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Abstract

Let X,X,X,,---,X, be ii.d. random variables taking values in a measurable space (X, B). Let ¢: X

—R and ¢: X* >R be measurable functions. Assume that ¢ is symmetric, i.e. ¢(X,y)=¢(y,x), for

1

any X,yeX. Consider U-statistic T=i D> XL X)) +—= > #(X;), assuming that E¢(X)=0,

I<i<j<N

NIRE=Y

Ep(x,X)=0 forall xeX, Eg*(x,X)<oo, Eg}(X)<ow. We will provide bounds for A =supX|F(X)

—F, () -FR(X)

, where F is a distribution function of T and F;, F are its limiting distribution func-

tion and Edgeworth correction respectively. Applications of these results are also provided for von Mises

statistics case.
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1. Introduction

Consider the measurable space (X, B, x), with meas-
ure u=L(X). Let L=L1*(X, B, u) denote the real
Hilbert space of square integrable real functions. Let
Q:L* - I* denote the Hilbert-Schmidt operator asso-
ciated with the kernel ¢ and defined via

Qf () = [ g6 V) F(y)ady) = Bg(x, X) f (X)),

Let q,,0,:-- be its eigenvalues. Without loss of gener-
ality we shall assume that |q, [/, [>---.

Let {e;:j>1} denote an orthonormal complete sys-
tem of eigenfunctions of Q of the corresponding ei-
genvalues (;,q,---. Then

o’ =E¢’ (X, X) =205, y) = D> a;e;(xe;(y) (1.1)
21 jz1

since Q is a Hilbert-Schmidt operator and the kernel
¢ is degenerate. The series in (1.1) converges in L°
(X*, 8, ux p) . Consider the subspace L’(4,¢)c L’
(X*, B, ux ) generated by ¢ and eigenfunctions
e; corresponding to nonzero eigenvalues ¢; . Introduc-
ing, if necessary, an eigenvalues ¢,:Qe, =0 ,we can
assume that €,,€,--- is an orthonormal basis in L (9,

Copyright © 2011 SciRes.

@) . Thus, we have
g(x)=Dae(x) in L, B =E4(X)=>a;,(12)

>0 >0
with a; =Eg¢(X)e;(X) and Ee;(X)=0, for all j.
Therefore (€;(X));, is an orthonormal system of ran-
dom variables with zero means.

Hilbert space ¢, c R™ consists of X=(X,X,::)€
R”, such that

| X |2:def <X9 X>’<Xa Y> = ijyja | X |< 0.

>0
Consider the random vector
X  def (eo(x)ael(x):ez(x):”’)a (13)

which takes values in R™. Since (g;(X))5, is a sys-
tem of mean zero uncorrelated random variables with
variances 1, the random vector X has mean zero and
cov(e,e;)=0; and J; is Kronecker’s symbol. Using
(1.1) and (1.2), we can write

P(X, X)=(QX,X), ¢(X)=(@,X), (14

where we define Qx=1(0,q,%,0,%,,---) for xeR”
and a=(a;);,, € R”. The equalities (1.4) allow us to
assume that the measurable space X is R”. Let X
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be a random vector taking values in R* with mean
zero and covariance cov(X;,X;)=4; and that

PX, X)=(QX, X), 4(X)=(@,X). (L5

Without loss of generality we shall assume that the ker-
nels #(x,y) and ¢(X) are linear functions in each of
their arguments ([2]).

Introduce the definitions:

B =El4O), 7, =Blg(X,X)[, o’ =7,,
Ver = BE SO X) FIXD),
and assume that
B, <o, 0<o’ <o,

for the statistic T we can write
N -1
2N

The statistic T is called degenerate since o >0 en-
sures that the quadratic part of the statistic is not asymp-
totically negligible and therefore statistic T is not as-
ymptotically normal. More precisely, the asymptotic
distribution of T is non-Gaussian and is given by the
distribution of the random variable

ET? =4, + o’

=200 -D+Yam. (16
25 j20

n; is a sequence of i.i.d. standard normal variables,
a,,a,,~-- denotes a sequence of square summable
weights and |q, [2|d, [>--- denote eigenvalues of the
Hilbert-Schmidt operator, say @Q, associated with the
kernel ¢ .

Consider the concentration functions of statistic T,

QM A)=supP{X<T,. <x+ A4}, 120, (1.7)

T= Y X, X+ (X, Xy)

1<i<k<N

+ fZ(xMH"”:XN))

where f, = f (X,,---,X,,) is an arbitrary statistic de-
pending only on X,,---,X,,, f,="1,(Xy., - Xy) is
as well arbitrary but independent of X,,---, X}, . Note
that the class of statistics T, is slightly more general
than the class of statistics T. We shall denote c,cC,,--
constants. If a constant depends on, say s, we shall write
c(s) =c;.
Consider the distibution functions

FOO)=P{T <x}, F(x)=P{T, <xj},
Ay =sup|Ay(X) |, Ay(X)=FX)-Fx)-FK(X)),

F,(x) denotes an Edgeworth correction.The Edgeworth
correction F(X)=F (x;£(X),4,4) is defined as a
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function of bounded variation satisfying F (—o0)=0
and with the Fourier-Stieltjes transform given by

F ()= 6(% E(4(X)+4(X,G))’e{tT,}.
Let us notice that F vanishesif ¢ =0 orif
Ed’ (X)=Eg (X)$(X, %) = Ed (X)¢* (X, X)
=E4 (X, x) =0,

(1.8)

holds for all xeX. Using the technique presented in
this work we may obtain the result for approximation
bound of order O(N™') for U-statistic distribution
function which has an order |q, [ (see Theorem 3, 2)
below) or |q,;|* (see Theorem 3, 1) below) with re-
spect to dependence on first nine or thirteen eigenvalues
of operator Q , respectively.

2. Auxiliary Results

Consider the vector G = (,,7,---) with values in R”,
where 7),,7,, - standard normal variables. Let us for-
mulate lemma in which equalities for the moments of
determinants of random matrices consisting of the scalar
products such as (QG;,G;) are obtained. Analogue of
this lemma is proved in [1] for matrices consisting of the
scalar products such as (G;,G;) where G-Gaussian (0,
o’l) vector.

Lemma 1. Let G,,---,G,,G/,---,G, be random ele-
ments in a Hilbert space H such that G, = (7,,7,--*) ,
where 7,,7,,--- standard normal variables. Let |q, |
2| g, [>--- be the eigenvalues of Hilbert-Schmidt opera-
tor Q. W =(detA)’, where A=A(G)={a;(G)}; .,
3,(G)=4(G,,G}) =(QG,,G,)

Then

EW =(sl)* >

1<iy <...<ig <o

(@, ---G,)" (BW*)" <c(s)EW .
Nondegeneracy condition
We shall assume that random vector Z , a kernel ¢,
parameters C,C,,S and p satisfy the nondegeneracy
condition if

HJ){|¢(Ziaz_j)|sc}zcla 1S|9 jSS, (21)

where W(Z_) = (detA)’, A= {8; }is,jzlaaij =o(Z, ’Z_j )s
z,27 j are independent copies of Z .
Here parameter p is small and parameter C, is close
to 1. Let A(5,p) denote the set of all vectors Z sat-
isfying the nondegeneracy condition.

Notice that G satisfies the nondegeneracy condition.
Let vectors G and X have equal means and covari-
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ances, then
E¢(G)=E¢G,x)=0, E4’(G)=Eg (X),
E¢ (G)4(G,x) = Ed (X)(X,X),
E¢(G,\)9(G, y) = Eg(X,X)4(X,Y).

The following Lemma 2 means that increase of n
yields equivalence of nondegeneracy conditions fulfill-
ments for sum and Gaussian vector.

Lemma 2. Let G e N (4q,---q,,1-p) be a Gaussian
random vector and P{W(G)>4q;---q;}>1-p. Then
for m =G, |q, -y |73 p71(| g -G |73 p717/2,3/2 +7/3) we
have S, e N(q’---q2,1-2p), where S =m"2(X, +
-+ X,,) is random sum.

Further, it is necessary to bound the characteristic
function of the statistic T.. That will be done in Lem-
mas 3, 4 and Theorem 1.

The following Lemma 3 has a similar proof to Lemma
6.5 from [2].

By r,7,,7,--- we shall denote independent copies of
a symmetric random variable 7 with nonnegative char-
acteristic function and such that

I<Er* <2, P{r|<2}=1. (2.2)

Lemma 3. Let seN and LeZ,. Assume that vec-
tor Y e N((q,---0,)*, p) takesvaluesin R™.Write

sL _ sL__
A=ZTij , A=ZTij , g=[pL/4],
=1 =1

where YJ. and Y.

; are independent copies of Y. Then

Eeftg(A, A} < c,(s)(pL)™ +supEe{t(AU,V)},

teR, d=0,

where sup, denotes the supremum over all sxs non-
random matrices A such that (detA)*>gq;---q; .

U and V denote independent vectors in R® which are
sums of n independent copies of W = (7,,--,7,).

In the following lemma the bound from above for the
characteristic function Ee{t(AU,V)} is received. This
results was proved in [1]. The received estimation con-
tains the determinant of matrix in right-hand side of ine-
quality. This fact allows to use eigenvalues of operator
@ for the estimation of characteristic function.

Lemma 4. Let A be a nondegenerate sxs matrix.
Let X eR® denote a random vector with covariance
C . Assume that there exists a constant c, such that

P{X|<c}=1, |Al<c,, |C ke,  (23)

Let U and V denote independent random vectors which
are sums of n independent copies of X . Then

| Ee{t(AU,V)} [< c(s) | detA[" M*(t;N) for [t[>0,
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where M(t;N)=1/{/[t [N +.[[t| for [t}>0.
Using our Lemmas 3 and 4 we may obtain a bound for
characteristic function for statistic T, .
Theorem 1. Let m e N . Assume that the sum
T=2m) (X, +-+X,)e N((q,--0,)*, p) . Then, for
any statistic T. we have

1

| BeftT.} < M (tm; pM /m) .

gy
The proof of this theorem is similar to proof of Theorem
6.2 in [2].
Write :
w () = Ee{tT’} . 24

In following lemma a multiplicative inequality for
characteristic function of T® is given. This inequality
yields the desired bound O(N™') for an integral of the
characteristic function of a U-statistic. Similar result was
proved in Lemma 7.1 in [2]

Lemmab. Let d >0 and seN.Assume that
Y=2m) ' T X, e N((q,---0,)%, p) . Then there exist
constants c,(s,d) and c,(s,d) such that the event

1

D={wt-ywt+y)<c(s.d) M (ym; pM /m)}

GV
2.5)
satisfies
P{D} >1—c,(s,d)(pM /m) ™. (2.6)
For A>t,, t >0 define the integrals
=" 1Pl 1, = jlowwil(tn%,

where W :IRe{tX}d‘P(X) denotes the Fourier-Stieltjes

transform of the distribution function W(x)=P{T, <x}.
The estimation for these integrals is received in follow-
ing lemma, which has a proof similar to Lemma 3.3 in
[2].

Lemma 6. Let me N. Assume that the random vec-
tor Y =2m)"*(X,+...+ X, )e N((q,---¢,)*, p) and
$>9. Let

k = ﬂ , b= ) (s) K1+ ot = CI(S) k-2 ,
m m
¢ (9)

B

&9 _ p
m  m

where c;(s), 0< j<3 aresome positive constants.
Then

ly <10, [ (PM)™, 1, < max{L,| gy ["*}m(pM)~".
2.7)
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3. Approximation Accuracy Estimation

For reZ, andfunctions f;,introduce the statistic
1
TO=— Z #Z,Z))+ Z fi(Z)) (3.1
N 1<i<j<N 1<i<N
where
Z;=X; for 1<j<r, Z;=G; for r<j<N.
Write | =[(N—2)/20] and put
k) =xt,N,5, LX) =x,O)+x,(t), (3.2)

where
Kl(t)=s13p|]Ee{tN’1 2 A X+ LK XD
1< j<k<l (33)
Kz (t) = Slﬂp | Ee{tN - <Zk<|¢(Gj sGk)J’_ L(Gls' : '3G| )} |9
o (3.4

where supremum is taken over all linear statistics L,
that is, over all functions which can be represented as
L(Xl,-~~,xl)=2'j:1 f;(x;) with some functions f,---,
f,.
Consider the following Lemma 7, which has a similar
proof as Lemma 4.2 in [2].

Lemma 7. Let meN, s>9 and t,=m~"'(pN/
m)~*¥* . Assume that the random vector Y =(2m)™"?
(X, +---+X,) satisfies the nondegeneracy condition.
Then, for pN>m, m™' >t >t, the distribution func-
tion F” of T satisfies

I i Nte A dt
FOX)==+—V.P| e{-xt}F”t)—+R, 3.5
(0 =2+ VP extFOO=+R, (39)

where |RI< (|q [ +max{L,|d, |"*})m/(pN) .

The Edgeworth correction F (x)=F (x;£(X),4.9)
is defined as a function of bounded variation satisfying
F,(—©0)=0 and with the Fourier-Stieltjes transform
given by
(it)’
6N

Lemma 8. Assume that the nondegeneracy condition
is fulfilled.

11) Let s=13 and m, X| (IR |_3 p_l(‘ GG |_3
P 72312 +7,). Then
my( gy [ +max{l,[qy ["*})

pN

F(t)= E(4(X)+¢(X,G)eltTy}.  (3.6)

Ay <,

-9

1 N 1 |q96
|0 | p°N

'(ﬂ4+ﬁ32+02+7’3+O'27’3+72,2+0272,2)

+NT(B + 0y, q §)+ 3.7

g [
S
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2) Assume that the condition (1.8) holds and that
$>9.Then

my (19, [ +max{L,[ g, | "*})

Ay < oN

|—9

+N%ﬁ+#n»(l+-”aJ% (3.8)

19, [ |a, PN
'(ﬂ4+0'2 +7; +72,2)-

To prove this lemma we need to make the same steps
as in Lemma 4.1 in [2] replacing Theorem 6.2 by Theo-
rem 1.

Now we can formulate a following Theorem 2, where
bounds for A, are obtained. This theorem were proved
in [4]:

Theorem 2. 1) Let s>13
My =0y [ P (|GG [7 P 7230 +73) 5 Py < C(S).
Then

A, < my (|G, |”* +max{L,| g, ["*})
cN
B 1 1 lg, |
+NT (B +0%y,,)( )+—— (3.9)
’ Mo ® las 7 N
'(ﬂ4+ﬂ32+02+7/3 +O_273+7/2,2+O'27/2,z)a
2) Assume that (1.8) holds and s>9. Then
A, < my (|G, |”” +max{L,| g, |"*})
cN
ENT(B 4oty Ly 1% N (3.10)
SR T T A )

'(ﬂ4+0'2+73+72,z)-

4. An Extension of Bounds to Von Mises
Statistics. Applications

Assuming that the kernels ¢ and ¢ are degenerate,
consider the von Mises statistic

1 1
M=—= > (X X)+—= 3 h(X). 4D
2N 45N N 1&i=n
Introducing the function y(X)=(¢(x,x)—v)/2 with
v =E¢(X, X), we can rewrite (4.1) as

M-YoTil 3 w(X,) 4.2)
2 1<i<N
In this section we shall extend the bounds to statistics
of type (4.2), assuming that Ey(X)=0 and p=Ey’
(X)<w.
Similarly to the case of T, we can represent the ker-
nel ¢ (respectively, ¢ and y ) as a bilinear (respec-
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tively, linear) function, defined on R”. However in this
case we have to assume that R” has an additional co-
ordinate since y can be linearly independent of ¢
and of the eigenfunctions of Q. To fix notation, we
shall assume that R” consists of vectors X =(X_,,X,,
X;,---). Then all representations and results of Section 2
concerning ¢ and ¢ still hold, and for y we have
w(x)=(b,x) with some b=(b_,by,b, ) such that
Y. by <o Write w,(X)=X,.,b;X;.
Introduce the function F. of bounded variation (pro-
vided that ¢, # 0) with the Fourier-Stieltjes transform
it

F(t) = N Ey(G)eftT,} =

it

\/W By, (G)e{tT,}

and such that F.(—0)=0. Bellow we shall show that
(see Lemma 9.3 [2])

(it)’

F.(t) = N Ev (X) (@ (X)+0(X,G))eitTy} . (4.3)

Notice that F, =0 whenever ¢ =0.
Write H,=F +F., and let H denote the distribu-
tion function of M —v /2. Define

Sy = sup|5N (X)| s On(X)=HX)—F(x)—H(x).

Theorem 3. 1) Assume that q,, # 0. Then we have

s <Ml I +max{1,| g, ["*})
N cN
. 1 1 g [
+N(B+7%y,,) )+ 4.4
’ Mo ® oz N

'(ﬁ4+o'2+73+72,2+,0)~

2) Assume that (1.8) is fulfilled and q, = 0. Then we
have

n, < MG [ rmaxi1 6, [*))
cN
_ 1 1 -
NS 40ty )t |6)+'Q9'

g, " 19 cN

(B, +o’ 73172 +p).
Proof. We shall use the following estimates. Write
t t
F== 2 w(X)), == D w(G). 45)
N 1<j<N N 1<j<N

Expanding with remainder O(&), splitting the sum
& in parts and conditioning , we have

|Ee{tT + &} —Ee{tT} —iE&e{tT}| < yN't*p . (4.6)

Proceeding similarly to the proof of Lemma 8.2 from
[2], we obtain

Fl(t)_iEge{RU,N]T}‘ < N (p+o?). 47)
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Applying the Bergstrom-type identity
ES =ER, y,S +ZJN:1 {ER, ;S —ER,, 1S},
RS =S(Gy, .G, X5 Xy)
with S =~C%e {tT} and proceeding similarly to the proof

of Lemma 8.3 from [2], we get
‘Eée{tT}— Ege{RM]T}‘

(4.8)
< N (C+)(o+ B+ B3 + 73+ 722 +7T5).

Arguments similar to the proof of Lemma 8.5 from [2]
allow proving

RO < N2 p [T (1+260 125) ", 49)

j<1

and, for s>3,

.[\t\z/l

-s/2

AT >0 (4.10)

If*(t)‘ﬁ—T < N72p'? |qs|

fi

The estimates (4.6)-(4.11) allow proceeding similarly
to the proof of Theorem 2, using a lemma similar to
Lemma 8. Proving such a lemma, we have to apply
Lemma 8 to the distribution function H . This is possi-
ble since that statistic M —v/2 is a statistic of type
(3.1). The estimates (4.10) and (4.11) allow application
of the Fourier inversion to the function F,. As a result,
we arrive at

F. (t)‘ﬁ—? < N2p'? |qs|’l . 41D

JA Nty
— Nt

Here, however, we have H (t) = Ee {tT +&}, and

L . d
H(t)—&(t)—HAt)\ﬁ.

HO-FO-H,0/<[FO-FRO-FR
+|Ee{tT + &} — Ee{tT} —iE&e{tT}|
If*(t)—iE;’e{R[l)N]T}‘
+‘E§e{tT}—E§e{RﬂyN]T}‘.

Therefore, using (4.6)-(4.8), we can proceed as in the
proof of Lemma 11. As a final result we get bounds
similar to those of Theorem 2, with the additional sum-
mand p .

(4.12)
+

5. References

[11 V. Ulyanov and F. Goétze, “Uniform Approximations in
the CLT for Balls in Euclidian Spaces,” 00-034, SFB 343,
University of Bielefeld, 2000, p. 26.

0JS



144

T. ZUBAYRAEV

http://www.math.uni-bielfeld.de/stb343/preprints/pr00034.
pdf.gz

V. Bentkus and F. Gotze, “Optimal Bounds in Non-
Gaussian Limit Theorems for U-Statistics,” The Annals of
Probability, Vol. 27, No.1, 1999, pp. 454-521.
doi:10.1214/a0p/1022677269

S. A. Bogatyrev, F. Gotze and V. V. Ulyanov, “Non-
Uniform Bounds for Short Asymptotic Expansions in the
CLT for Balls in a Hilbert Space,” Journal of Multivari-

Copyright © 2011 SciRes.

(4]

ate Analysis, Vol. 97, 2006, pp. 2041-2056.

T. A. Zubayraev, “Asymptotic Analysis for U-Statistics:
Approximation Accuracy Estimation,” Publications of
Junior Scientists of Faculty of Computational Mathemat-
ics and Cybernetics, Moscow State University, Vol. 7,
2010, pp. 99-108.
http://smu.cs.msu.su/conferences/sbornik 7/smu-sbornik-7
.pdf

0JS


http://dx.doi.org/10.1214/aop/1022677269

