be associated with 
ischemic changes [203] [204] [205]. There are also changes in neurotransmitter 
levels in the cerebellum of hydrocephalic animals [190] [206], as well as increas-
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es in reactive oxygen species after ventricular dilatation commences in the hy-
drocephalus Texas (H-Tx) rat [207], which may account for impaired cerebellar 
functioning observed in those with spina bifida [208]. Historically, a severely 
misshapen medulla oblongata was often reported in the literature [17], but such 
brainstem changes are not observed that often today, which are possibly due to 
early surgical intervention on affected individuals or increased abortions rates 
[4]. As mentioned previously, descending axons and white matter corticospinal 
tracts in the brainstem and spinal cord can be damaged as hydrocephalus 
progresses [4] [6] [60] [71], and neurofibrillary tangles can be observed in 
brainstem neurons with chronic severe hydrocephalus [8]. Thus, cerebellar and 
brainstem changes can occur with hydrocephalus, but more detailed investiga-
tions are necessary to determine more clearly how these brain structures are af-
fected by this condition.  

3. Vascular and Oxidative Pathogenesis 
3.1. Cerebral Blood Flow and Vascular Changes  

As the cerebral ventricles enlarge, tissue compression and axonal stretching and 
tearing occur, but hydrocephalus also adversely affects cerebral metabolism, ce-
rebral blood vessels, and cerebral blood flow especially in the white matter [4] 
[8] [209] [210] [211] [212] [213]. In particular, white matter ischemia or hypo-
perfusion happens simultaneously to the tissue damage [50] [68] [214], and 
there is reduced cerebral blood flow, which is correlated with the size of the ven-
tricles in infants [215] [216] [217] [218]. Adults with hydrocephalus also expe-
rience reduced cerebral blood flow, particularly in the frontal lobes [8] [219], 
and extended periods of elevated intracranial pressure above normal cerebral 
perfusion thresholds often lead to worse outcomes for young and older patients 
with the condition [220]. Animal studies also show reduced cerebral blood flow 
and ischemic changes with hydrocephalus, as well as changes in oxidative meta-
bolism in the cortex and subcortical regions, including the hippocampus [79] 
[87] [207] [213] [221] [222] [223] [224], which are more prominent during early 
stages while ventricular enlargement is actively taking place [2] [88].  

3.2. Microvascular Changes 

Microvascular changes in hydrocephalus were first identified long ago by Pen-
field [134] who was apt to recognize that ventricular enlargement likely impeded 
the vascular supply to the brain. Later studies were able to show decreased den-
sity of capillaries in the corpus callosum of humans with hydrocephalus [52], as 
well as decreased number, caliber, and patency of capillaries in periventricular 
white and gray matter of experimental and mutant animal models of hydroce-
phalus [64] [117] [211] [225] [226] [227] [228]. Some of these studies suggested 
that capillary loss may be due to the combinatorial effect of increased CSF pres-
sure and distortion of brain tissue, and reduced cerebral blood flow could result 
if this loss was extensive enough. When examining the endothelial cells of capil-
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laries in hydrocephalic human brains, they were found to have numerous pino-
cytotic vesicles [6] [229] [230] and enlarged extracellular spaces [231]. In expe-
rimental animal studies, some report a normal ultrastructure [56] [94], while 
others have observed edema of endothelial cell cytoplasm [137] and separations 
of endothelial tight junctions in periventricular white matter [226] [227], which 
might be associated with an alternate route for CSF absorption. Related to this, 
the blood-brain barrier (BBB) appears to remain intact with hydrocephalus, so 
the role of BBB alterations in hydrocephalus is unclear [50]. Indirectly, it is 
known that the composition of CSF [108] and extracellular fluid is altered in 
hydrocephalus [3]. In addition, the movement of water and extracellular tracers 
are restricted [106] [214] [232] [233], whereas water normally exchanges across 
the BBB relatively freely [234] [235] [236]. Other suggestive evidence of altered 
permeability of the BBB has been observed in hydrocephalic adult patients who 
display changes in the relative levels of CSF albumin and plasma-derived im-
munoglobulin G [237]. In addition, one study found that aquaporin 4, but not 
aquaporin 1 or 9, expression was elevated in hydrocephalic rat brains, and it was 
postulated that this change might facilitate the efflux of water from the brain 
through astrocytes into the capillaries [238]. Meanwhile, another study showed 
that hydrocephalic rats exhibited only focal and perhaps transient increased 
opening of BBB permeability, which was speculated to relate mainly to mechan-
ical disruption of small periventricular blood vessels rather than a generalized 
capillary phenomenon [239].  

3.3. Choroid Plexus 

The choroid plexus is a tight epithelium surrounding a vascularized stroma that 
is located within the roof of all four ventricles and produces most of the CSF in 
circulation. Because of its unique location, the choroid plexus is a circumventri-
cular organ that forms one of the interfaces between the blood and the CSF, and 
it is important for contributing to brain homeostasis, where it is involved in 
various biochemical exchanges supplying or removing nutrients, peptides, hor-
mones, metabolites, and waste [240]. In regards to its main function, CSF over-
production by the choroid plexus is a rare a cause of hydrocephalus [3] [8] [241]. 
Some studies of experimental hydrocephalus have reported a normal choroid 
plexus [24] [64] [242], whereas many others have described various alterations 
including distortion of microvilli, compression and vacuolization of choroidal 
cells, increased intracellular spaces and inclusions, and epithelial atrophy [26] 
[70] [243] [244] [245] [246]. In humans with chronic hydrocephalus, atrophy of 
the choroid plexus epithelium and stromal sclerosis have been observed [8] [17] 
[50] [92] [121]. Such changes have been suggested to be associated with reduced 
secretory functioning of the choroid plexus [34] [50] [247] [248] [249] [250]. In 
addition to the choroid plexus, other circumventricular organs have shown 
changes in hydrocephalic animals, such as increases in angiotensin II receptor 
content in circumventricular organs [251], the subcommissural organ that is de-
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creased in size [252] and exhibits decreased glycoprotein immunoreactivity 
[253], and the subfornical organ can become damaged as the condition progresses 
[254].  

4. Hypoxic, Oxidative, and Nitrosylative Changes 

Since hydrocephalus is associated with tissue compression, reduced cerebral 
blood flow, and periventricular white matter ischemia, studies have also shown 
that periventricular white matter undergoes hypoxic, oxidative, and nitrosylative 
changes [255]. In particular, pimonidazole hydrochloride, which forms adduct 
with thiol groups in proteins of hypoxic tissue [256], is detectable in periventri-
cular capillaries and white matter glial cells [255]. Numerous studies have found 
that hydrocephalic rodent brains exhibit oxidation and lipid peroxidation, which 
proceeds oxygen free radical damage to cell membranes and is indicative of hy-
poxic and oxidative changes [36] [207] [255] [257] [258] [259] [260]. In the CSF 
of hydrocephalic children, various metabolites suggestive of hypoxic metabolism 
have also been detected [108] along with lipid peroxidation [261]. Some studies 
with H-Tx rats found decreased intensity of histochemical staining of neurons 
for NADPH-diaphorase [139] and detected protein nitrosylation associated with 
oxidative stress [207]. Meanwhile, other studies found increased nitric oxide 
synthase (NOS) immunostaining [222] and elevated mRNA levels of a neuronal 
NOS inhibitor in hydrocephalic rats [5]. Lastly, nitrotyrosine has also been de-
tected in periventricular white matter vessels along with increased nitric oxide 
production in the brains of hydrocephalic rats, which are suggestive of nitrosyla-
tive, hypoxic changes associated with the condition [255].  

5. Summary and Future Research Prospects  

Hydrocephalus is a neurological condition characterized by altered CSF flow 
leading to an accumulation of CSF inside the cranial vault. The neuropathologi-
cal changes associated with hydrocephalus arise from both mechanical forces 
and metabolic changes, and they are heterogeneous due a variety of factors in-
cluding the age of onset, rate of ventricular enlargement, and the etiology. Ven-
triculomegaly causes compression of brain tissue within the cranial vault, which 
increases intracranial pressure and leads to severe brain damage. In this review, 
hydrocephalic neuropathological changes have been described based on research 
with humans and animal models of the condition, which includes cellular and 
region specific damage, along with vascular and hypoxic changes. Overall, hy-
drocephalus can occur at any age from multiple causes and displays varied levels 
of severity, which is why neuropathological changes associated with the condi-
tion are highly heterogeneous. Despite the wealth of knowledge about the neu-
ropathological changes associated with hydrocephalus, these changes are derived 
from multiple factors and are not completely understood. Moreover, there is 
currently no definitive cure for hydrocephalus, which is strongly associated with 
the multifactorial etiology and heterogeneity of the condition. Current strategies 
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to treat hydrocephalus are primarily through surgical intervention by way of 
ventricular shunting and/or endoscopic third ventriculostomy, but these proce-
dures are associated with both similar and unique complications. Nonsurgical 
pharmacological approaches for treatment are being extensively investigated 
through preclinical animal models of hydrocephalus. Though various therapeu-
tic agents have potentially shown beneficial outcomes, they have mainly been 
tested in rodent models and are not necessarily curative on their own. Thus, fu-
ture research should be focused on using gyrencephalic animal models to con-
firm the neuropathological changes observed in rodent models and establish 
credibility of therapeutic effects obtained in those studies to advance towards 
clinical trials with these pharmacological agents. There is also very little to no 
animal or clinical data on the synergistic effects of combined surgical and non-
surgical approaches in treating hydrocephalus. Thus, it is integral that future re-
search is aimed towards examining drug agents that have shown promise for 
various aspects of brain protection in response to ventriculomegaly, and then 
administer them in conjunction with surgical interventions. Such attempts 
would ensure that a surgical procedure is performed to reduce mechanical pres-
sure and ventricular enlargement associated with CSF buildup, while therapeutic 
agents would be aimed at reducing tissue or cellular damage. If more imaging, 
behavioral, tissue, and cellular data are collected using this dual approach and 
beneficial and lasting effects are observed, it is likely that this could progress to-
wards more clinical trials and establish further understanding of the neuropa-
thological changes associated with hydrocephalus.  
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Abbrevations 

BBB  blood-brain-barrier 
CSF   cerebrospinal fluid 
GAP-43  growth-associated protein-43 
GE   germinal eminence 
H-Tx  hydrocephalus Texas 
NOS  nitric oxide synthase 
NPCs  neuronal progenitors cells 
NSCs  neural stem cells 
OPCs  oligodendrocyte precursors cells 
SEZ   subependymal zone 
SVZ  subventricular zone 
VZ   ventricular zone 
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