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Abstract 
A multidimensional interpretation of the emission spectrum of a hydrogen 
atom for the circular orbits of its electron is given. It is shown that the dis-
creteness of the radiation frequencies and the angular momentum of an elec-
tron for quasi-Bohr orbits are due to the periodicity of the motion, both in the 
projection to the observed three-dimensional space, permitting motion by in-
ertia, and on additional space. The fine structure constant is represented as a 
simple function of the ratio of the radii of the orbits in the complementary 
and observed subspaces of the total space. The balance of forces acting on an 
electron in the corresponding subspaces allows one to find the electron Ha-
miltonian in orbits, the work of exit of the electron from an atom, and the 
emission spectrum of the atom. 
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1. Introduction 

Observations show that our three-dimensional Universe is isotropic and homo-
geneous at distances of more than 300 million light-years [1]. This means that 
on such a scale, the three-dimensional Universe has no distinguished points, its 
curvature at all points is the same, and therefore it is a three-dimensional sphere 
and can be and expand only in the space of a higher number of spatial dimen-
sions.  

The scale of inhomogeneities in the Universe is 100,000 times smaller than the 
characteristic size of the Metagalaxy (the observable part of the Universe). 
6D-cosmology gives the value of 3980 Megaparsec for the radius of the Metaga-
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laxy [2]. The length of a large circle of the Metagalaxy passing through the points 
of its boundary (the particle horizon) can be taken as such a characteristic size. 
Then the size of the inhomogeneities in the Metagalaxy is 2π 3980/100,000 = 
0.25 Mpc, which is 815,646 light years, which is approximately equal to the av-
erage distance between galaxies. The principal curvature of the Universe as a 
three-dimensional sphere in any plane section passing through the center of our 
3D-sphere is equal to unity, divided by the radius of this sphere. Today’s radius 
of the Universe is 7100 Mpc [2]. With the expansion of the Universe, its curva-
ture comparatively rapidly tends to zero, and the space of the Universe becomes 
locally Euclidean, which differs markedly from Euclidean space only at cosmo-
logical distances. Therefore, in physical theories that are not related to cosmolo-
gy explicitly, the space can be considered as Euclidean one, but it is necessary to 
take into account the motion of elementary particles in the additional space.  

Geometric and physical characteristics of the three-dimensional universe are 
found by the formulas of the cosmological model under consideration, based on 
the principle of simplicity, for fixed free parameters of the theory. These para-
meters are chosen so that the deviations of all compared quantities from each 
other are minimal. The simplest object in the six-dimensional Euclidean space is 
the five-dimensional sphere of perturbations in this space. The intersections of 
the three expanding five-dimensional spheres are three expanding 
four-dimensional spheres, the mutual intersections of which form three ex-
panding three-dimensional spheres. One of them is our three-dimensional Un-
iverse [2].  

If formulas of Newtonian mechanics are attributed not to the three-dimensional 
but to the six-dimensional space, then formulas of the special theory of relativity 
and quantum mechanics are obtained, provided that the proper time of any ele-
mentary particle is proportional to the path traversed by it in the additional 
space, and the velocity of all particles in the total space is the same in magnitude 
and is equal to the upper limit of the speed of light c [3]. 

In order the observed interaction of elementary particles to occur, the par-
ticles should be kept in sufficient proximity to the three-dimensional Universe in 
the Compton neighborhood of the closest points of our Universe by cosmologi-
cal forces perpendicular to the Universe. These are forces of the Lorentz force 
type, in which the particle’s mass plays the role of the charge, in a magnetic field 
oriented along the radius of the Universe [3] [4] [5]. These forces give to the 
space waveguide properties, including dispersion [5]. Without such forces, the 
formation of macroscopic bodies would be impossible.  

A simple interpretation of the spin and isotopic spin requires at least three 
additional spatial dimensions. This gives a simple interpretation of the Heisen-
berg uncertainty relation, de Broglie waves, the Klein-Gordon equation, the in-
trinsic magnetic moment of the electron, CPT symmetry, and the dispersion of 
the photon velocity in vacuum [3] [4] [5]. In the six-dimensional space, spin and 
isospin are treated as projections of the total angular momentum, respectively, 
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onto the observed and additional subspace, and the proper magnetic moment as 
the result of rotation of the charge in the complementary subspace in the orbit of 
the Compton radius.  

The potential energy of a particle is the energy of its motion in an additional 
subspace, and the nuclear reaction is a redistribution of the motion of particles 
between two subspaces. 

2. The Motion of Elementary Particles in a Complete  
Space with a Fundamental Velocity Equal to the  
Upper Limit of the Speed of Light 

The dispersion equation for an acoustic waveguide, for an electromagnetic wa-
veguide and for de Broglie waves is one and the same: 2

gv v cφ =  where the vφ  
is phase velocity of waves, gv  the group velocity (for de Broglie waves is equal 
to the velocity of the corresponding particle), c  the velocity of waves in a free 
medium (the speed of sound in the first case and light in the other two). The 
main characteristic of any waveguide is that it has finite transverse dimensions. 
They also determine the dispersion of waves. This indicates that the part of the 
space we are dealing with in experiments and observations is three-dimensional 
only approximately and has small (Compton) dimensions in an additional sub-
space to which all directions in the observed three-dimensional subspace are 
perpendicular. 

In the waveguide, the rays experience successive reflections from its bounda-
ries, or they move along helical lines oriented along the axis of the waveguide. 
Therefore, along the waveguide, the photons and other elementary particles 
move with a lower velocity singv c θ=  than the phase fronts of the normal 
waves moving along the rays with velocity c . Here θ  is the angle between the 
ray and the cross section of the waveguide. The points of intersection of the 
front with the generatrix of the waveguide move with a phase velocity 

sinv cφ θ=  exceeding the velocity c , whence the dispersion law 2
gv v cφ =  

follows.  
The proposed interpretation of the motion of elementary particles is based on 

the principle of simplicity [6], giving preference to that of competing hypothes-
es, which is based on a smaller number of postulates, i.e. more simple. It goes 
back to the assertion of Einstein that “the nature saves on principles” and to the 
idea of F. Klein [7] [8] about the motion of particles with the speed of light in a 
multidimensional space, also fitting into the principle of simplicity and its con-
cretizing.  

The total space is assumed to be six-dimensional one, since a simple interpre-
tation of the spin and isospin of an electron and other particles is possible. Spin 
is the projection of the total angular momentum of an elementary particle into 
an observable three-dimensional subspace X in which the motion by inertia is 
possible. In quantum mechanics, spin is treated as the result of an imaginary ro-
tation of a particle. Isospin is the projection of the total momentum of a particle 
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onto the additional subspace. Despite the impossibility of treating spin and isos-
pin in the framework of classical physics, they manifest themselves in the inte-
ractions of particles and can be measured. 

The first substantiation of the six-dimensionality of space was given in [9], 
where 3 time coordinates relate to the three-dimensional time and 3 spatial ones 
to the observed three-dimensional subspace. In [9] theoretical values of funda-
mental physical constants were obtained, for the seven most common of which, 
obviously not being a combination of each other, the first 36 significant figures 
are confirmed by experiment, so the probability of random coincidence with 
experimental data does not exceed 10−36 (!). 

The position of the particles in 6R  is described by six coordinates. The ob-
server, however, fixes the particles in the projection onto the subspace X. Even a 
particle at rest in the inertial system of the observer moves in a complete space 
with the fundamental velocity c  equal to the upper limit of the speed of light. 
In the simplest case, this motion occurs along a circle located in one of the 
planes of an additional three-dimensional subspace 1y , 2y , 3y  ( )Y , with the 
center located in X for 1 2 3 0y y y= = = . In any other inertial frame of reference, 
the particle in question moves in 6R  along a geodesic helical line, located on a 
cylindrical surface, enveloping the geodesics, which for brevity we will call the 
tube of motion. 

3. Lorentz Transformations and Formulas of Quantum  
Mechanics as the Result of Taking into Account the  
Motion of Elementary Particles in the Additional Space 

The natural measure of the particle’s proper time is the path length of the par-
ticle in the additional subspace Y around the tube axis. In general, this length is 
proportional to cosθ , where θ  is the angle of inclination of the helical line 
to the directrix of the tube of motion (Figure 1), ( )a mc=   is the radius of the 
tube. Therefore, if the particle makes one revolution for its proper time τ , then 
by the clock of the observer at rest, relative to which the particle moves along the 
tube at a speed sinv c θ= , this will happen in time cost τ θ= . Here  

( )2sin , cos 1v c v cθ θ= = ± − ,                   (1) 

where the upper sign in front of the square root refers to a particle rotating 
around the axis of the tube in the positive direction, the lower one to its antipar-
ticle moving in the opposite direction. This choice of sign corresponds to the 
following relation between the intervals of the proper time dτ  of the particle 
(or antiparticle) and the time dt  of the observer at rest:

  
( )2cos 1dt d d v cτ θ τ= ± = − .                  (2) 

 
A particle moving with a velocity c  in a fixed reference frame ( )K  at an 

angle θ  to the directrix of the tube has a velocity component along the direc-
trix, equal to cosc θ . The course of the particle’s proper time from the point of  
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Figure 1. Helical trajectory of an elementary particle in a mixed subspace 2 3xy y : 1 is 
the helical trajectory of a particle moving with a fundamental velocity c  in a 
six-dimensional space along the surface of a cylinder of Compton radius ( )a mc=   

with the angle θ  of inclination of this helical line to the directrix of the tube passing in 
the subspace Y; 2 is other helical line passing through the particle at a right angle to its 
trajectory, of the same proper time of the particle, moving along the cylinder with the ve-
locity of the de Broglie waves; its step is equal to the wavelength of de Broglie. 
 
view of the observer at rest is slowed according to (2) also in proportion to 
cosθ . Therefore, the particle in question also moves along the directrix with 
velocity c  in its proper frame of reference ( )K ′ .  

A particle at rest in the system K  moves along the directrix at the speed c . 
In this case, it displaces along the directrix for its proper time dτ  to an interval 
ds  equal to  

ds cdτ= ±                              (3) 

The momentum (the amount of motion) of this particle is a vector directed 
along the tangent to the directrix at the point at which the particle is at this mo-
ment, and equal in magnitude to mc , the product of the particle’s mass m  by 
its velocity in total space. This value is equal to the momentum at rest of relati-
vistic mechanics. The energy at rest 0E  is by definition equal to the product of 
the momentum at rest by the velocity of the particle along the directrix, so that

2
0E mc= . This Einstein formula relates the mass and latent energy of the mo-

tion of an elementary particle in the additional subspace.  
In the general case, the total momentum of a particle is a vector directed along 

the tangent to its helical trajectory on the tube of motion and equal in magnitude 
to the product of the mass of the particle by the ratio of the path it traveled  

d cdtς =                              (4) 

in full space to the time spent on this path: 

( )2cos 1

d mc mcp m
d v c

ς
τ θ

= = =
−

.                  (5) 
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This is a well-known relativistic formula for the total particle momentum [10]. 
The projections Xp  and yp  of the total momentum on the generatrix and the 
tube directrix are equal, respectively,  

( )2tan 1 ,X yp mc mv v c p mcθ= ± = − = ±               (6) 

These projections are called in relativistic mechanics, respectively, the coor-
dinate and time components of the particle’s 4-momentum. The total energy E  
of the particle motion is equal to the product of the total momentum p  by the 
speed c  of motion along the helical line: 

( )

2 2

2cos 1

mc mcE pc
v cθ

= = =
−

.                   (7) 

We assume that the oppositely charged particles rotate about the axis of the 
tube of motion in opposite directions. Particles and antiparticles have opposite 
charges and rotate in opposite directions. When the time reverses, the particle 
must move backwards along its trajectory (the helical line) and therefore rotate 
in the opposite direction. Hence, the sign of its charge will have to change to the 
opposite, so that the particle will have to turn into its antiparticle. In this case, 
the motion of the particle will be mirrored. The totality of all these properties of 
particles and antiparticles constitute the content of the CPT theorem (here C 
means a change in the sign of the charge, P is the reflection in the mirror, and T 
is the inversion of time). 

The displacement of the particle to the interval ds  along the directrix of the 
tube of motion and the corresponding rotation to the central angle d ds aφ = , 
where a  is the radius of the tube cross section, are invariants: the angle of rota-
tion φ  of the particle around the axis of the tube does not depend on the speed 
of the observer relative to the given particle. 

Let us designate dx  in the frame of reference K  the projection of the dis-
placement dς  of the particle along the surface of the tube onto its generatrix. 
By the Pythagorean theorem for a right-angled triangle on the surface of the 
tube shown in Figure 2, we obtain an expression for the interval
( ) ( ) ( )2 2 2ds cdt dx= − , which is fundamental one in the theory of relativity. 

Projecting the sides shown in Figure 1 of a right-angled triangle onto the tra-
jectory of the particle, we find 

cos sins xθ θ ς+ = .                        (8) 

We choose the initial conditions as 0x s= =  for 0t τ= = . In accordance with 
(3) and (4), they correspond to 

,s c ctτ ς= ± = .                         (9) 

Substituting (1) and (9) in (8), we obtain the Lorentz transformation in time 

( ) ( ) ( )22sin cos 1t x c t xv c v cτ θ θ  = ± − = − −     . 

A similar reasoning applied to the frame of reference K ′ , taking into account 
the fact that the system K  moves relative to the particle under consideration at  
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Figure 2. The developed view of the tube of motion and the 
particle trajectory: x  and s  (interval) is the coordinates of 
the particle along the generatrix and directrix of the cylinder 
in the fixed reference frame; x′  is the same along the genera-
trix in the frame of reference associated with the particle. 
BP OA ς= = , CP x= , AP OB x′= = , coss ς θ= . 

 
a speed v− , leads to an inverse transformation  

( ) ( ) ( )22sin cos 1t x c x v c v cτ θ θ τ ′ ′= ± + = + −     , 

where x′  is the coordinate along the generatrix in the system K ′ . The transi-
tion from the system K  to the system K ′  corresponds to a turn through an 
angle θ−  around the point 0x s= =  of the coordinate grid ,x s  on the sur-
face of the motion tube, together with the trajectories of the particles on it, 
which translates the helical trajectory into directrix of the tube. 

The trajectories that make up the angle θ  with the directrix in the reference 
frame K  of the fixed (in X) observer are lines of constant values of the coor-
dinate x′  in the system K ′ . The coordinate x′  of the particle P  moving 
along the tube with the corresponding velocity v  is measured along a helical 
line perpendicular to the trajectory of the particle. In Figure 2, depicting the 
motion tube of a particle in developed view, ( )x t′  is represented by a segment 
AP, and ( )x t  by a segment CP. Projecting the segments AO and AP onto the 
segment CP, we obtain for cos 0θ > : cos sinx xθ ς θ′ + =  or, taking into ac-
count (1), ( ) ( )21x x vt v c′ = − − .  

The proper length of a moving rigid scale is the difference in the coordinates 
x′  of its ends, and in the system K  is equal to the length of a segment of the 
helical line orthogonal to the trajectories of particles moving with it, a line of the 
same time of the reference system K ′  associated with the particles, between the 
normal sections of the motion tube corresponding to these ends. The length of 
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the same moving scale in a fixed reference system is the difference in the coor-
dinates x  of its ends, equal to the distance along the generatrix between the in-
dicated sections, which is 1 cosθ  times less than the proper length. Thus, the 
Lorentz contraction of moving scales is the result of the projection of lengths in 
a multidimensional space onto a three-dimensional space. The spuriousness of 
spatially separated events in one frame of reference when they are simulta-
neously in another is interpreted by the non-parallelism of the helical lines of the 
same proper time in moving frames relative to one another. 

The above interpretation of Formula (2) remains valid even with the curvili-
near axis of the motion tube, since even then all normal sections of the motion 
tube are perpendicular to all directions in the subspace X containing the axis of 
the tube.  

By virtue of the principle of identical properties of the basic properties of 
matter and light, the rest energy 2mc  must also equal 0hν  where 0ν  is the 
frequency of rotation of the particle around the axis of the motion tube with ve-
locity c  in the additional subspace Y, h  is Planck’s constant, so that 

2
0mc hν= . Hence it follows that the radius of the tube is equal a mc=  , and 

the length of the directrix is equal to the Compton wavelength 2πa h mc= , 
which corresponds to the period h  of the coordinate of action in 5-optics [11].  

Located on the same tube of motion, a helical line passing through the particle 
and perpendicular to the helical trajectory of the particle is the line of the same 
current time of the reference frame K ′ . This line moves along the tube with the 
velocity 2sinV c c vφ θ= =  of the de Broglie waves, where v  is the particle 
velocity in the subspace X. The interference of these waves describes, in particu-
lar, the scattering of electrons that strike a crystal with velocity v . The pitch   
of this helical line is equal to the de Broglie wave  

( ) ( )22π cot cot 1
x

h h ha v c
mc p mv

θ θ= = = = − , as can be seen from (6) and  

Figure 1. The angular coordinate s a  of the helical line described by formulas  

(8) and (9) is 
2 sintan tan

cos cos cos
s x mc mc ct xt x
a a a a

ς θ
θ θ

θ θ θ
−

= − = − =
 

, where  

2πh= . From this, (6) and (7) it is clear that this angular coordinate is equal 
to the phase ( )xEt p x± −    of the de Broglie wave. At the location x vt=  
of the particle, this phase is the angle of turn of the particle itself on the tube of 
motion. We note that the function ( )exp i s aΨ =  satisfies the Klein-Gordon  

equation 
2 2

2 2
2 2a a

x ς
∂ Ψ ∂ Ψ

− = Ψ
∂ ∂

 of relativistic quantum mechanics [4]. This can 

be seen from the relations 
i s
aς ςΨ = Ψ , 2 2a sςς ς− Ψ = Ψ , tan

cos
s xς

θ
θ

= − , 

2
2

1
cos

sς θ
= , 2 2tanxs θ= , 2 2

xx xa sΨ = −Ψ , 2 2
xx xa sΨ = −Ψ , 2 2 1xs sς − = . 

The angular momentum J  of the particle is equal to the vector product of 
the momentum and the radius vector of the particle. The component of the ra-
dius vector along the axis of the particle motion tube is parallel to the momen-
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tum and therefore does not gives a contribution in J . Therefore, for a particle 
moving in a six-dimensional space along a helical line, and therefore rectilinear-
ly in the projection onto a subspace X, J  is the vector product of the projec-
tions of the momentum and the radius vector of the particle onto the subspace 
Y. The magnitude of the angular momentum is yJ p a mc mc= = = =J   . 

This formula leaves a known arbitrariness in the orientation of the vector J  
in six-dimensional space: it can be oriented along any directions of the 
four-dimensional subspace, all directions in which are perpendicular to the 
plane of rotation of the particle in Y, i.e., to the cross section of the motion tube. 
The angular momentum J  in the general case has four nonzero components 
in directions perpendicular to each other and the plane of rotation of the par-
ticle. In the case of rotation in a plane 2y , 3y , such components will be the 
components 1J , 2J , 3J , 4J  along the axes 1x , 2x , 3x , 1y , respectively. 
Wherein, ( )1 22 2 2 2

1 2 3 4J J J J J= + + + =  . The components 1J , 2J , 3J  are 
projections of the vector J  onto the subspace X and form a spin, and the 
component 4J  is the projection of the vector J  onto the subspace Y and 
forms an isospin. 

According to (6), yp  does not depend on the velocity v , therefore, spin and 
isospin do not depend on v  and are not affected by Lorentz transformations.  

The vector J , which remains perpendicular to the plane of rotation of the 
particle, has three degrees of freedom and can be arbitrarily oriented along four 
coordinate axes. The simplest methods of its orientation are:  

1) The vector J  does not have components in X and is entirely located in Y; 
then the spin of the particle is zero, and the isospin is equal to unity, as in the 
case of the π-meson. 

2) The vector J  does not have components in Y and is entirely located in X; 
then the spin of the particle is equal to unity, and the isospin to zero, to this case 
is the photon; 

3) Particles with spin 1/2 correspond to a uniform distribution of the compo-
nents of the vector J  along four axes perpendicular to each other and to the 
plane of rotation of the particle. Then these components are equal to 2+  or

2− , and the sum of the squares of these components in X of is equal to
( ) 23 4  , which coincides with the square of the “total” (in three-dimensional 
space) quantum momentum of the particle. The orientations of the vector J , 
obtained from the previous by admissible rotations, leaving one or two given 
components unchanged also belong to this case. So, if one of the components of 
the vector J  in X and one of its components in Y have a fixed value 2+  or

2− , then the vector J  still has the possibility of rotation around two cor-
responding axes. In this case, the two components of the vector J  that remain 
uncommitted do not have a certain value (a situation typical for quantum me-
chanics, where a fixed value of the quantity is the exception rather than the rule). 
For an equiprobably permissible orientations of this vector, the rms values of 
these components are equal to 2 . The change in the direction of rotation 
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about the axis of the tube of movement to the opposite also changes the signs of 
the components to opposite ones and corresponds to the transition to the anti-
particle. 

The Heisenberg uncertainty relations are related to the uncertainty of the 
coordinates and momenta of elementary particles in Y, which obey these rela-
tions. Indeed, let the directrix of the tube be in the plane 2y , 3y . Then the 
coordinates of the particle along the axes 2y , 3y  and the projections of the  

particle momentum on these axes are, respectively, 2 cosy
mc

φ=


,  

3 siny
mc

φ=


, 2 sinyp mc φ= − , 3 cosyp mc φ= , where φ  is the angle of turn  

of the particle around the axis of the tube measured from the axis 2y . 
The average on φ  values of the coordinates and projections of the pulses are  

zero, and their mean squares are respectively equal to 
2

2 2
2 3

1
2

y y
mc

 = =  
 

 ,  

( )22 2
2 3

1
2y yp p mc= = , from which the desired relations follow  

2 2 2 2 2
2 2 3 3

1
4y yp y p y⋅ = ⋅ =   [4].  

The question is interesting: why does the magnitude of the angular momen-
tum and its components in X and Y, that is, the spin and isospin, not depend on 
the mass of the elementary particle? In the six-dimensional treatment, the an-
swer is obvious: the momentum is proportional to the mass of the particle, and 
the radius of the Compton orbit of such a particle is inversely proportional to 
this mass, and therefore the product of the momentum and the radius of the or-
bit does not depend on the mass. 

The proper magnetic moment µ  of a charged elementary particle is deter-
mined similarly to the proper moment of the pulse J . Namely, according to the 
well-known electrodynamics formula [10] [12] 

[ ]
2
e
c

= Rcµ ,                          (10) 

where R  is the radius vector of the particle, c  is its velocity vector in the 
complete space, [ ]Rc  is the vector product of the vectors R  and c , e  the 
particle charge. Since the contribution to the vector product in (10) is given only 
by the projection a  of the radius vector R  on Y, the vector µ  equals  

[ ]
2
e
c

ac . Hence, taking into account the mutual perpendicularity of the vectors  

a  and c , and denoting a=a  and c=c , we obtain the value of the proper 
magnetic moment μ of the particle, which, as it turns out, is equal to the Bohr 
magneton: 

2 2 B

e a e
mc

µ µ= = =


                       (11) 

In the simplest case, when the vector µ  does not have components in the 
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subspace Y, its components in X define a three-dimensional vector whose mag-
nitude is equal to the Bohr magneton. The projection of the magnetic moment 
on an arbitrarily chosen direction (the quantization axis) in the subspace X can 
have a fixed value ( xµ ) only in the case when the projection of the proper angu-
lar momentum xJ  on this direction also has a fixed value. According to (11), 
in this case, x Bµ µ= ± . For a uniform distribution of the components of the 
proper angular momentum along four axes perpendicular to one another and 
the plane of rotation of the particle in Y, in the case under consideration 

2xJ mca= ± , which is equal to +1/2 or −1/2 (in units  ) in accordance with 
the data of Stern and Gerlach experiment. 

4. The Condition for the Periodicity of the Motion of an  
Electron in a Complete Space in a Hydrogen Atom and the  
Balance of Forces Acting on an Electron 

In addition to rotation in Y in orbits of the Compton radius, the electrons in the 
atom move in X in orbits much larger (by a factor of hundreds) radius. The di-
mensions of the atoms are equal to the dimensions of their external electron or-
bits in X. Let us show that the condition for the periodicity of the motion of an 
electron in a hydrogen atom determines a quasi-Bohr orbits [13].  

In the hydrogen atom, the distance of the electron in the complete space from 
the center of the atom has the form 2 2R r a= + , where r  and a  are the ra-
dii of the circles along which the electron rotates, respectively, in the projection 
onto the subspaces X and Y. The radius a  with increasing r  asymptotically 
tends to ( )a mc∞ =  .  

The tube of stationary motion of an electron in a hydrogen atom in the sim-
plest case is a closed surface, which in the projection to X is a circle with the 
center in the nucleus of the atom. This surface, in contrast to the usual torus, 
preserves the properties of the cylinder, since all its points are separated from the 
center of rotation by the same distance in the total space. The condition of peri-
odicity of motion implies the closure of the helical line of the same current 
proper time of the electron on the tube of its motion. Suppose that when the 
angular coordinate in X of the current point of this helical line makes one com-
plete revolution (changes by 2π), its angular coordinate in Y, corresponding 
to n-th orbit makes n revolutions. In this case, sin v cθ =  has a form 
sin n nv cθ = , 

( )2
tan

1
n n

n
nn

v c an
rv c

θ = =
−

.                   (12) 

Whence 

( )
( )

2
2

2

1
1

n
n

n n n

nav c
r n a r

 
=  

+ 
,                 (13) 

where nr  is the radius of the orbit in X, 1,2,3,n =   the orbit number in as-
cending order nr , nθ  the angle of inclination of the trajectory of the electron 
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to the normal section of the tube, na  the radius of the tube in Y, ( )a mc∞ =  , 
m  the mass of the electron. Since ( )na mc≈  , from Formula (13) it follows  

2

1n n
n

nmv r n
mcr

 
+ ≈ 
 




. In the non-relativistic case, the last formula reduces to  

the classical expression from Bohr’s theory for the angular momentum 

n nmv r n≈  .  

Substitution of Formula (12) into identity 
2

1 cos
1 tan

n

n

θ
θ

=
+

 gives 

( )21 1
cos n n

n

n a r
θ

= +                      (14) 

( )
( )

2
2

2sin
1

n n
n

n n

n a r

n a r
θ =

+
, 

( )
( )

22

2

sin
cos 1

n nn

n n n

n a r

n a r

θ
θ

=
+

. 

The Hamiltonian of an electron in the n-th orbit with (14) taken into account 
has the form: ( )22 1n n n nH mc n a r V= + + . It is equal to the sum of the energy 
of motion in total space and potential energy nV  and represents a multidimen-
sional structure. The Coulomb potential has so far remained three-dimensional 
one also in standard quantum mechanics, where in deriving the fine structure 
formula [13], the distance between the electron and the nucleus of the atom was 
assumed to be equal nr  instead of the correct one 2 2

n n nR r a= + . In this case  

2
n nV e r= − , and the electric force has the form 

22 2

2 2 21 cosn
n

n n

ve e
r c r

θ− = . It is  

opposed by an equal in magnitude centrifugal force  

( )
22

2 2 2 2
2

11 sin cos cosnn
x n n n n n n

n n

navvp mv r mc r mc
r c r r

θ θ θ
   
 = − = =      

. (15) 

In this case, the balance of forces has the form 2 2 2tann ne r mc θ=  or, taking 
into account (12) and 2 2e a mcα ∞= , where ( )2 1 137.035999710e cα = =  is  

the fine structure constant, the form 
2

2 21 n

n n

nae mc
r r

 
=  

 
,  

2 2
2

2

1 tan n
n

n n

n aa
r r

α θ∞ = =  or 2 2

1

n n

a
r n a

α ∞= ,  

n

n n

na a
r na

α ∞= .                          (16) 

From this and from (14) it follows  
2 2 2

2 2 2
2

1 1
cos

n

n n n n

H a a a
na na namc

α α α
θ

∞ ∞ ∞     
= − = + −     

     
.      (17) 

The expansion of this function in a series gives for circular orbits with  

2
n nV e r= − : 

2 42 4

2 1
2 8

n

n n

H a a
na namc

α α∞ ∞   
= − − +   

   
 . 
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When 2
n nV e r= −  the Coulomb force does not have components in the  

additional subspace, and then everything 1na
a∞

=  and 
2 4

2 2 41
2 8

nH
mc n n

α α
= − − +   

that agrees with the Bohr approximation, but not with the known fine structure 
formula [13].  

However, in a multidimensional space the Coulomb potential must be a func-
tion of only the distance between the particles in this space. In addition, the 
electric field must be consistent with the Bio-Savart formula when applied to a 
full space. Therefore, the potential energy must have a form 2

n nV e R= − . Then  

for the same nr  Formula (17) is specified: 
1 22 2

2 2
2

1 1n n

n n n

na ae mc
R r r

−
  

= +  
   

,
 

n

n n

na a
r na

α ∞= ,  

1 22 2 2
2 2 2

2 2 2 2 2 4 21 1n

n n n

H a a a
mc n a n a n a

α α α
−

∞ ∞ ∞ 
= + − + 

 
.           (18) 

Expanding this function in a series in powers, we find  
2 4 62 4 6

2 2 2 4 4 2 6 6 4

1 1 1 31
2 2 4 8 2

n

n n n

H a a a
mc n a n a n n a n

α α α∞ ∞ ∞   = − − − + − +   
   

  

2 4 6

2 2 4 2 6 4

1 1 1 31
4 22 2 8

nH
mc n n n n n

α α α   ≈ − − − + − +   
   

 .          (19) 

The Formula (19) agrees with the standard fine structure formula [13] and is 
some refinement of it. The transition of an electron from an orbit of the number 
k to a lower orbit of the number n leads to the emission of a photon of light 
energy kn k nh H Hν = −  at a frequency knν . 

The Coulomb force of attraction between fixed in X an electron and the pro-
ton, in the total space is equal to 2 2e R . Projections of this force on subspaces 
X and Y are respectively equal ( )2 2

|| sinF e R χ=  and ( )2 2 cosF e R χ⊥ = ,  

where sin r Rχ =  and cos a Rχ = , so that 2 3 2
|| 3

a rF e r R mc
R

α ∞= =  and 

2 3 2
3

a aF e a R mc
R

α ∞
⊥ = = . When 0r = , || 0F = , 2 2F e a⊥ = . The corresponding  

dependences on r a∞  are shown in Figure 3. 
The Coulomb force in the six-dimensional space in the form 2 2e R  is a 

consequence of applying the Bio-Savart formula to this space. According to this 
formula, the magnetic field of a charge e , stationary in the subspace X, at a  

distance R  from it in the total space is defined as [ ]tot 02

e
cR

=H cR . Here 0R  is  

the unit vector along the radius vector R ,  
( ) ( )0 0 0 0 0sin cos r R a Rχ χ= + = +R r a r a , 0r  is the unit vector along the ra-

dius vector r  in X, 0a  is the unit vector along the radius vector a  in the 
plane of rotation in Y, and c  the velocity vector of the charge in Y, so that 

[ ] [ ]( ) [ ]( ){ }tot 0 0 0 0 0 02 2

e e r R a R
R R

= = +H c R c r c a ,          (20) 
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Figure 3. Projections of the Coulomb force on the observed and additional subspaces, 
depending on the normalized distance r a∞  between the charges. 

 
where 0c  is a unit vector along the velocity c .  

Let us show that the Coulomb interaction force between two charges e  and 
e′  is the Lorentz force ( )[ ]tote c′ ′=f c H  acting on the charges moving in Y. 
According to (20), we have ( ) [ ] ( ) [ ] ( ){ }2

0 0 0 0e e cR r R a R′ ′ ′   = +   f c c r c c a  
or 

( ) [ ] ( ) [ ] ( ){ }2
0 0 0 0 0 0e e R r R a R′    = − +   f c c r c c a , where 0′c  is the unit 

vector along the velocity ′c . Expanding here the double vector products and 
taking into account the mutual perpendicularity of the vectors entering into 
them, we eventually get: [ ]0 0 0 0  = − c c r r , [ ]0 0 0 0  = − c c a a , 

 ( ) ( )3 3
0 0e er R e ea R′ ′= +f r a  

In the last formula, the first term represents the projection of the Coulomb 
force on X, the second term is its projection on Y. At e e′ =  their values, re-
spectively, are equal to ||F  and. F⊥ . Hence it can be seen that the electric 
forces in X are due to the motion of the charges in Y, in contrast to the magnetic 
forces in X, caused by the motion of charges in the same subspace X. 

The electric force corresponding to the potential energy 2
n nV e R= −  is ap-

plicable in the balance of forces acting on an electron. In this case, the centrifugal  

force xp v r  and electric force 
2

2 2
3 2 31 cosr v re e

R c R
θ− − = −  act on the  

electron in the subspace X, where 2 2 2R r a= + , e  is the charge of the nucleus 
of the atom, xp  and v  accordingly the momentum and velocity of the elec-
tron, so that the balance of forces in X is of the form  

2
3 cosx

v rp e
r R

θ= .                      (21) 

Taking into account (1), (6), (12), 2 2
n n nR r a= +  and (15), the Formula (21) 

is written in the form 
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( ) ( ) ( )
2

2 22 2 2 2 2
3

1, 1n
n n n

nn

re mc ny e mc ny y
RR

= = + ,           (22) 

( ) ( )3 222 2 21 ,n n n n n ne r mc ny y y a r= + = .              (23) 

The substitution 2 2e a mcα ∞=  in (23) gives 

( ) ( )3 22 21n n
n

a ny y
r

α ∞ = + ,                     (24) 

from which and from (12) it follows: 
2 2

2 2
2 3sin cosn n

n n
n

v ra
c R

θ α θ∞= = ,  

2
2

3tan n
n

n

ra
R

θ α ∞= . 

Eliminating from this and from (12), we obtain 

( )2 2 32
n n ny a r Rn α ∞= .                       (25) 

With allowance for the motion of the electron in X and equality cosp mcθ = , 
the component of the electric attraction force in Y is equal to  

2
2

3 3cos cos cosa ae aF mc
R R

θ θ α θ∞
⊥ = = , 

2
2

3 3

a ae aF mc
R R

α ∞
⊥ = = . It coincides in di-

rection with the centripetal cosmological force 0F pcK= , where 
cos
mcp
θ

= , 

2

0
cosK

a
θ

∞

=  is the curvature of the helical trajectory of a free electron. By this  

0 cosF F θ= , where 2 2
0F c a mc a∞ ∞= = .  

The balance of forces in the atom in Y has the form  
2

0 cos cos cosmcF F
a

θ θ θ⊥+ = , so 
2

0
mcF F

a⊥+ = , where 2
3

aF mc a
R

α⊥ ∞= . 

Hence we obtain 3

1 1n

nn

a a
a aR

α ∞
∞

+ = ,  

2

3 1n n

n

aaa
aR

α ∞
∞

= −                          (26) 

We divide (26) into (25). As a result, we find  
4

2
41n n

n

a a n
a r∞

= − .                         (27) 

Multiplying (25) by (27): we find the equation for n n ny a r= : 

( )2 4 2 3 31n n n nn y y n R r α− = , 

( ) ( )3 22 4 2
2 1 1n n ny y y n

n
α

= + − ,                  (28) 

( ) ( )3 22 4 2 2 4 21 1n n nn y y y nα = + − , 
4

2
41n n

n

a a n
a r∞

= − .  

Substitution 
2

2
4n ny u

n
α

=  gives 
3 22 4

2
4 61 1n n nu u u

n n
α α

− −
   

= + −   
   

. Up to terms 
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of order 8α  this is equal to 
2 4 6 4 6

2 2
4 8 12 6 101 3 6 10 2 6n n n nu u u u

n n n n n
α α α α α

= − + − + − .  

On the right-hand side of this equation we can put 
2

2
41 6nu

n
α

= − . Wherein  

2 4 4 6 6

4 6 8 10 121 3 2 15 24 91nu
n n n n n
α α α α α

= − + + − − ,            (29) 

4 62
1 17 1151 3u α αα= − + − , 2 4 62

1 6 43 3321u α αα= − + − + , 
4 4 6 62

2
6 8 10 124

1 6 4 39 60 272nu
n n n nn
α α α αα= − + + − − + ,         (30) 

4 4
2 4 2 2

4 61 1 1n n
n n

n

a a n y n u
a r n

α

∞

= − = − = − .  

According to (14) and 
2

2
4n ny u

n
α

=  we have 
2 2

2 2

sin
cos

n n

n n

u

n n u

θ α
θ α

=
+

,  

2
2

21n n nH mc u V
n
α

= + + , where 
2

n
n

eV
R

= − . Hence, from (22), (30) and  

2
2

4n ny u
n
α

=  we find: 
2 2 2

2
4 21n n n

n

eV mc u u
R n n

α α 
= − = − + 

 
, 

2 2 4
2

2 2 2 6

2 4 4 6
2 2 3

2 4 6 6

1

1
2 8 16

n
n n n

n n n n

H u u u
mc n n n

u u u u
n n n n

α α α

α α α α

= + − −

= − − − + +
 

2 4 6

2 2 4 2 6 2 4

1 1 1 1 31
4 82 2 2 2

nH
mc n n n n n n

α α α   = − − − + − −   
   

.        (31) 

According to (25), α  is a function of the radii of the electron orbits in the  

subspaces X and Y: 
3 22 2

21n n n

n n

n a a a
r a r

α
∞

 
= + 

 
. Wherein 2lim n

n
n

a n
r

α →∞= . Thus,  

the fine structure constant is determined by the ratio of the radii of the orbits in 
observed three-dimensional and additional subspaces. 

It was noted in [13] that the virial theorem does not extend to quantum me-
chanics. However, it is not a matter of quantum mechanics in general, but in its 
relativistic case, when it is required to take into account the fundamental velocity 
c  in the formula for the kinetic energy of a particle. Indeed, the substitution 

nV  in the proposed 2 nT−  for it in the Hamiltonian, where nT  is the kinetic 
energy of the electron, 2

n nT E mc= − , would give  
2

2 2 2
22 2 2 1n n n n nH E T E mc mc mc u

n
α

= − = − + = − + , 

2 4 2 6

2 2 4 4 6

2 4 4 6 6 6

2 4 6 10 8 6

1 1 6
2 8 16

71 3 15
2 8 2 2 4 16

n
n

H u
mc n n n n

n n n n n n

α α α α

α α α α α α

 
= − + − − + 

 

= − + + − − − +





       (32) 
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It can be seen from the Comparison (32) with (31) that in the Bohr approxi-
mation the virial theorem remains valid, but in the following order of expansion 
in powers of 2α  the right-hand side of (32) deviates from (31) by an amount of  

order 
4 4

4 64n n
α α

+ . 

The transition of an electron in the subspace X of the n-th orbit into an orbit 
of a larger radius number k is caused by the absorption of a photon of suitable 
energy. 

The replacement in the Hamiltonian of the electron mass by its reduced mass  

[13] 1
1.000544617031p

mmm m
m∗

 
= + =  

   

takes into account the motion of the nucleus masses. In this case, the work func-
tion against the force of mutual attraction of the nucleus of the atom and the 
electron removed from the atom from the n-th circular orbit is equal to 

2 4 2
2 2 2 2

2 4 2 2 2 4

1 1 1 1 3
4 82 2 2nA mc m c m c m c

n n n n n n
α α α

∗ ∗ ∗

  = − + + − − − − +  
  

 .  

Therefore,  
2 4

2 2
2 2 4 2 4 2

6
2

6 2 4 6 2 4

1 1 1 1 1 1 1 1
2 2 4 4

1 1 1 3 1 1 1 3
2 8 82 2

n k

kn

A A m c m c
n k n n k k

m c h
n n n k k k

α α

α
ν

∗ ∗

∗

      − = − + − − −            
    − − − − − − + ⋅⋅ ⋅ =    

    

 

The transition of an electron from a higher orbit of the number k to a lower 
orbit of the number n leads to the emission of a photon with energy 

kn k nh H Hν = −  at a frequency knν .  
The proton and neutron have the same sizes, and the nucleus is absent [14]. 

It’s easy to explain. They consist of three quarks, although in different combina-
tions. The proton consists of two u-quarks and one d-quark, the neutron con-
sists of one u-quark and two d-quarks. Quarks move in the subspace Y in their 
orbits of the Compton radius inversely proportional to the mass of the quark. 
The lightest quark is the u-quark. It determines the same size of the proton and 
neutron. Since the quarks move at a distance (Compton) from the center of ro-
tation, in the center of the proton and neutron is a void. Since u-quark and 
d-quarks have opposite charges ( 2 3e  and 3e−  accordingly), the total charge 
of the neutron vanishes, but there is no reason for the zeroing of its resulting 
magnetic moment. The large magnetic moments of the proton and neutron are 
due to the relatively large magnetic moments of the constituent quarks [15]. 

In the six-dimensional treatment, the charges of particles and antiparticles are 
identical, but the sign of the magnetic field is determined by the direction of ro-
tation of the particles in the additional space along the circumference of the 
Compton radius. The sign of the charge in this interpretation is just a mark cor-
responding to the direction of rotation. When time reversal (if reversal of time 
would possible), the particle moves in complete space reversely along the same 
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trajectory as in the direct course of time. In this case, they automatically change 
to opposite signs of the fields, and the trajectory along the motion path turns out 
to be mirrored, and the particle acquires all the properties of the antiparticle. 

5. Conclusion 

It is shown that taking into account the motion of elementary particles in an ad-
ditional subspace of a full six-dimensional space eliminates the need for the use 
of the wave function in quantum mechanics. In view of this motion, the fine 
structure formula for the circular orbits of an electron in a hydrogen atom is ob-
tained and is refined. It is shown that the discreteness of the emission spectrum 
of an atom is due to the periodicity of the motion of its electron in the total 
space, when in the projection onto the observed and additional subspaces the 
electron commits an integer number of revolutions. A geometric interpretation 
of the fine structure constant in the form of a simple function of the ratio of the 
radii of the electron orbits in the observable and additional subspace is found. 
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