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Abstract 
 
Let 1, , , , NX X X X  be i.i.d. random variables taking values in a measurable space ( ). Let ，X B 1 :  

 and 

X

  :  be measurable functions. Assume that 2 X   is symmetric, i.e.    , = ,x y y x , for 

any . Consider U-statistic ,x yX 1
1 < 1

)
N

1 1
= ( , ( )i j i

i j N i N

T X X X
N

 
   

  , assuming that 1( )X = 0 , 

( , )x X = 0  for all , xX 2 ( , ) <x X  , 2
1 ( ) <X  . We will provide bounds for = (sup x )N F x  

0 ( ) 1( )F x F  x , where F  is a distribution function of  and T 0F , 1F  are its limiting distribution func-

tion and Edgeworth correction respectively. Applications of these results are also provided for von Mises 
statistics case.  
 
Keywords: U-Statistics, Von Mises Statistics, Symmetric Statistics 

1. Introduction 
 
Consider the measurable space ( ,  ，X B ), with meas-
ure = ( ) X . Let 2= (L L ,  )，X B  denote the real 
Hilbert space of square integrable real functions. Let 

 denote the Hilbert-Schmidt operator asso-
ciated with the kernel 

2 2L L:
  and defined via  

( ) = ( , ) ( ) (d ) = ( , ) ( )f x x y f y y x X f  X  X , 

Let 1 2  be its eigenvalues. Without loss of gener-
ality we shall assume that . 

,q q 

{ :e j
1 2

Let  denote an orthonormal complete sys-
tem of eigenfunctions of  of the corresponding ei-
genvalues . Then 

| | | |q q 
1}j 

1 2,q q 


2 2 2

1 1

= ( , ) = , ( , ) = ( ) (j j j
j j

)jX X q x y q e x e  
 
  y  (1.1) 

since  is a Hilbert-Schmidt operator and the kernel 
  is degenerate. The series in (1.1) converges in  2L

2 2 ,( , ) X B

( , )
. Consider the subspace 1  2 2L L( , )  

2 2 , X B  generated by 1  and eigenfunctions 

je  corresponding to nonzero eigenvalues jq
= 0

2L

. Introduc-
ing, if necessary, an eigenvalues 0 0  ,we can 
assume that  is an orthonormal basis in 

:e e
0 1, ,e e  ( ,  

1) . Thus, we have  

1
0

( ) = ( )j j
j

x a e x


   in , 2L 2 2
2 1

0

= ( ) = j
j

X a 

 , (1.2) 

with 1= ( ) (j ja X e )X
( ( ))

 and , for all j. 
Therefore 0

( ) = 0je X
j je X   is an orthonormal system of ran-

dom variables with zero means. 
Hilbert space 2

   consists of 1 2= ( , )x x x   
 , such that  

2

0

| | = , , , = , | |<def j j
j

x x x x y x y x


     . 

Consider the random vector  

0 1 2= ( ( ), ( ), ( ), )defX e X e X e X  ,     (1.3) 

which takes values in  . Since 0( ( ))j je X   is a sys-
tem of mean zero uncorrelated random variables with 
variances 1, the random vector X  has mean zero and 

( , ) =i j ije ecov   and ij  is Kronecker’s symbol. Using 
(1.1) and (1.2), we can write  

( , ) = ,X X X X   , 1( ) = ,X a X   ,    (1.4) 

where we define 1 1 2 2  for = (0, , , )x q x q x  x   
and 0= ( )j ja a 

 . The equalities (1.4) allow us to 
assume that the measurable space X  is 


 . Let X  
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in
nce 

be a random vector taking values   with mean 
zero and covaria = ij

 
cov( , )i jX X   and that  

( , ) = ,X X X X  , 1( ) = ,X a X   .   (1.5) 

Without loss of generality we shall assume that the ker- 
nels ( , )x y  and 1( )x  are linear functions in each of 
their arguments ([2]). 

Introduce the definitions:  

1= | ( ) |ss X  , = | ( , ) |ss X X  , 2
2=  , 

, = ( {| ( , ) | | })s r
s r X X X   , 

and assume that  

2 <  , . 20 < < 

for the statistic  we can write  T

2 2
2

1
=

2

N
T

N
 

 . 

The statistic  is called degenerate since  en- 
sures that the quadratic part of the statistic is not asymp- 
totically negligible and therefore statistic  is not as- 
ymptotically normal. More precisely, the asymptotic 
distribution of  is non-Gaussian and is given by the 
distribution of the random variable  

T

T

2 > 0

T

2
0

1 0

1
= ( 1)

2 j j ja j
j j

T q  
 

  ,       (1.6) 

j  is a sequence of i.i.d. standard normal variables, 

0 1  denotes a sequence of square summable 
weights and 1 2| |  denote eigenvalues of the 
Hilbert-Schmidt operator, say  , associated with the 
kernel 

, ,a a
| |q q 

 . 
Consider the concentration functions of statistic   *T

* *( ; ) = { }sup
x

Q T x T x    , 0 

,X 

,    (1.7) 

* 1
1 <

2 1

= ( , ) ( ,

       ( , , ),

j k M
i k N

M N

T X X f

f X X


 










1 )X
 

where 1 1 1  is an arbitrary statistic de-
pending only on 1

= ( , , )Mf f X X
, , MX X , 2 2 1= ( , , )M N  is 

as well arbitrary but independent of 1

f f X
, ,

X 

MX X

, ,c c

 . Note 
that the class of statistics *  is slightly more general 
than the class of statistics T. We shall denote 1  
constants. If a constant depends on, say s, we shall write 

T


( ) = sc s c . 
Consider the distibution functions  

( ) = { }F x T  x , 0 0( ) = { }F x T x , 

= | ( ) |supN N
x

x  N, 0 ( 1( )( ) = ( ) )x F x  F x F x ,  

1( )F x  denotes an Edgeworth correction.The Edgeworth 
correction 1 1 1( ) = ( ; ( ), , )F x F x X    is defined as a 

function of bounded variation satisfying 1( ) = 0F   
and with the Fourier-Stieltjes transform given by 

3
3

1 1

( )ˆ ( ) = ( ( ) ( , )) {
6

it
0}t X X

N
  G e tTF . 

Let us notice that 1F  vanishes if 1 = 0  or if   
3 2

1 1 1

3

( ) = ( ) ( , ) = ( )

            = ( , ) = 0,

2 ( , )X X X x X

X x

   



  


X x
 (1.8) 

holds for all xX . Using the technique presented in 
this work we may obtain the result for approximation 
bound of order  for U-statistic distribution 
function which has an order 9

1(O N  )
| |q   (see Theorem 3, 2) 

below) or 13| |q   (see Theorem 3, 1) below) with re-
spect to dependence on first nine or thirteen eigenvalues 
of operator , respectively. 
 
2. Auxiliary Results 
 
Consider the vector 0 1= ( , )G     with values in  , 
where 0 1, ,   standard normal variables. Let us for-
mulate lemma in which equalities for the moments of 
determinants of random matrices consisting of the scalar 
products such as ,i jG G 

,i jG G

 are obtained. Analogue of 
this lemma is proved in [1] for matrices consisting of the 
scalar products such as  

, , , ,

 where G-Gaussian  
 vector. 

(0,
2 ) 
Lemma 1. Let 1 1 ,s sGG G G   be random ele-

ments in a Hilbert space H  such that 0 1iG = ( , )   , 
where 0 1, ,  


= (W d

= ( ,i jG G

 standard normal variables. Let 1| |  
 be the eigenvalues of Hilbert-Schmidt opera-

tor . , where   , 

q

, =1= { ( )}s
ij i jG a G

2| |q


( )ija G

2)et = (
) = ,i jG G

)
    . 

Then 
2 2

1
1 < < <1

= ( !) ( )i is
i is

W s q q
 



 , . 2 1/2( ) ( )W c s W 

Nondegeneracy condition 
We shall assume that random vector Z , a kernel  , 

parameters  and  satisfy the nondegeneracy 
condition if 

1, ,c c s p

{ ( ) > }W Z p  , , 2 2
1 9= q q 

1{| ( , ) | }i jZ Z c c  , , ,    (2.1) 1 i j  s

where 2( ) = ( )W Z detA , , =1= { } , = ( , )s
ij i j ij i jA a a Z Z ,  

iZ , jZ  are independent copies of Z . 

Here parameter  is small and parameter 1  is close 
to 1. Let 

p
)p

c
( ,  denote the set of all vectors Z  sat-

isfying the nondegeneracy condition. 
Notice that  satisfies the nondegeneracy condition. 

Let vectors  and 
G

G X  have equal means and covari- 
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ances, then  

1( ) = ( , ) = 0G G x  
( ) ( , ) =G G x

, , 2 2
1 1( ) = ( )G X  

1 1( ) ( , )X X x   
( , ) ( , )X x X y


( , ) ( , ) =G x G y

, 

    . 

The following Lemma 2 means that increase of  
yields equivalence of nondegeneracy conditions fulfill-
ments for sum and Gaussian vector.  

n

Lemma 2. Let 2 2
1 9(4 ,1 )G q q  p  be a Gaussian 

random vector and 2 2
1 9{ ( ) > 4 } 1W G q q p 

3 1 3 1
1 9 2,3/2(| |p q q p

. Then 
for 1 9 3| |sm c q q )      

2 2
1 9( ,1 2 )q p

 we 
have mS q  , where 1/2=mS m

1(X   
)mX  is random sum.  

Further, it is necessary to bound the characteristic 
function of the statistic . That will be done in Lem-
mas 3, 4 and Theorem 1. 

*T

The following Lemma 3 has a similar proof to Lemma 
6.5 from [2]. 

By 1 2, ,     we shall denote independent copies of 
a symmetric random variable   with nonnegative char- 
acteristic function and such that  

21 2  , {| | 2} = 1  .       (2.2) 

Lemma 3. Let  and . Assume that vec-
tor 

s
2

1 9 ) , )q
L 

((Y q  p  takes values in . Write  R

=1

=
sL

j j
j

Y  , 
=1

=
sL

j j
j

Y  , , = [ / 4]q pL

where jY  and jY  are independent copies of Y. Then  

{ ( , } ( )( ) { , }supd
de t c s pL e t U V      


   ,  

, , t 0d 

where   denotes the supremum over all sup s s  non- 
random matrices  such that ( ) .  2 2>det q 2

1 9q
U and V denote independent vectors in s  which are 

sums of n independent copies of 1= ( , ), sW   .  
In the following lemma the bound from above for the 

characteristic function  is received. This 
results was proved in [1]. The received estimation con-
tains the determinant of matrix in right-hand side of ine-
quality. This fact allows to use eigenvalues of operator 

 for the estimation of characteristic function. 

{ ,e t U V  }


Lemma 4. Let A be a nondegenerate s s  matrix. 

Let sX   denote a random vector with covariance 
. Assume that there exists a constant C sc  such that  

{| | } = 1sX c , | | sA c , 1| | sC  c .    (2.3) 

Let and denote independent random vectors which 
are sums of n independent copies of 

U V
X . Then  

1 2| { , } | ( ) | | ( ; )se t AU V c s detA t N     for | | , 

where 

> 0t

( ; ) = 1 | | | |t N t N t  for | | . > 0t

Using our Lemmas 3 and 4 we may obtain a bound for 
characteristic function for statistic . *

Theorem 1. Let 
T

m
1 )X 

. Assume that the sum  

m
1/2 2(2 ) ( (( ) ,T m X q q    1 9 )p . Then, for 

any statistic  we have  *T

2
* 9

9

1
| { } | ( ;

| |
s

se tT tm pM
q

 

)

)m .  

The proof of this theorem is similar to proof of Theorem 
6.2 in [2]. 

Write : 
9

9( ) =| { } |t e tT  .            (2.4) 

In following lemma a multiplicative inequality for 
characteristic function of  is given. This inequality 
yields the desired bound  for an integral of the 
characteristic function of a U-statistic. Similar result was 
proved in Lemma 7.1 in [2]  

9T
(N 1

Lemma 5. Let  and . Assume that  0d 
(k kX 

s
2

9 ) ,q1 =
=1 1(2 ) ( )k mY m q p   . Then there exist 

constants  and c s  such that the event  1( ,c s d 2 ( ,) )d

1 9
9

1
= { ( ) ( ) ( , ) ( ;m p )}

| |
sD t t c s d M m

q v
       , 

(2.5) 

satisfies  

2{ } 1 ( , )( ) dD c s d pM m   .      (2.6) 

For 0A t ,  define the integrals  1 0t 

1
0

1

ˆ= | ( ) | d
t

t
I t t


 , 1 | |0

dˆ= | ( ) |
| |t t A

t
I t

t 
 , 

where  denotes the Fourier-Stieltjes  ˆ = { }d (e tx x  )

transform of the distribution function *( ) = { }x T x  . 
The estimation for these integrals is received in follow-
ing lemma, which has a proof similar to Lemma 3.3 in 
[2]. 

Lemma 6. Let m
(X  

. Assume that the random vec-
tor 1/2 2

1 1= (2 ) ) (( ) , )mY m X q q p    9  and 
s  9 . Let 

=
pM

k
m

, 1 2/0
0

( )
= sc s

t k
m

  , 1/21
1

( )
=

c s
t k

m
 , 

32 ( )( ) c sc s
A

m m
  ,  

where , ( )jc s 0 j 3   are some positive constants. 
Then 

9 1
0 9| | ( )sI q pM  , . 

(2.7) 

18 1
1 9max{1,| | } ( )sI q m  pM
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3. Approximation Accuracy Estimation 
 
For  and functions , introduce the statistic  r  if

( )

1 < 1

1
= ( , )r

i j i i
i j N i N

T Z Z
N


   

  ( )f Z     (3.1) 

where  

=j jZ X  for 1 , j r  =j jZ G  for <r j N . 

Write  and put  = [( 2) / 20]l N 

1 2( ) = ( , , , ( )) = ( ) ( )t t N X t     t

1

j

/

,   (3.2) 

where 
1

1
1 <

( ) = | { ( , ) ( , , )} |sup j k l
L j k l

t e tN X X L X X 

 

  , 

(3.3) 
1

2 1
1 <

( ) = | { ( , ) ( , , )} |sup j k l
L j k l

t e tN G G L G G 

 

  , 

(3.4) 

where supremum is taken over all linear statistics , 
that is, over all functions which can be represented as 

 with some functions  
. 

L

, ,1 =1( , , ) = ( )l
l j jL x x f x

lf
1f

Consider the following Lemma 7, which has a similar 
proof as Lemma 4.2 in [2].  

Lemma 7. Let ,  and  m 9s  1
0 = (t m pN

1 2/) sm  

(
. Assume that the random vector  

1

1/2= (2 )Y m 

)mX X
>pN

  

( )r

  satisfies the nondegeneracy condition. 
Then, for , *  the distribution func-
tion 

m 1m t
0t 

F  of  satisfies  ( )rT

*( ) ( )

*

1 dˆ( ) = . . { } ( )
2 2π

Ntr r

Nt

i t
F x V P e xt F t

t
  R , (3.5) 

where 9 18
9 9| | (| | {1,| | }) ( )sR q max q m p  N . 

The Edgeworth correction 1 1 1( ) = ( ; ( ), , )F x F x X    
is defined as a function of bounded variation satisfying 

1  and with the Fourier-Stieltjes transform 
given by 

( ) = 0F 

3
3

1 1

( )ˆ ( ) = ( ( ) ( , )) { }
6

it
0F t X X G

N
  e tT

|

.   (3.6) 

Lemma 8. Assume that the nondegeneracy condition 
is fulfilled. 

1) Let  and  13s 
3 )

3 1 3
0 1 9 1 9| | (|m q q p q q   

1
2,3/2p    . Then 

9 18 
0 9 9

9
1 2 2 9

3 2,2 6 6

2 2 2 2
4 3 3 3 2,2 2,2

(| | {1,| | })

| |1 1
         ( )( )

| | | |

         ( )

N s

s
s s

m q max q

pN

q
N

q q p N
  

        







   

      



  (3.7) 

2) Assume that the condition (1.8) holds and that 
. Then  9s 

9 18
0 9 9

9
1 2 2 9

3 2,2 6 4

2
4 3 2,2

(| | {1,| | })

| |1 1
           ( )( )

| | | |

            ( ).

N s

s
s s

m q max q

pN

q
N

q q p
  

   

 

N







   

   



 (3.8) 

To prove this lemma we need to make the same steps 
as in Lemma 4.1 in [2] replacing Theorem 6.2 by Theo-
rem 1. 

Now we can formulate a following Theorem 2, where 
bounds for N  are obtained. This theorem were proved 
in [4]: 

Theorem 2. 1) Let   13s 
3 1 3 1

0 1 9 1 9 2,3/2 3| | (| |m q q p q q p )       , . 
Then 

0 ( )p c s

9 18
0 9 9

9
1 2 2 9

3 2,2 13 6
13 13

2 2 2 2
4 3 3 3 2,2 2,2

(| | {1,| | })

| |1 1
        ( )( )

| | | |

        ( ),

N

m q max q

cN

q
N

cNq q
  

        

 







   

      



 (3.9) 

2) Assume that (1.8) holds and . Then  9s 
9 18

0 9 9

9
1 2 2 9

3 2,2 9 6
9 9

2
4 3 2,2

(| | {1,| | })

| |1 1
         ( )( )

| | | |

          ( ).

N

m q max q

cN

q
N

cNq q
  

   

 







   

   



 (3.10) 

 
4. An Extension of Bounds to Von Mises 

Statistics. Applications 
 
Assuming that the kernels   and 1  are degenerate, 
consider the von Mises statistic 

1
1< , < 1

1 1
= ( , )

2 i j i
i j N i N

( )M X X X
N N

 
 

  .  (4.1) 

Introducing the function  with ( ) = ( , ) / 2x x x   
)= ( ,E X X  , we can rewrite (4.1) as 

1

1
=

2 i
i N

( )M T
N

 
 

   X        (4.2) 

In this section we shall extend the bounds to statistics 
of type (4.2), assuming that ( ) = 0E X  and 2= E   
( ) <X  . 

Similarly to the case of , we can represent the ker-
nel 

T
  (respectively, 1  and  ) as a bilinear (respec-
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tively, linear) function, defined on . However in this 
case we have to assume that  has an additional co-
ordinate since 

R

R

  can be linearly independent of 1  
and of the eigenfunctions of . To fix notation, we 
shall assume that  consists of vectors 1 0


R = ( , ,x x x  

1 . Then all representations and results of Section 2 
concerning 

, )x 
  and 1  still hold, and for   we have 

( ) = ,x b x
1 b

 with some 1  such that 
. Write 

1 0, ,b= (b b ,b 
=

)
2 <j j  0 0( ) j j jx b x  . 

Introduce the function *F  of bounded variation (pro-
vided that ) with the Fourier-Stieltjes transform 3q 0

* 0 0 ) { }0(
itˆ ( ) = ( ) { } =

it
F t E

F

 

G e

= 0

tT E G e tT
N N

   

and such that * . Bellow we shall show that 
(see Lemma 9.3 [2]) 

( )

 
2

* 1) , 0)
itˆ ( ) = ( ( ) ( { }F t E
N

= 0

X  X 

= 0

X G e tT

1

. (4.3) 

Notice that  whenever *F  . 
Write 1 1 *=H F  F , and let H  denote the distribu-

tion function of / 2M  . Define 

= ( )supN N
x

x  , 0 1) ( )( )N = ( ) (x H x F x H x   . 

Theorem 3. 1) Assume that . Then we have 13q 0
9 1

0 9 9

9
1 2

,2
13

2,2

(| | 1,| |

|
( )( )

| |

(

m q q

N

  

  8

6
13

1 1

| |q q
2

3 2

4 3

{max

cN





9| q

cN13

})

).2

         

         

N




    



 



 

0

 (4.4) 

2) Assume that (1.8) is fulfilled and . Then we 
have  

9q

9 1
9

2

2,2

|

| |

)

q  8

9
2 9

3 2, 9 6
9 9

(| {1,|

| |
   )(

| |

   (

m q max

cN

q
N

cN


 

0 9

1 2

2

|

(

 4 3

 

})

1 1

.

q q



       

       

N

)


  



 

 





  

 

Proof. We shall use the following estimates. Write 

1

= ( )j
j N

t
X

N
 

 
 , 

1

= ( )j
j N

t

N


 


( )

G .   (4.5) 

Expanding with remainder  , splitting the sum 
  in parts and conditioning , we have 

      1 2N te eE eE tT tT iE tT       . (4.6) 

Proceeding similarly to the proof of Lemma 8.2 from 
[2], we obtain 

  1 2 2
* [e R 1
ˆ ( ) ( )NF t T N t, ]iE    

}S

 .  (4.7) 

Applying the Bergstrom-type identity  

[1, ] =1 [2, ] [1, ]= {N
N j j jS S S        , 

[1, ] 1 1= ( , , , , , )j j j NS S G G X X    

with  = eS t T  and proceeding similarly to the proof 

of Lemma 8.3 from [2], we get 

   
 

[1, ]

1 2 4 2
4 3 3 2,2 2 2,2

e e

( )

NE tT E T

N t t

 

      



      



.
 (4.8) 

Arguments similar to the proof of Lemma 8.5 from [2] 
allow proving 

 1/41.2 1/2 2 2
*

1

ˆ ( ) 1 2 / 25j
j

F t N t t q




  ,  (4.9) 

and, for , 3s 

/ 21/2 1/2 1 /2
*

dˆ ( )
s s

s st

t
F t N q

t
 

   > 0,   (4.10) 

11/2 1/2
*R

dˆ ( ) s

t
sF t N q

t
   .    (4.11) 

The estimates (4.6)-(4.11) allow proceeding similarly 
to the proof of Theorem 2, using a lemma similar to 
Lemma 8. Proving such a lemma, we have to apply 
Lemma 8 to the distribution function H . This is possi-
ble since that statistic / 2M   is a statistic of type 
(3.1). The estimates (4.10) and (4.11) allow application 
of the Fourier inversion to the function *F . As a result, 
we arrive at 

*
0 1

*

dˆ ˆ ˆ( ) ( ) ( )
Nt

Nt

t
H t F t H t

t
  . 

Here, however, we have ˆ ( ) = eH t E tT  , and 

     

 
   

0 1 0 1

* [1, ]

[1, ]

ˆ ˆ ˆ ˆ ˆ ˆ ( ) ( ) ( ) ( ) ( ) ( )

e e e

ˆ ( ) e

e e .

N

N

H t F t H t F t F t F t

E tT E tT iE tT

F t iE R T

E tT E R T

 



 

    

   

 

 

 (4.12) 

Therefore, using (4.6)-(4.8), we can proceed as in the 
proof of Lemma 11. As a final result we get bounds 
similar to those of Theorem 2, with the additional sum-
mand  .  
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