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Abstract 
 
In the present paper as estimation of unknown pdf derivative of a spline function is suggested. It is studied its 
some statistical properties which are used to approximate maximal deviation of the spline estimation from 
pdf with maximum of nonstationary gaussian process. 
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1. Introduction 

The construction of a confidence interval for unknown 
probability density function (pdf) trough histogram for 
the first time has been suggested by Smirnov [1]. Bikel 
and Rosenblatt [2], Rosenblatt [3] have considered ana-
logues problem using of Parsen-Rosenblatt’s estimation. 
The problem of construction of a confidence interval for 
unknown pdf trough spline-function was studied by 
Muminov and Khashimov [4]. Recently for unknown 
multidimensional distribution density function the kernel 
estimation is constructed and similar problem is studied 
by Muminov [5,6]. 

Several authors have considered the rate of conver-
gence of the distribution of the maximum of difference 
between Parsen-Rosenblat’s estimator and unknown pdf, 
see, for example, Konakov and Piterbarg [7-9]. Never- 
theless there is no such kind of result for the spline-es- 
timators. The results obtained in this work help to ap- 
proximate the deviation of spline estimation of unknown 
density by Gaussian process.  

It should be noted that in the works of Lii and Rosen- 
blatt [10], Muminov [11] asymptotical unbiasedness and 
strong state of the spline estimation are proved. Impor- 
tance of spline-estimation and its application in statistics 
are given in the works [5,12].  

The paper is organized as follows. In Sec. 2 the spline 
estimation is constructed and some auxiliary results are 
stated, and also the main theorem is given. The main 
theorem is proved in Sec. 3. 

2. Results 
 
Let 1 2, , , nX X X  be independent identical distributed 
random variables (r.v.) with pdf ( )f x  and let  
be the cubic spline-function which do interpolation of 

( )nS x

 k n ky F x  at the points k /x k N , 0,1, ,k N   
where ( )N N n , ( )nF x  is the epirical distribution 
function of the sample 1 2, , , nX X  X . Theboundary  
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Then the derivative of spline-function  is as fol- 
lows, see Lii [13] 
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We define r.v. ( )f x  by the following equality  
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R.v. n  is interesting with point of view of solution 
of the following problems: 

1) to find a confidential strip for ( )f t t, [0,1] on 
given coefficient of trust  (0 1)   ; 

2) to construct criterion for test of null hypothesis 

0 : ( ) ( )0H f t f t  on given significance level (0  
1)  .  

Our main goal in the sequel is: to solve the problems 1) 
and 2). For this we have to find limit distribution of r.v. 

n . The results, obtained in this work, allow to approxi-
mate distribution of r.v. n  with distribution of maxi-
mum of Gaussian process. 
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and the structure of co-variations of the Gaussian proc-
esses (1)( ) ( )n nx x  and (1) ( )n x

, h 
 is coincided. 

We assume that  as  and the 
following conditions are fulfilled:  

nh 0 n 

1) , 0( ) 0f x C  [0,1]x  , 
2) The pdf ( )f x  continuously differentiable in the 

interval [0, 1]. 
In what follows C and c with or without index is uni-

versal positive number. 
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with probability equal to 1. The following assertion is 
proved by Komlosh et al. [14]. 

Lemma 1. There exist a probabilistic space ( , , )F P  
where it is possible to define version of the * ( )nF t  and 
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Also for any {1, 2, , }i N   and  1,  i ix x x the fol- 
lowing holds 
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the following Lemma 3 is proved in the book of Lam- 
perty [15]. 

Lemma 3. Let 1 2  be a sequence of standard 
normal distributed r.v.s then  
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3. Proofs of the Main Results 

The proof of Lemma 2 is simple and hence it is omitted. 
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