

Asymptotic Analysis for U-Statistics and Its Application to Von Mises Statistics

Timur Zubayraev

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia E-mail: tzubayraev@gmail.com Received July 30, 2011; revised August 31, 2011; accepted September 14, 2011

Abstract

Let $X, \overline{X}, X_1, \dots, X_N$ be i.i.d. random variables taking values in a measurable space $(\mathfrak{X}, \mathfrak{B})$. Let $\phi_1 \colon \mathfrak{X} \to \mathbb{R}$ and $\phi \colon \mathfrak{X}^2 \to \mathbb{R}$ be measurable functions. Assume that ϕ is symmetric, *i.e.* $\phi(x, y) = \phi(y, x)$, for any $x, y \in \mathfrak{X}$. Consider U-statistic $T = \frac{1}{N} \sum_{1 \le i < j \le N} \phi(X_i, X_j) + \frac{1}{\sqrt{N}} \sum_{1 \le i \le N} \phi_1(X_i)$, assuming that $\mathbb{E}\phi_1(X) = 0$, $\mathbb{E}\phi(x, X) = 0$ for all $x \in \mathfrak{X}$, $\mathbb{E}\phi^2(x, X) < \infty$, $\mathbb{E}\phi_1^2(X) < \infty$. We will provide bounds for $\Delta_N = \sup_x |F(x) - F_0(x) - F_1(x)|$, where F is a distribution function of T and F_0 , F_1 are its limiting distribution function and Edgeworth correction respectively. Applications of these results are also provided for von Mises statistics case.

Keywords: U-Statistics, Von Mises Statistics, Symmetric Statistics

1. Introduction

Consider the measurable space $(\mathfrak{X}, \mathfrak{B}, \mu)$, with measure $\mu = \mathcal{L}(\mathfrak{X})$. Let $L = L^2(\mathfrak{X}, \mathfrak{B}, \mu)$ denote the real Hilbert space of square integrable real functions. Let $\mathbb{Q}: L^2 \to L^2$ denote the Hilbert-Schmidt operator associated with the kernel ϕ and defined via

$$\mathbb{Q}f(x) = \int_{\mathfrak{X}} \phi(x, y) f(y) \mu(\mathrm{d}y) = \mathbb{E}\phi(x, X) f(X) \,,$$

Let $q_1, q_2 \cdots$ be its eigenvalues. Without loss of generality we shall assume that $|q_1| \ge |q_2| \ge \cdots$.

Let $\{e_j : j \ge 1\}$ denote an orthonormal complete system of eigenfunctions of \mathbb{Q} of the corresponding eigenvalues $q_1, q_2 \cdots$. Then

$$\sigma^{2} = \mathbb{E}\phi^{2}(\overline{X}, X) = \sum_{j \ge 1} q_{j}^{2}, \phi(x, y) = \sum_{j \ge 1} q_{j} e_{j}(x) e_{j}(y) \quad (1.1)$$

since \mathbb{Q} is a Hilbert-Schmidt operator and the kernel ϕ is degenerate. The series in (1.1) converges in L^2 $(\mathfrak{X}^2,\mathfrak{B}^2,\mu\times\mu)$. Consider the subspace $L^2(\phi,\phi_1) \subset L^2$ $(\mathfrak{X}^2,\mathfrak{B}^2,\mu\times\mu)$ generated by ϕ_1 and eigenfunctions e_j corresponding to nonzero eigenvalues q_j . Introducing, if necessary, an eigenvalues $e_0: \mathbb{Q}e_0 = 0$, we can assume that e_0, e_1, \cdots is an orthonormal basis in $L^2(\phi)$.

 ϕ_1). Thus, we have

$$\phi_1(x) = \sum_{j \ge 0} a_j e_j(x)$$
 in L_2 , $\beta_2 = \mathbb{E} \phi_1^2(X) = \sum_{j \ge 0} a_j^2$, (1.2)

with $a_j = \mathbb{E}\phi_i(X)e_j(X)$ and $\mathbb{E}e_j(X) = 0$, for all *j*. Therefore $(e_j(X))_{j\geq 0}$ is an orthonormal system of random variables with zero means.

Hilbert space $\ell_2 \subset \mathbb{R}^{\infty}$ consists of $x = (x_1, x_2 \cdots) \in \mathbb{R}^{\infty}$, such that

$$|x|^2 =_{def} \langle x, x \rangle, \langle x, y \rangle = \sum_{j \ge 0} x_j y_j, |x| < \infty$$
.

Consider the random vector

$$X =_{def} (e_0(X), e_1(X), e_2(X), \cdots), \qquad (1.3)$$

which takes values in \mathbb{R}^{∞} . Since $(e_j(X))_{j\geq 0}$ is a system of mean zero uncorrelated random variables with variances 1, the random vector X has mean zero and $cov(e_i, e_j) = \delta_{ij}$ and δ_{ij} is Kronecker's symbol. Using (1.1) and (1.2), we can write

$$\phi(X,\overline{X}) = \langle \mathbb{Q}X, X \rangle, \quad \phi_1(X) = \langle a, X \rangle, \quad (1.4)$$

where we define $\mathbb{Q}x = (0, q_1x_1, q_2x_2, \cdots)$ for $x \in \mathbb{R}^{\infty}$ and $a = (a_j)_{j \ge 0} \in \mathbb{R}^{\infty}$. The equalities (1.4) allow us to assume that the measurable space \mathfrak{X} is \mathbb{R}^{∞} . Let X be a random vector taking values in \mathbb{R}^{∞} with mean zero and covariance $\operatorname{cov}(X_i, X_i) = \delta_{ii}$ and that

$$\phi(X, \overline{X}) = \langle \mathbb{Q}X, \overline{X} \rangle, \quad \phi_1(X) = \langle a, X \rangle. \quad (1.5)$$

Without loss of generality we shall assume that the kernels $\phi(x, y)$ and $\phi_1(x)$ are linear functions in each of their arguments ([2]).

Introduce the definitions:

$$\begin{split} \beta_s &= \mathbb{E} |\phi_1(X)|^s, \ \gamma_s = \mathbb{E} |\phi(X, \overline{X})|^s, \ \sigma^2 = \gamma_2, \\ \gamma_{s,r} &= \mathbb{E} (\mathbb{E} \{ |\phi(X, \overline{X})|^s | X \})^r, \end{split}$$

and assume that

$$\beta_2 < \infty$$
, $0 < \sigma^2 < \infty$

for the statistic T we can write

$$\mathbb{E}T^2 = \beta_2 + \frac{N-1}{2N}\sigma^2.$$

The statistic T is called degenerate since $\sigma^2 > 0$ ensures that the quadratic part of the statistic is not asymptotically negligible and therefore statistic T is not asymptotically normal. More precisely, the asymptotic distribution of T is non-Gaussian and is given by the distribution of the random variable

$$T_0 = \frac{1}{2} \sum_{j \ge 1} q_j (\eta_j^2 - 1) + \sum_{j \ge 0} a_j \eta_j, \qquad (1.6)$$

 η_j is a sequence of i.i.d. standard normal variables, a_0, a_1, \cdots denotes a sequence of square summable weights and $|q_1| \ge |q_2| \ge \cdots$ denote eigenvalues of the Hilbert-Schmidt operator, say \mathbb{Q} , associated with the kernel ϕ .

Consider the concentration functions of statistic T_*

$$P(T_*;\lambda) = \sup_{x} \mathbb{P}\{x \le T_* \le x + \lambda\}, \quad \lambda \ge 0, \qquad (1.7)$$

$$T_* = \sum_{1 \le i < k \le N} \varphi(X_j, X_k) + f_1(X_1, \cdots, X_M) + f_2(X_{M+1}, \cdots, X_N),$$

where $f_1 = f_1(X_1, \dots, X_M)$ is an arbitrary statistic depending only on X_1, \dots, X_M , $f_2 = f_2(X_{M+1}, \dots, X_N)$ is as well arbitrary but independent of X_1, \dots, X_M . Note that the class of statistics T_* is slightly more general than the class of statistics T. We shall denote c, c_1, \dots constants. If a constant depends on, say s, we shall write $c(s) = c_1$.

Consider the distibution functions

$$F(x) = \mathbb{P}\{T \le x\}, \quad F_0(x) = \mathbb{P}\{T_0 \le x\},$$
$$\Delta_N = \sup |\Delta_N(x)|, \quad \Delta_N(x) = F(x) - F_0(x) - F_1(x),$$

 $F_1(x)$ denotes an Edgeworth correction. The Edgeworth correction $F_1(x) = F_1(x; \mathcal{L}(X), \phi_1, \phi)$ is defined as a

function of bounded variation satisfying $F_1(-\infty) = 0$ and with the Fourier-Stieltjes transform given by

$$\hat{F}_1(t) = \frac{(it)^3}{6\sqrt{N}} \mathbb{E}(\phi_1(X) + \phi(X,G))^3 e\{tT_0\}.$$

Let us notice that F_1 vanishes if $\phi_1 = 0$ or if

$$\mathbb{E}\phi_{1}^{3}(X) = \mathbb{E}\phi_{1}^{2}(X)\phi(X,x) = \mathbb{E}\phi_{1}(X)\phi^{2}(X,x)$$

= $\mathbb{E}\phi^{3}(X,x) = 0,$ (1.8)

holds for all $x \in \mathfrak{X}$. Using the technique presented in this work we may obtain the result for approximation bound of order $O(N^{-1})$ for U-statistic distribution function which has an order $|q_9|^{-\alpha}$ (see Theorem 3, 2) below) or $|q_{13}|^{-\alpha}$ (see Theorem 3, 1) below) with respect to dependence on first nine or thirteen eigenvalues of operator \mathbb{Q} , respectively.

2. Auxiliary Results

Consider the vector $G = (\eta_0, \eta_1 \cdots)$ with values in \mathbb{R}^{∞} , where η_0, η_1, \cdots standard normal variables. Let us formulate lemma in which equalities for the moments of determinants of random matrices consisting of the scalar products such as $\langle \mathbb{Q}G_i, G_j \rangle$ are obtained. Analogue of this lemma is proved in [1] for matrices consisting of the scalar products such as $\langle G_i, G_j \rangle$ where *G*-Gaussian (0, $\sigma^2 \mathbb{I}$) vector.

Lemma 1. Let $G_1, \dots, G_s, G'_1, \dots, G'_s$ be random elements in a Hilbert space H such that $G_i = (\eta_0, \eta_1, \dots)$, where η_0, η_1, \dots standard normal variables. Let $|q_1| \ge |q_2| \ge \dots$ be the eigenvalues of Hilbert-Schmidt operator \mathbb{Q} . $W = (det \mathbb{A})^2$, where $\mathbb{A} = \mathbb{A}(G) = \{a_{ij}(G)\}_{i,j=1}^s, a_{ij}(G) = \phi(G_i, G'_j) = \langle \mathbb{Q}G_i, G_j \rangle$.

Then

$$\mathbb{E}W = (s!)^2 \sum_{1 \le i_1 < \ldots < i_s < \infty} (q_{i_1} \dots q_{i_s})^2, \ (\mathbb{E}W^2)^{1/2} \le c(s)\mathbb{E}W.$$

Nondegeneracy condition

We shall assume that random vector Z, a kernel ϕ , parameters c, c_1, s and p satisfy the nondegeneracy condition if

$$\mathbb{P}\{W(\overline{Z}) > \delta\} \ge p, \quad \delta = q_1^2 \dots q_9^2,$$
$$\mathbb{P}\{|\phi(Z_i, \overline{Z}_j)| \le c\} \ge c_1, \quad 1 \le i, \quad j \le s, \qquad (2.1)$$

where $W(\overline{Z}) = (detA)^2$, $A = \{a_{ij}\}_{i,j=1}^s, a_{ij} = \varphi(Z_i, \overline{Z}_j)$,

 Z_i , \overline{Z}_i are independent copies of Z.

Here parameter p is small and parameter c_1 is close to 1. Let $\mathcal{N}(\delta, p)$ denote the set of all vectors Z satisfying the nondegeneracy condition.

Notice that G satisfies the nondegeneracy condition. Let vectors G and X have equal means and covariances, then

$$\mathbb{E}\phi_{1}(G) = \mathbb{E}\phi(G, x) = 0, \quad \mathbb{E}\phi_{1}^{2}(G) = \mathbb{E}\phi_{1}^{2}(X),$$
$$\mathbb{E}\phi_{1}(G)\phi(G, x) = \mathbb{E}\phi_{1}(X)\phi(X, x),$$
$$\mathbb{E}\phi(G, x)\phi(G, y) = \mathbb{E}\phi(X, x)\phi(X, y).$$

The following Lemma 2 means that increase of n yields equivalence of nondegeneracy conditions fulfillments for sum and Gaussian vector.

Lemma 2. Let $G \in \mathcal{N}(4q_1^2 \cdots q_9^2, 1-p)$ be a Gaussian random vector and $\mathbb{P}\{W(\overline{G}) > 4q_1^2 \cdots q_9^2\} \ge 1-p$. Then for $m \ge c_s |q_1 \cdots q_9|^{-3} p^{-1}(|q_1 \cdots q_9|^{-3} p^{-1}\gamma_{2,3/2} + \gamma_3)$ we have $S_m \in \mathcal{N}(q_1^2 \cdots q_9^2, 1-2p)$, where $S_m = m^{-1/2}(X_1 + \cdots + X_m)$ is random sum.

Further, it is necessary to bound the characteristic function of the statistic T_* . That will be done in Lemmas 3, 4 and Theorem 1.

The following Lemma 3 has a similar proof to Lemma 6.5 from [2].

By $\tau, \tau_1, \tau_2 \cdots$ we shall denote independent copies of a symmetric random variable τ with nonnegative characteristic function and such that

$$1 \le \mathbb{E} \tau^2 \le 2$$
, $\mathbb{P}\{|\tau| \le 2\} = 1$. (2.2)

Lemma 3. Let $s \in \mathbb{N}$ and $L \in \mathbb{Z}_+$. Assume that vector $Y \in \mathcal{N}((q_1 \cdots q_9)^2, p)$ takes values in \mathbb{R}^{∞} . Write

$$\Lambda = \sum_{j=1}^{sL} \tau_j Y_j, \quad \overline{\Lambda} = \sum_{j=1}^{sL} \overline{\tau_j} \overline{Y_j}, \quad q = [pL/4],$$

where Y_i and \overline{Y}_i are independent copies of Y. Then

$$\begin{split} \mathbb{E}e\{t\phi(\Lambda,\bar{\Lambda}\} &\leq c_d(s)(pL)^{-d} + \sup_{\mathbb{A}} \mathbb{E}e\{t\langle \mathbb{A}U,V\rangle\},\\ t\in\mathbb{R}, \ d\geq 0\,, \end{split}$$

where $\sup_{\mathbb{A}}$ denotes the supremum over all $s \times s$ nonrandom matrices \mathbb{A} such that $(\det \mathbb{A})^2 > q_1^2 \cdots q_9^2$.

U and *V* denote independent vectors in \mathbb{R}^s which are sums of *n* independent copies of $W = (\tau_1, \dots, \tau_s)$.

In the following lemma the bound from above for the characteristic function $\mathbb{E}e\{t\langle AU, V\rangle\}$ is received. This results was proved in [1]. The received estimation contains the determinant of matrix in right-hand side of inequality. This fact allows to use eigenvalues of operator \mathbb{Q} for the estimation of characteristic function.

Lemma 4. Let A be a nondegenerate $s \times s$ matrix. Let $X \in \mathbb{R}^s$ denote a random vector with covariance C. Assume that there exists a constant c_s such that

$$\mathbb{P}\{|X| \le c_s\} = 1, |A| \le c_s, |C^{-1}| \le c_s.$$
(2.3)

Let U and V denote independent random vectors which are sums of n independent copies of X. Then

$$|\mathbb{E}e\{t\langle AU,V\rangle\}| \leq c(s) |detA|^{-1} \mathcal{M}^{2s}(t;N) \text{ for } |t| > 0,$$

where $\mathcal{M}(t; N) = 1/\sqrt{|t|N} + \sqrt{|t|}$ for |t| > 0.

Using our Lemmas 3 and 4 we may obtain a bound for characteristic function for statistic T_* .

Theorem 1. Let $m \in \mathbb{N}$. Assume that the sum

 $T = (2m)^{-1/2} (\tilde{X}_1 + \dots + \tilde{X}_m) \in \mathcal{N}((q_1 \cdots q_9)^2, p)$. Then, for any statistic T_* we have

$$|\mathbb{E}e\{tT_*\}|\ll_s \frac{1}{|q_9|^9}\mathcal{M}^{2s}(tm;pM/m).$$

The proof of this theorem is similar to proof of Theorem 6.2 in [2].

Write :

$$\psi(t) = |\mathbb{E}_{9}e\{tT^{9}\}|.$$
 (2.4)

In following lemma a multiplicative inequality for characteristic function of T^9 is given. This inequality yields the desired bound $\mathcal{O}(N^{-1})$ for an integral of the characteristic function of a *U*-statistic. Similar result was proved in Lemma 7.1 in [2]

Lemma 5. Let $d \ge 0$ and $s \in \mathbb{N}$. Assume that $Y = (2m)^{-1} \sum_{k=1}^{k=m} \tilde{X}_k \in \mathcal{N}((q_1 \cdots q_9)^2, p)$. Then there exist constants $c_1(s,d)$ and $c_2(s,d)$ such that the event

$$D = \{ \psi(t-\gamma)\psi(t+\gamma) \le c_1(s,d) \frac{1}{|q_9|^9 v} \mathcal{M}^s(\gamma m; pM/m) \},$$
(2.5)

satisfies

$$\mathbb{P}\{D\} \ge 1 - c_2(s,d) (pM/m)^{-d}.$$
 (2.6)

For $A \ge t_0$, $t_1 \ge 0$ define the integrals

$$I_0 = \int_{-t_1}^{t_1} |\hat{\Psi}(t)| \, \mathrm{d}t \,, \quad I_1 = \int_{t_0 \le |t| \le A} |\hat{\Psi}(t)| \, \frac{\mathrm{d}t}{|t|} \,,$$

where $\hat{\Psi} = \int_{\mathbb{R}} e\{tx\} d\Psi(x)$ denotes the Fourier-Stieltjes transform of the distribution function $\Psi(x) = \mathbb{P}\{T_* \le x\}$. The estimation for these integrals is received in following lemma, which has a proof similar to Lemma 3.3 in [2].

Lemma 6. Let $m \in \mathbb{N}$. Assume that the random vector $Y = (2m)^{-1/2} (\tilde{X}_1 + \ldots + \tilde{X}_m) \in \mathcal{N}((q_1 \cdots q_9)^2, p)$ and $s \ge 9$. Let

$$k = \frac{pM}{m}, \quad t_0 = \frac{c_0(s)}{m} k^{-1+2/s}, \quad t_1 = \frac{c_1(s)}{m} k^{-1/2},$$
$$\frac{c_2(s)}{m} \le A \le \frac{c_3(s)}{m},$$

where $c_j(s)$, $0 \le j \le 3$ are some positive constants. Then

$$I_0 \ll_s |q_9|^{-9} (pM)^{-1}, \ I_1 \ll_s \max\{1, |q_9|^{-18}\} m(pM)^{-1}.$$

(2.7)

Copyright © 2011 SciRes.

3. Approximation Accuracy Estimation

For $r \in \mathbb{Z}_+$ and functions f_i , introduce the statistic

$$T^{(r)} = \frac{1}{N} \sum_{1 \le i < j \le N} \phi(Z_i, Z_j) + \sum_{1 \le i \le N} f_i(Z_i)$$
(3.1)

where

$$Z_j = X_j \text{ for } 1 \le j \le r , \ Z_j = G_j \text{ for } r < j \le N \ .$$

Write l = [(N-2)/20] and put

$$\kappa(t) = \kappa(t, N, \phi, \mathcal{L}(X)) = \kappa_1(t) + \kappa_2(t), \quad (3.2)$$

where

$$\kappa_{1}(t) = \sup_{L} |\mathbb{E}e\{tN^{-1}\sum_{1 \le j \le k \le l} \phi(X_{j}, X_{k}) + L(X_{1}, \cdots, X_{l})\}|,$$
(3.3)

$$\kappa_{2}(t) = \sup_{L} |\mathbb{E}e\{tN^{-1}\sum_{1 \le j < k \le l} \phi(G_{j}, G_{k}) + L(G_{1}, \cdots, G_{l})\}|,$$
(3.4)

where supremum is taken over all linear statistics L, that is, over all functions which can be represented as $L(x_1, \dots, x_l) = \sum_{j=1}^l f_j(x_j)$ with some functions f_1, \dots, f_j .

Consider the following Lemma 7, which has a similar proof as Lemma 4.2 in [2].

Lemma 7. Let $m \in \mathbb{N}$, $s \ge 9$ and $t_0 = m^{-1}(pN/m)^{-1+2/s}$. Assume that the random vector $Y = (2m)^{-1/2}$ $(\tilde{X}_1 + \dots + \tilde{X}_m)$ satisfies the nondegeneracy condition. Then, for pN > m, $m^{-1} \ge t_* \ge t_0$ the distribution function $F^{(r)}$ of $T^{(r)}$ satisfies

$$F^{(r)}(x) = \frac{1}{2} + \frac{i}{2\pi} V.P. \int_{-Nt_*}^{Nt_*} e\{-xt\} \hat{F}^{(r)}(t) \frac{dt}{t} + R, \quad (3.5)$$

where $|R| \ll_{s} (|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\}) m/(pN)$.

The Edgeworth correction $F_1(x) = F_1(x; \mathcal{L}(X), \phi_1, \phi)$ is defined as a function of bounded variation satisfying $F_1(-\infty) = 0$ and with the Fourier-Stieltjes transform given by

$$\hat{F}_1(t) = \frac{(it)^3}{6\sqrt{N}} \mathbb{E}(\phi_1(X) + \phi(X,G))^3 e\{tT_0\}.$$
 (3.6)

Lemma 8. Assume that the nondegeneracy condition is fulfilled.

1) Let
$$s \ge 13$$
 and $m_0 \simeq |q_1 \cdots q_9|^{-3} p^{-1}(|q_1 \cdots q_9|^{-3} p^{-1}\gamma_{2,3/2} + \gamma_3)$. Then

$$\Delta_N \ll_s \frac{m_0(|q_9|^{-9} + max\{1, |q_9|^{-18}\})}{pN} + N^{-1}(\beta_3^2 + \sigma^2\gamma_{2,2})(\frac{1}{|q_s|^s} + \frac{1}{|q_s|^6}) + \frac{|q_9|^{-9}}{p^6N} \quad (3.7)$$

$$\cdot (\beta_4 + \beta_3^2 + \sigma^2 + \gamma_3 + \sigma^2\gamma_3 + \gamma_{2,2} + \sigma^2\gamma_{2,2})$$

2) Assume that the condition (1.8) holds and that $s \ge 9$. Then

$$\Delta_{N} \ll_{s} \frac{m_{0}(|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\})}{pN} + N^{-1}(\beta_{3}^{2} + \sigma^{2}\gamma_{2,2})(\frac{1}{|q_{s}|^{s}} + \frac{1}{|q_{s}|^{6}}) + \frac{|q_{9}|^{-9}}{p^{4}N} \quad (3.8)$$
$$\cdot (\beta_{4} + \sigma^{2} + \gamma_{3} + \gamma_{2,2}).$$

To prove this lemma we need to make the same steps as in Lemma 4.1 in [2] replacing Theorem 6.2 by Theorem 1.

Now we can formulate a following Theorem 2, where bounds for Δ_N are obtained. This theorem were proved in [4]:

Theorem 2. 1) Let $s \ge 13$ $m_0 \asymp |q_1 \cdots q_9|^{-3} p^{-1}(|q_1 \cdots q_9|^{-3} p^{-1}\gamma_{2,3/2} + \gamma_3), p_0 \asymp c(s).$ Then

$$\Delta_{N} \ll \frac{m_{0}(|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\})}{cN} + N^{-1}(\beta_{3}^{2} + \sigma^{2}\gamma_{2,2})(\frac{1}{|q_{13}|^{13}} + \frac{1}{|q_{13}|^{6}}) + \frac{|q_{9}|^{-9}}{cN} \quad (3.9)$$
$$\cdot (\beta_{4} + \beta_{3}^{2} + \sigma^{2} + \gamma_{3} + \sigma^{2}\gamma_{3} + \gamma_{2,2} + \sigma^{2}\gamma_{2,2}),$$

2) Assume that (1.8) holds and $s \ge 9$. Then

$$\Delta_{N} \ll \frac{m_{0}(|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\})}{cN} + N^{-1}(\beta_{3}^{2} + \sigma^{2}\gamma_{2,2})(\frac{1}{|q_{9}|^{9}} + \frac{1}{|q_{9}|^{6}}) + \frac{|q_{9}|^{-9}}{cN} \quad (3.10)$$
$$\cdot (\beta_{4} + \sigma^{2} + \gamma_{3} + \gamma_{2,2}).$$

4. An Extension of Bounds to Von Mises Statistics. Applications

Assuming that the kernels ϕ and ϕ_1 are degenerate, consider the von Mises statistic

$$M = \frac{1}{2N} \sum_{1 \le i, j \le N} \phi(X_i, X_j) + \frac{1}{\sqrt{N}} \sum_{1 \le i \le N} \phi_1(X_i) . \quad (4.1)$$

Introducing the function $\psi(x) = (\phi(x, x) - \nu)/2$ with $\nu = E\phi(X, X)$, we can rewrite (4.1) as

$$M - \frac{\nu}{2} = T + \frac{1}{N} \sum_{1 \le i \le N} \psi(X_i)$$
(4.2)

In this section we shall extend the bounds to statistics of type (4.2), assuming that $E\psi(X) = 0$ and $\rho = E\psi^2$ (X) < ∞ .

Similarly to the case of T, we can represent the kernel ϕ (respectively, ϕ_1 and ψ) as a bilinear (respec-

Copyright © 2011 SciRes.

tively, linear) function, defined on \mathbb{R}^{∞} . However in this case we have to assume that \mathbb{R}^{∞} has an additional coordinate since ψ can be linearly independent of ϕ_1 and of the eigenfunctions of \mathbb{Q} . To fix notation, we shall assume that \mathbb{R}^{∞} consists of vectors $x = (x_{-1}, x_0, x_1, \cdots)$. Then all representations and results of Section 2 concerning ϕ and ϕ_1 still hold, and for ψ we have $\psi(x) = \langle b, x \rangle$ with some $b = (b_{-1}, b_0, b_1, \cdots)$ such that $\sum_{j \ge -1} b_j^2 < \infty$. Write $\psi_0(x) = \sum_{j \ge 0} b_j x_j$.

Introduce the function F_* of bounded variation (provided that $q_3 \neq 0$) with the Fourier-Stieltjes transform

$$\hat{F}_*(t) = \frac{it}{\sqrt{N}} E\psi(G)e\{tT_0\} = \frac{it}{\sqrt{N}} E\psi_0(G)e\{tT_0\}$$

and such that $F_*(-\infty) = 0$. Bellow we shall show that (see Lemma 9.3 [2])

$$\hat{F}_{*}(t) = \frac{(it)^{2}}{\sqrt{N}} E\psi(X) \big(\varphi_{1}(X) + \varphi(X,G)\big) e\{tT_{0}\} . (4.3)$$

Notice that $F_* = 0$ whenever $\phi_1 = 0$.

Write $H_1 = F_1 + F_*$, and let *H* denote the distribution function of M - v/2. Define

$$\delta_N = \sup_{x} |\delta_N(x)|, \ \delta_N(x) = H(x) - F_0(x) - H_1(x)$$

Theorem 3. 1) Assume that $q_{13} \neq 0$. Then we have

$$\delta_{N} \leq \frac{m_{0}(|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\})}{cN} + N^{-1}(\beta_{3}^{2} + \sigma^{2}\gamma_{2,2})(\frac{1}{|q_{13}|^{13}} + \frac{1}{|q_{13}|^{6}}) + \frac{|q_{9}|^{-9}}{cN} \quad (4.4)$$
$$\cdot (\beta_{4} + \sigma^{2} + \gamma_{3} + \gamma_{2,2} + \rho).$$

2) Assume that (1.8) is fulfilled and $q_9 \neq 0$. Then we have

$$\Delta_{N} \ll \frac{m_{0}(|q_{9}|^{-9} + max\{1, |q_{9}|^{-18}\})}{cN} + N^{-1}(\beta_{3}^{2} + \sigma^{2}\gamma_{2,2})(\frac{1}{|q_{9}|^{9}} + \frac{1}{|q_{9}|^{6}}) + \frac{|q_{9}|^{-9}}{cN} + \frac{(\beta_{4} + \sigma^{2} + \gamma_{3} + \gamma_{2,2} + \rho)}{cN}.$$

Proof. We shall use the following estimates. Write

$$\xi = \frac{t}{N} \sum_{1 \le j \le N} \psi(X_j), \quad \zeta = \frac{t}{N} \sum_{1 \le j \le N} \psi(G_j). \quad (4.5)$$

Expanding with remainder $\mathcal{O}(\xi)$, splitting the sum ξ in parts and conditioning, we have

$$\left| E \mathbf{e} \left\{ tT + \xi \right\} - E \mathbf{e} \left\{ tT \right\} - iE \xi \mathbf{e} \left\{ tT \right\} \right| \ll \chi N^{-1} t^2 \rho \ . \ (4.6)$$

Proceeding similarly to the proof of Lemma 8.2 from [2], we obtain

$$\left| \hat{F}_{*}(t) - iE\zeta e \left\{ R_{[1,N]}T \right\} \right| \ll \chi N^{-1} t^{2} (\rho + \sigma^{2}).$$
 (4.7)

Applying the Bergstrom-type identity

$$\mathbb{E}S = \mathbb{E}\mathcal{R}_{[1,N]}S + \sum_{j=1}^{N} \{\mathbb{E}\mathcal{R}_{[2,j]}S - \mathbb{E}\mathcal{R}_{[1,j]}S\},$$
$$\mathcal{R}_{[1,j]}S = S(G_1, \cdots, G_j, X_{j+1}, \cdots, X_N)$$

with $S = \xi e\{tT\}$ and proceeding similarly to the proof of Lemma 8.3 from [2], we get

$$\left| E\xi e\{tT\} - E\zeta e\{\mathcal{R}_{[1,N]}T\} \right|$$

$$\ll \chi N^{-1} (t^{2} + t^{4}) (\rho + \beta_{4} + \beta_{3}^{2} + \gamma_{3} + \gamma_{2,2} + \gamma_{2}\Gamma_{2,2}).$$

$$(4.8)$$

Arguments similar to the proof of Lemma 8.5 from [2] allow proving

$$\left|\hat{F}_{*}(t)\right| \ll N^{-1.2} \left|t\right| \rho^{1/2} \prod_{j \le 1} \left(1 + 2t^{2} q_{j}^{2} / 25\right)^{-1/4}, \quad (4.9)$$

and, for $s \ge 3$,

$$\int_{|t|\geq\lambda} \left| \hat{F}_{*}(t) \right| \frac{\mathrm{d}t}{|t|} \ll_{s} N^{-1/2} \rho^{1/2} \left| q_{s} \right|^{-s/2} \lambda^{1-s/2}, \quad \lambda > 0 \quad (4.10)$$

$$\int_{\mathrm{R}} \left| \hat{F}_{*}(t) \right| \frac{\mathrm{d}t}{|t|} \ll_{s} N^{-1/2} \rho^{1/2} \left| q_{s} \right|^{-1}. \quad (4.11)$$

The estimates (4.6)-(4.11) allow proceeding similarly to the proof of Theorem 2, using a lemma similar to Lemma 8. Proving such a lemma, we have to apply Lemma 8 to the distribution function H. This is possible since that statistic M - v/2 is a statistic of type (3.1). The estimates (4.10) and (4.11) allow application of the Fourier inversion to the function F_* . As a result, we arrive at

$$\int_{-Nt_{*}}^{Nt_{*}} \left| \hat{H}(t) - \hat{F}_{0}(t) - \hat{H}_{1}(t) \right| \frac{\mathrm{d}t}{|t|} \, .$$

Here, however, we have $\hat{H}(t) = Ee\{tT + \xi\}$, and

$$\begin{aligned} \left| \hat{H}(t) - \hat{F}_{0}(t) - \hat{H}_{1}(t) \right| &\leq \left| \hat{F}(t) - \hat{F}_{0}(t) - \hat{F}_{1}(t) \right| \\ &+ \left| Ee\{tT + \xi\} - Ee\{tT\} - iE\xi e\{tT\} \right| \\ &+ \left| \hat{F}_{*}(t) - iE\zeta e\{R_{[1,N]}T\} \right| \\ &+ \left| E\xi e\{tT\} - E\zeta e\{R_{[1,N]}T\} \right|. \end{aligned}$$

$$(4.12)$$

Therefore, using (4.6)-(4.8), we can proceed as in the proof of Lemma 11. As a final result we get bounds similar to those of Theorem 2, with the additional summand ρ .

5. References

 V. Ulyanov and F. Götze, "Uniform Approximations in the CLT for Balls in Euclidian Spaces," 00-034, SFB 343, University of Bielefeld, 2000, p. 26.

Copyright © 2011 SciRes.

http://www.math.uni-bielfeld.de/sfb343/preprints/pr00034. pdf.gz

- [2] V. Bentkus and F. Götze, "Optimal Bounds in Non-Gaussian Limit Theorems for U-Statistics," *The Annals of Probability*, Vol. 27, No.1, 1999, pp. 454-521. doi:10.1214/aop/1022677269
- [3] S. A. Bogatyrev, F. Götze and V. V. Ulyanov, "Non-Uniform Bounds for Short Asymptotic Expansions in the CLT for Balls in a Hilbert Space," *Journal of Multivari-*

ate Analysis, Vol. 97, 2006, pp. 2041-2056.

[4] T. A. Zubayraev, "Asymptotic Analysis for U-Statistics: Approximation Accuracy Estimation," *Publications of Junior Scientists of Faculty of Computational Mathematics and Cybernetics*, Moscow State University, Vol. 7, 2010, pp. 99-108.

http://smu.cs.msu.su/conferences/sbornik7/smu-sbornik-7 .pdf