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Abstract 
 
This paper considers a Kullback-Leibler distance (KLD) which is asymptotically equivalent to the KLD by 
Goutis and Robert [1] when the reference model (in comparison to a competing fitted model) is correctly 
specified and that certain regularity conditions hold true (ref. Akaike [2]). We derive the asymptotic property 
of this Goutis-Robert-Akaike KLD under certain regularity conditions. We also examine the impact of this 
asymptotic property when the regularity conditions are partially satisfied. Furthermore, the connection be-
tween the Goutis-Robert-Akaike KLD and a weighted posterior predictive p-value (WPPP) is established. 
Finally, both the Goutis-Robert-Akaike KLD and WPPP are applied to compare models using various simu-
lated examples as well as two cohort studies of diabetes. 
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1. Introduction 
 
Information theory provides a general framework of de-
veloping statistical techniques for model comparison 
(Akaike [2]; Shannon [3]; Kullback and Leibler [4]; 
Lindley [5]; Bernardo [6]; Schwarz [7]). The Kullback- 
Leibler distance (KLD) is perhaps the most commonly 
used information criterion for assessing model discrep-
ancy (Akaike [2]; Kullback and Leibler [4]; Lindley [5]; 
Schwarz [7]). In essence, a KLD is the expected loga-
rithm of the ratio of the probability density functions 
(p.d.f.s) of two models, one being a fitted model and the 
other being the reference model, where the expectation is 
taken with respect to the reference model. Thus KLD can 
be viewed as a measure of the information loss in the 
fitted model relative to that in the reference model. 
KLDs that are suitable for model comparison in the 
Bayesian framework typically involve the integrated 
likelihoods of the competing models, where the inte-
grated likelihood under each model is obtained by inte-
grating the likelihood with respect to the prior distribu-
tion of model parameters (e.g., Lindley [5] and Schwarz 
[7]). KLDs based on the ratio of integrated likelihoods 
however have been challenged by identifying priors that 
are compatible under the competing models and that the 
resulting integrated likelihoods are proper. As a way to 

overcome the challenges associated with prior elicitation 
in calculating KLD under the Bayesian framework, one 
may consider the Bayesian estimate of the Kullback- 
Leibler projection by Goutis and Robert [1], henceforth 
G-R KLD. More specifically, for a given reference 
model indexed by parameter(s)  , the G-R KLD is the 
infimum KLD between the likelihood under the refer-
ence model and all possible likelihoods arising from the 
competing fitted model. Thus if the reference model is 
correctly specified, then the G-R KLD is asymptotically 
equivalent to the KLD between the reference model and 
the competing fitted model evaluated at its MLE (ref. 
Akaike [2]). The Bayesian estimate of G-R KLD is ob-
tained by integrating the G-R KLD with respect to the 
posterior distribution of model parameters under the ref-
erence model. First, the Bayesian estimate of G-R KLD 
is clearly not subject to the drawback due to impropriety 
of the prior as long as the posterior under the reference 
model is proper. Second, G-R KLD is suitable for com-
paring the predictivity of the competing models since it 
is calculated with respect to the posterior density of 
model parameters under the reference model. However, 
the G-R KLD was originally developed for comparing 
nested generalized linear models while assuming a 
known true model, and its extension to general model 
comparison remains limited. For example, if the refer-

mailto:wangc3@uthscsa.edu


 173C.-P. WANG  ET  AL.

ence model is not correctly specified, then the G-R KLD 
is not necessarily reduced to to the KLD between the 
reference model and the competing fitted model evalu-
ated at its maximum likelihood estimate or MLE (ref. 
Akaike [2]), referred to as the Goutis-Robert-Akaike 
KLD or G-R-A KLD a more tractable model discrepancy 
measure. 

This paper proposes to use G-R-A KLD for assessing 
model discrepancy in terms of the fit of certain statistics 

n  that is central to our inference or model diagnostic 
purpose. That is, we evaluate the G-R-A KLD between 
the probability density function (p.d.f.) of n  under the 
reference model  and that under the assumed model 

T

T
r

f  evaluated at its MLE (see Section 2). We investigate 
the (asymptotic) property of G-R-A KLD under certain 
regularity conditions as well as under the violation of 
some regularities, including non-nested models. Note 
that unlike G-R KLD (Goutis and Robert [1]), the G-R-A 
KLD considered herein does not require the reference 
model  to be the true model, nor is the true model to 
be specified. Also, while G-R KLD has been limited to 
comparing nested generalized linear models, the G-R-A 
KLD seems to be more flexible for comparing nested or 
non-nested models that are broader than generalized lin-
ear models (see Sections 3 and 4). Theorem 1 shows that 
under certain regularity conditions, the asymptotic ex-
pression of the posterior estimator of G-R-A KLD is 
comprised of a leading term for model discrepancy in the 
mean of n , a term for model discrepancy in the vari-
ance of n , and a constant to penalize model complexity, 
plus a smaller order term. Since the first two leading 
terms in the G-R-A KLD estimator resemble a measure 
that differentiates the predictability between models  
and 

r

T
T

r
f , it is natural to study its connection with Bayes-

ian model discrepancy measures based on predictive sta-
tistics (Guttman [8], Rubin [9], Gelman et al. [10]). In 
particular, we consider the posterior predictive check 
technique using a one-sided weighted posterior predic-
tive p-value (WPPP). The WPPP of  evaluates the 
predictive distribution of nT  under 

nT
f  at ,predT r

n , 
where ,pred r

nT  denotes the prediction of nT  under , 
the posteriors are derived under , and the weight is 
used to account for the variation of  under . Theo-
rem 2 explicitly shows that for any n  satisfying certain 
asymptotic normality and regularity conditions, how the 
model discrepancy is reflected by the G-R-A KLD in 
connection to that by WPPP. To verify the results in 
Theorem 1 and Theorem 2 as well as to evaluate G-R-A 
KLD under partial violation of the regularity conditions, 
we examine the (asymptotic) property of G-R-A KLD 
and WPPP via both simulations and real data applica-
tions motivated by two cohort studies of diabetes. These 
examples include the comparison between nested models 

as well as non-nested models. 

r
r

T
nT r

The paper is organized as follows. Section 2 studies 
the G-R-A KLD for (predictive) p.d.f.s of n  between 
two competing models. It also derives the relationship 
between G-R-A KLD and WPPP. Sections 3 and 4 
evaluate model fit using both G-R-A and WPPP for ex-
amples that meet all the regularity conditions required in 
Theorems 1 and 2 as well as for examples that meet only 
part of these regularity conditions. 

T

 
2. A Proposed Kullback-Leibler Divergence 
 
2.1. Notations 
 
Throughout this paper, we assume that iX ’s originate 
from model g , and are i.i.d. with some common p.d.f. 
with parameter(s)   for g  , where g  is a 
closed set. Denote  for the reference model and r f  
for the fitted model, both governed by  , where r  
and f  are the corresponding the parameter spaces. 
Also, when a capital letter is used to denote for a random 
variable (or an estimator), the corresponding lower case 
is for its realization (or an estimate). Let  1= ,XnU U  

n, X  be the base for deriving the posterior density of 
  under model . We shall denote r  * |r   and 
 * |f   for the p.d.f.’s of * given   under model  

and 
r

f , respectively. Also, let /2) el( ) = (2π xp(y y' 2)y



r

 
where  is l-dimensional. y
 
2.2. Define Kullback-Leibler Divergence  
 
Consider that model adequacy is evaluated based on its 
fit for certain statistics n  that is per-
tinent to the inference or model diagnostics. Stemmed 
from Goutis and Robert [1], we assess the relative fit 
between models using the KLD of the distribution of n  
under  and that under 

 1= , ,nT T X X

T
f  evaluated at ˆ

f , the MLE 
of  :  

 
   

|
log | d

ˆ|

n
n

n f

r t
r t t

f t






 
 
  
 

 n ,       (1) 

We shall refer (1) to as the Goutis-Robert-Akaike KLD 
or G-R-A KLD since (1) is asymptotically equivalent to 
the KLD proposed by Goutis and Robert [1] when the 
reference model  is the true model (ref. Akaike [2]). r

In general, for each r  , G-R-A KLD given in (1) 
can be regarded as a measure of the minimal information 
gain in model  from model r f  since the minimum 
information loss under f is achieved at ˆ

f . Note that 
unlike G-R KLD (Goutis and Robert [1]), (1) by defini-
tion does not require the reference model  to be the 
true model. To understand the utility of (1) in the Bayes-  

r
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ian framework, below we derive its Bayesian estimate 
and the associated (asymptotic) property under certain 
regularity conditions (see Sections 2.3 and 2.4). We also 
study the property of (1) when partial regularity condi-
tions hold true using simulated data (Section 3) as well 
as two applications of diabetes studies (Section 4). 
 
2.3. Bayesian Estimation of the Proposed KLD  
 
Estimating (1) involves approximating the integral with 
respect to ( | )nr t   and estimating unknown model pa-
rameters  . To account for the uncertainty of model 
parameters, we consider the following estimator:  

 
     

|
log | π | d d

ˆ|

n
n r n n

n f

r t
r t U t

f t


 



 
 
  
 

  ,   (2) 

where n , as a function of U 1( , , )nX X , is used for 
deriving the posterior of  , and    | = |U r Uπr n n   

 π ( ) | π ( )dr n r/ r U     denoting the posterior den-
sity of   under model . That is, (2) is the average 
discrepancy between r  and 

r
f , each being weighted 

by n . We shall denote (2) by n |r U    , |t KLD
U

r f U . 
Since (2) is nonnegative for any given n , the closer it 
is to zero, the less is the information loss by fitting f , 
instead of , to statistic . r n

To gain further insight about the utility of (2), we de-
rive its asymptotic properties below. The approximation 
of (2) is tied to the assumptions of n  under  and 

T

T r f , 
which will be described in Theorems 1 and 2. In what 
follows, let the  statements be interpreted as “almost 
sure” statements. Also, define  for 

 which has a unique minimum attained at . 
Denote 

O
( ) lo ) 1Q y y  

y
g(y

> 0y = 1
  for model parameters, and nˆ ( )r U , ˆ f  

, r n  and ( )nU 2̂ (U ) 2ˆ ( )f nU
( )r

 for the posterior means 
(or the MLE’s) of   f, ( )  2 ( ), r  2

f, and ( )  , 
respectively. 

Assume the following regularity conditions under 
Theorems 1 and 2. 

(A1) For each x , both   log |r x   and log ( |f x  
)  are 3 times continuously differentiable in  . Fur-

ther, there exist neighborhoods r ,r r ( ) =N        
and ( ) = , f fN f      of   and integrable 
functions , r

( )H x   and , ( )
f

H x   such that  

   ,
( )

=

log | ( )sup
k

k r
N r

r x H x 
   


 





 

and  

   ,
( )

=

log | ( )sup
k

k f
N f

f x H 
   


 






for k = 1, 2, 3. 
(A2) For all sufficiently large > 0 ,  

 
 | |>

|
log < 0sup

|r

r x
E

r x  




  
      

 

and 

 
 | |>

|
log < 0sup

|f

f x
E

f x  




  
      

. 

(A3)  

     
( , )

log | log |supr rE r x E r
    

x  
  

 
  

 
 

as 0  , and  

     
( , )

log | log |supf fE f x E f
    

x  
  

 
  

 
 

as 0  .  
(A4) The prior density π( )  is continuously differ-

entiable in a neighborhood of   and π( ) > 0 . 
(A5) Let nT  be asymptotically normally distributed 

under both models such that  

    1 1| = ( ) ( ) ( ) ( )n r n r rr T n T O n          /2  

(3) 

and  

    1 1| = ( ) ( ) ( ) ( )n f n f ff T n T O n          /2 . 

(4) 

Theorem 1.  

   2

2

ˆ ˆ( ) ( )2 , |
= (1)

ˆ ( )

f n r nt n
p

f n

U UKLD r f U
o

n U

 




  (5) 

when ( ) ( )f r    , and  

 
2

2

ˆ ( )
2 , | =

ˆ ( )
r n

t n p
f n

U
KLD r f U Q o

U




 
   

 
(1)    (6) 

when ( ) = ( )r f     but 2 2( ) ( )r f    . 
The proof of Theorem 1 is given in Appendix 1. Since 

model comparison in real applications can rely on the 
relative fit to a multi-dimensional statistic, it is useful to 
study whether the results in Theorem 1 are applicable to 
the multivariate case with a fixed dimension. Suppose 
that n  is a p-dimensional statistic (  and inde-
pendent of n) with 

T > 1p

    1/2 1/2

1/2

| =| ( ) | ( ) ( )

              ( )

n r r n rr T n T

O n

      



  


 x  
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and  

   1/2 1/2

1/2

| =| ( ) | ( ) ( )

                 ( ).

n f f n ff T n T

O n

     



  




 

Then following the derivation given in Appendix 1, it 
can be shown that  

   
 

12 , |
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) = (1)

t n
f n r n f n

f n r n p

KLD r f U
U U U

n

U U o

 

 

  


 

when ( ) ( )f r    , and  

   
 1

2 , | log ( ) ( )

 ( ) ( ) = (1)

t n r n f

f n r n p

KLD r f U U U

tr U U p o

  

   

n
 

when ( ) = ( )r f     and ( ) ( )r f    . 
The result above implies the importance of choosing 
 to yield an effective model diagnostic based on 

n

nT
( , | )tKLD r f U . For example, n  is typically chosen 

to be the sufficient statistic f r 
 T

o   since it contains all 
the information f o  . Yet, nT  clearly is not the best 
diagnostic statistic if the estimates of the mean f nT  
are unbiased under both models r  and 

o
f  as  

 , | = (1)t n pKLD r f U O . Also, note that both  

 2 2ˆ ˆ ˆ( ) ( ) ( )f n r n f nU U U   in (5) and 

 2 2ˆ ˆ( ) ( )r n f nQ U U  



 in (6) can be viewed as a discrep- 

ancy between  and  in terms of their posterior 
predictivity of n . We show next how n

r
T

f
 , |tKLD r f U  

is related to a weighted posterior predictive p-value, a 
typical approach for assessing model discrepancy re-
garding the predictivity of n  in the Bayesian frame-
work (see Rubin [9]; Gelman et al. [10]). 

T

 
2.4. KLD vs Posterior Predictive p-Value 
 
Consider  

    
 

ˆ( ) | d | d

                       π | d

tn
r n n f n n n

r n

WPPP U f y y r t t

U

 

 


     , (7) 

where  and  are the density functions of nT  un-
der  and , respectively. We shall call (7) a one- 
sided weighted posterior predictive p-value (or WPPP) 
with respect to model  since as shown above, it is 
equivalent to the mean predictive p-value of n  under 

 over all possible posterior predicted values of nT  
arising from . Thus WPPP can be viewed as a model 
discrepancy measure since it evaluates the predictivity of 

 under . Note that WPPP proposed here differs 
from the posterior predictive p-value originally proposed 
in Rubin [9]: WPPP calculates the predictive p-value of 

n  under an assumed model  should n  originate 
from the reference model r , while Rubin's original 
proposal [9] assesses the predictive p-value of n  under 
an assumed model. WPPP is considered here since it is 
more coherent with the nature of G-R-A KLD as a dis-
crepancy measure between models  and . 

r f

r

r f

r

r
T

f

f

T f

PP

T

f

T

r

r UThe connection between nWP  and ( ) ( ,tKLD r  
 is derived in Theorem 2 below. Here we assume 

regularity conditions (A1)-(A5) as assumed in Theorem 
1. 

| )nf U

Theorem 2.  

    

 

21

2
2

2 2 2

2 , |
   

ˆ ˆ( ) ( ) ˆ ( )
1)

ˆ ˆ( ) ( ) ( )

t n

r n f n

f n r n n

PKLD r f U

n n

U U
o

U U U

  
 




    
  

( )

= (

r n

p

U

ˆ
r n

f

WPP

U



   (8) 

when ( ) ( )f r    ; and  

 
2

2

ˆ ( )r n

f n

U

U

5 = o

2 , | 1)
ˆ ( )t nKLD r f U Q



 
   

 
= o

)

(p     (9) 

and  

( ) 0. (1r n pWPPP U          (10) 

when ( ) = ( )r f     but 2 2( ) ( )r f  

 t n

 . 
The proof of the theorem is given in Appendix 2. 
Remark. Theorem 2 explicitly shows the asymptotic 

relationship between , |KLD r f
( )

U  and . 
Suppose that f r

( )r nP UWPP
( )     (i.e., the estimate of the 

mean of  differs between  and ). Then both nT r f
 , |t nKLD r

( )O n
f U  and  are of order 

. Suppose 
1

r nWPPP
( ) = ( )r f

(U )

p      but 2 2 ( )f r( )  

f


f

 
(i.e., the mean of n  is the same both  and , but 
the variance of nT  differs between r  and ). Then 

T r

 ( )r nU1 WPPP  converges to 0, while  ,tKLD r f  
 converges to a positive quantity of . nU (1)pO

 
3. Illustrative Examples 
 
This section demonstrates the utility of the  ,tKLD r f  

 discussed previously through two sets of examples. 
Examples 3.1-3.6 demonstrate simulated examples that 
confirm the results proved in Theorems 1 and 2. All 
these six examples meet the regularity conditions re-
quired, while Examples 3.3, 3.5, and 3.6 involve com-
paring non-nested models. Example 3.7 studies the de-
parture from Theorems 1 and 2 due to violation of the 
regularity condition (A5). We let  in 
all calculations below. 

nU

 ,n nU X X1= ,

Example 3.1. (Nested) Assume  

    . . . 1

2 1| =
i i d

i i iX g x x 2    


 , 
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where 2 > 0 . Let . Suppose that 
 and  

=1= ( ) /n
n i iT X n

=r g

    1

1| = /i if x x    


   

for some known . Then  > 0

( ) =r f    1( ) =  , 2
2( ) =r   , 2 ( ) =f   , 

ˆ ˆ( ) =r n ( )f nU U   ,  = nT

and  

   2
ˆ2 , | ( ) / =t n n pKLD r f U Q U o  (1)



. 

That is, n , |tKLD r f U  converges in probability to a 
positive quantity, which suggests the discrepancy be-
tween  and r f . However the magnitude of the model 
discrepancy assessed by  , |t nKLD r f U  depends on 

2 ( ) /n
ˆQ U  . In contrast,  converges to 

0.5, indicating no difference between  and 
( )r nWPPP U

r f . Thus 
the results are consistent with Theorems 1 and 2. 

Example 3.2. (Nested) Assume  

    
1. . .

1/2
| = ( ) ( ) ( )

i i d

i i i gg g
X g x x     


   , 

where  =iX 1 2( ,i i )X X , 1 1 2( ) = ( , )g     , and  
(g )  is a 2 × 2 matrix with ,11 ,22 3=g g( ) =    and  

,12 ,21 3 4= =g g( )    . Suppose that  

   1
1/2

| = ( ) ( ) ( )i r r
r x x    

    i r    

and  

    
1

1/2
| = ( ) ( ) ( )i if f

f x x f     


   , 

where  1 1 2( ) = ,r     ,  1 1( ) = ,f     , and both  
( )r   and ( )f   are 2 × 2 matrices with  

,11 ,22 3( ) = =r r   , ,12 ,21( ) = = 0r r  ,  

,11 ,22 3( ) = =f f   , and ,12 ,21( ) = = 0f f  .  

Let   =1 1 2= n
n i i iT X X n  . Then  

2( ) =r   , ( ) = 0f   and 2 2
3( ) = ( ) = 2r f
2     .  

It can be shown that ˆ ( ) =r n nU T , ˆ ( ) = 0f nU ,  

 
  

2
2

1 1=1

2

2 2=1

ˆˆ ( ) = ( )

ˆ               ( ) (2 )

n

r n i r ni

n

i r ni

U X U

X U n

 





 




,  

and  

 
  

2
2

1 1=1

2

2 1=1

ˆˆ ( ) = ( )

ˆ               ( ) (2 )

n

f n i f ni

n

i f ni

U X U

X U n

 





 




,  

where  

 1 1=1
ˆ ( ) =

n

r n ii
U X n    , 2 2=1

ˆ ( ) =
n

r n ii
U X  n , 

 1 1=1 =1
ˆ ( ) = (2 )

n n

f n i ii i
U X X   2 n .  

Thus  

  2 2ˆ ˆ2 , | ( ) ( ) =t n r n f n pKLD r f U n U U o  (1) . 

Since ( ) ( )f r     and ˆ ˆ( ) ( ) =r n f n nU U T  , fol- 
lowing the arguments given in Appendix 2, we have  

 2 2ˆ ˆ ˆ( ) ( ) ( ) ( ) = (1).r n r n r n f n pWPPP U n U U U o   

Thus both  , |t nKLD r f U  and the square of the probit  

transformed  suggest the discrepancy be- 
tween  and 

( )r nWPPP U
r f  by an  term. ( )pO n

Example 3.3 (Non-nested). Assume  

       
. . .

1| = ( !) exp 1 1
i i d xi

i i iX g x x        ,  

where 0 < < 1 . Let  = 1n n nT X X , , and =r g
 | = xi 1if x    . Then  

( ) = ( ) =r f     ,  2 ( ) = 1r

3   

 2
= 1

, and 

2 ( )f    .  

In this case,   has the same statistical meaning under 
both f  and  since r  = ( ) 1 ( )i i . Yet the 
substantive meaning of 

E X E X 
  under  differs from that 

under 
r

f . It can be shown that ˆ ˆ= ( ) =r f T( ) n    , and  

   
   

   2 , | 1 ( )

= 2 , | 1 = (1)

t n n

t n n p

KLD r f U Q U

KLD r f U Q T o

 

 

ˆ
 

for 0 < < 1 . Consistent with Theorem 2,  

  1/2, | = ( )t n pKLD r f U O n   

converges in probability to a positive quantity (i.e., 

 ˆ1 ( )nQ U ), and  converges in probabil-
ity to 0.5 (since 

( )r nWPPP U
( ) = ( )r f    ). 

Examples 3.4-3.6 below consider situations where n  
is an unbiased estimate for the parameter of interest un-
der both 

T

f  and . However n  is the MLE of cer-
tain parameter under 

r T
f  but not under . In these ex-

amples, since MLEs of the mean of n  under both 
r

T f  
and  converge to the same in probability,  r

 ,t nKLD r f U is reduced to  

 2 2ˆ ˆ( ) ( ) (1)r n f n pQ U U o    in these examples. 

Example 3.4 (Nested). As an extension of Example 
3.1, consider  

    . . . 1

2 3 1 2 3| =
i i d

ji ji j jiX g x x j      


 ,  

where 2 > 0 , 31 = 1 , 3 > 0j  for  = 1,i , jn , 
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J= 2, ,j   with . Let  > 1J

   1 1
jJ n

j i  

 

1

J

n ji j
T X

 jn =r g , ,  

and  

  1

2 21
| = /ji jif x x    


   

for some 2 > 0 . Thus 1( ) = ( ) =r f     ,  

   2
2 31 1

( ) =r  J J

j j jj j
w n  

   ,  

and  2 ( ) 2
J

1=f j n j   for ,  = 1, ,j J

where jw   1
J= j jn  jn . Here  is the MLE of nT 1   

under f , while the MLE of 1  under  is  r

 
 

1

2 31 1
jJ n

jij i

j nn U

 




1

2 31

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ,

n j n

J

j nj

X U U

U

 

 







 
  


 

 



3
ˆ (

 

where )j nU  is the MLE of 3 j  under . Also,  r

   2 22 , ( ) ( ) = (1)r n f n pr f U U oˆ ˆ |t nU Q

= 2.25

KLD .  

We conduct numerical calculation for the following 
combination 2 , 32 = 4,25  with  1 2, =n n  

 and  5000,5000   1 2,n n = 2000,8000 . Since the  

95% percentiles of 2 2ˆ( ) ( )U U ˆr n f n



 do not exceed 1  

under all situations (hence  

  > 0t n , | > 0.95f UPr KLD r , it implies that in the 

ory KLD should be able to distinguish f  from . 
However, the numerical values of KLD only deviate 
from 0 by  for 1 <  . Thus in practice, 
KLD can hardly be differentiated from WP  
which converges to 0.5 in probability 

r

( )r nU

610K  <K 10
PP

( )r f( ) =    . 
Example 3.5 (Non-nested). Assume  
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where 2 . Let =nT X . Suppose that  1, , nX X
1i

 
are fitted by  and =r g   | =if x X   . Then  

1( ) =f r ( ) =    ,  2
2 2( ) = 2r     ,  

and . Since  2 ( )f  = 1

   Q 2 2
ˆ ˆ, | ( ) ( ) 2 = (1)t n n n pf U U U o  KLD r   

for all 2  with  , |t nKLD r f U
=
 converging to 0 with 

probability 1 if and only if   ,  , |t nKLD r f U  
can detect model discrepancy in the dispersion parameter. 
In contrast,  converges to 0.5 in probability, 
which is not sensitive to the discrepancy in the dispersion 
parameter. 

( )r nUWPPP

Example 3.6 (Non-nested). Assume  
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where 2 > 2 , 3 > 0 , and 40 < < 1 . Suppose that 
the empirical variance of  : = 1,i ,X i  n  is greater 
than 1. Consider fitting the data by  
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where 2 > 2 . Let =nT X . Then ˆ ( ) =f nU Tn  and 
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Since both ˆ ( )r nU  and ˆ ( )f nU  are unbiased estima-
tors for  and ( )nE T  ˆ ( )f nvar U ˆ ( )r nU  converges 
to 0 in probability,  

   2 2ˆ ˆ, | = ( ) ( ) (1)t n r n f n pKLD r f U Q U U o   ,  

where , while  can 
not be obtained in a closed form. Thus 

2 2
=1ˆ ( ) = ( ) /n

f n i i nU X T   n 2ˆ ( )r nU
 , |t nKLD r f U  

is evaluated numerically using eight combinations given 
in the table below. The results suggest that the degree to 
which  , |t nKLD r f U  can distinguish f  from  
varies by situation: closer 

r

3| 1 |   and 4 4min{ ,1 }   
are to 0, closer is  , |t nKLD r f U

( )
 to 0. In contrast, 

f nUWPPP  converges to 0.5 in probability, (see Table 
1). 

Example 3.7 below shows that the asymptotic rela-
tionship between  , |t nKLD r f U  and  
does not hold in the sense of Theorem 2 due to violation 
of the asymptotic normality assumption specified in (3) a  

( )r nWPPP U

and (4). 
 

Table 1. Simulation result of example 3.6. 

2 3( , )   4 = 0.5  4 = 0.2  

(6, 2)  41.58 10  63.08 10  
(6,10 / 3)  11.10 10  56.27 10  
(2.5, 2)  41.58 10  61.47 10  

(2.5,10 / 3)  11.12 10  56.01 10  
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Example 3.7 (Nested). Consider  
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That is,  

( ) = (1)
1

n
r n p

n

X
WPPP U o

X



 

and  

( , | ) ( ) = (1)t n n pKLD r f U Q X o . 

In this example, both  , |t nKLD r f U
r

 and  
 can differentiate  from 

rWPPP
( )nU f  by an  
term despite that the asymptotic relationship between 

1/2( )pO n

 , |t nKLD r f U  and  does not hold in the ( )r nPP UWP
sense of Theorem 2 due to the violation of the asymp-
totic normality assumption. 
 
4. Application of ( , | )t nKLD r f U  to  

Diabetes Studies 
 
In this section, we apply both n( , | )tKLD r f U  and 

 to compare non-nested models in two stud-  ( )r nWPPP U
ies of diabetes. In these applications, we assess the model 

fit to the entire dataset due to its clinical implication. 
Here the selected diagnostic statistic is a multivariate 
statistic of  variables, and it does not meet all the 
regularity conditions specified in Section 3. 

(1)pO

 
4.1. Study I: Analysis of Change in Glucose in  

Veterans with Type 2 Diabetes 

Study I originated from a clinical cohort of 507 veterans 
with type 2 diabetes who had poor glucose control (indi-
cated by glycosylated hemoglobin A1c or HbA1c greater 
than 6.5) at the baseline (fiscal year 1999), and were all 
treated by metformin as the mono oral glucose-lowering 
agent. As the literature suggested that the glucose-low- 
ering response due to metformin may vary by an indi-
viduals obesity status, the goal of our study was to com-
pare models that assessed whether obesity was associated 
with the net change in glucose level between baseline 
and the end of 5-year follow-up. In this study, the em- 
pirical mean of the net change in HbA1c over the 5 year 
period was similar between the obese vs. non-obese 
groups (–0.498 vs. –0.379), yet the empirical variance 
was greater in the obese group (1.207 vs. 0.865). Also, 
the distribution of HbA1c was reasonably symmetric. 
Thus we considered two candidate models for fitting the 
HbA1c change: a mixture of normals vs. a t-distribution 
(note that the overall empirical variance of HbA1c 
change is 1.03); that is,  
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2 2 4 1 3 2 2
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where 2 > 2 , 3 > 0 , and 4 = 0.487  (% in the obe-
sity group) vs.  
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| = 1 2 / 2 π
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if x
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where 2 > 1 . The calculated  , |t nKLD r f U  was  
5.96, suggesting that model  provided a modest better 
fit to the data compared to model 

r
f . This result was 

also consistent with Figures 1 and 2 which contrasted 
the empirical quantiles with predicted quantiles under   r
and f . Note that both ˆ ( )r nU  and ˆ ( )f nU  are un-
biased estimators for , where ( )nE T ˆ ( ) =f nU nT  and 

 with  =1ˆ = (n
i i nU w ( )r n )U iX
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Thus the model discrepancy assessed by  ,tKLD r f  
 is primarily attributed to the difference in the vari-

ance assumption between and
nU

r f (as evident in Figures 
1 and 2). In contrast, WPPP = 0.522 suggested that the 
overall fit were similar between the two models since the 
estimated net change in HbA1c was similar between 
these two models.  

been described previously (Hazuda et al. [11]). The goal 
of our analyses was to compare models that assessed 
whether glucose control trajectory class (poorer vs. better) 
was associated with the lower-extremity physical func-
tional limitation score during the first follow-up period. 
The lower-extremity physical functional limitation score 
was measured by the Short Physical Performance Battery 
or SPPB, which is a well-established, validated measure 
of physical functioning. SPPB score is a sum of three 
items: 8-foot walking times, repeated chair stands, and 
balance scores, each being a 5-point liker scale 0 - 4. 
Hence the SPPB score is discrete in nature with a range 
of 0 - 12. Higher SPPB scores indicate better perform-
ance and less functional limitation. Exploratory data 
analyses suggested that the empirical variance of SPPB 
(15.60 vs. 14.33) was greater than the mean (7.23 vs. 
8.02) in both glucose control classes. Also, due to the 

 
4.2. Study II: Analysis of the Functioning Score 

in Older Adults with Diabetes 
 
Study II arose from the subset of 119 participants with 
diabetes in the San Antonio Longitudinal Study of Aging 
(SALSA), a community-based study of the disablement 
process in Mexican American and European American 
older adults. Details of the SALSA study design, sam-
pling approach, recruitment and field procedures have  

 

Figure 1. Quantile plot for HbA1c for T2DM participants with obesity in VA (open triangle: quantile estimates based on the 
model assuming a mixture of normal distributions solid circle: quantile estimates based on the model assuming a t-distribu- 
tion solid line: empirical quantiles). 
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Figure 2. Quantile plot for HbA1c for T2DM participants without obesity in VA (open triangle: quantile estimates based on 
the model assuming a mixture of normal distributions solid circle: quantile estimates based on the model assuming a t-dis- 
tribution solid line: empirical quantiles). 

left-skewedness of the distribution of SPPB, we consid- 
ered models fit to the reversed SPPB, i.e., = (12iX   

. Given the nature of SPPB distribution, we 
compare two candidate models:  

)iSPPB

  1( | ) = ( )) ( ) (1 )xi
i i ir x x x 

           

with > 0  and  

       | = exp 1 1 ( !
xi

i )if x x      


.  

The calculated n , |tKLD r f U  is 32.63, suggesting 
that  has a much better fit than r f , which is coherent 
to the quantile plot shown in Figures 3 and 4. Since both 

 and r f  yielded similar estimates of , the 
model discrepancy assessed by 

( )iE X
 , | ntKLD r f U  could 

primarily be attributed to the difference in variance esti-
mation between  and r f  (as evident in Figure 2). In 
contrast, WPPP = 0.539 suggested similar fit between  
and 

r
f  as expected due to similar estimates of  

under both  and 
( )iE X

r f . 
 
5. Discussion 
 
This paper considers the G-R-A KLD as given in (2). 
This KLD is appropriate for quantifying information 
discrepancy regarding n  contained in the competing 
models  and 

T
r f . We derive the asymptotic property 

of the G-R-A KLD in Theorem 1, and its relationship to 
a weighted posterior predictive p-value (WPPP) in Theo- 
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Figure 3. Quantile plot for SPPB for T2DM participants with good glycemic control in SALSA (open triangle: quantile esti-
mates based on the negative binomial model; solid circle: quantile estimates based on the Poisson model; solid line: empirical 
quantiles). 

rem 2. However, our results would need further refine-
ment when the normality assumptions given in (3) and (4) 
are not suitable (see Example 3.7). As shown in Section 
4, model comparison in medical research may rely on the 
fit to a multidimensional statistic. Although the results in 
Theorem 1 holds for a multivariate n  with a fixed di-
mension, further investigation is needed to assess the 
property of our proposed KLD for situations when the 
dimension of n  increases with n . The KLD proposed 
herein usually provides the relative fit between compet-
ing models. Thus, for the purpose of assessing model 
adequacy (rather than relative model fit), a KLD should 
be used in conjunction with absolute model departure 

indices such as posterior predictive p-values or residuals. 
Nevertheless, a KLD can be a measure of the absolute fit 
of model 

T

T

f  when the superior model  is the true 
model, and therefore can be used for checking model 
adequacy. 

r
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Figure 4. Quantile plot for SPPB for T2DM participants with poor glycemic control in SALSA (open triangle: quantile esti-
mates based on the negative binomial model; solid circle: quantile estimates based on the Poisson model; solid line: empirical 
quantiles). 
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Appendix 1. Proof of Theorem 1 
 
Under (3) and (4), it can be shown that  
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Applying an argument similar to that in Ghosal and 
Samanta [12] (see also Ibragimov and Hasminskii [13]), 
(A1)-(A5) gives  
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When ( ) ( )r f    , 2 2ˆ ˆ( ( ) ( )) / ( )πf r fn       r  

n( |U )d   is the dominating term in (11). Thus by 
(A1)-(A5) and the arguments similar to those in Ghosal 
and Samanta [12], one gets  
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If ( ) = ( )f r    , 2 2( ) ( )r f    , then (11) be-
comes  
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when ( ) = ( )r f     and 2 2( ) ( )r f    . 
 
Appendix 2. Proof of Theorem 2 
 
Write  for the realization of z Z , a  random 
variable. Then  
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The second equality follows (A1)-(A5) and the argu-
ment similar to that used in Ghosal and Samanta [12]. 
Let  be a  random variable distributed inde-
pendently of 

Y (0,1)N
Z . Then one can rewrite the above integral 

as  
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Therefore, applying the arguments similar to those in 
Ghosal and Samanta [12] under (A1)-(A5) yields  
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when ( ) ( )r f    ; and  
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(15) 
when ( ) = ( )r f    . This completes the proof. 
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