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Abstract 
Malaria is a major cause of morbidity and mortality in Apac district, Northern 
Uganda. Hence, the study aimed to model malaria incidences with respect to 
climate variables for the period 2007 to 2016 in Apac district. Data on 
monthly malaria incidence in Apac district for the period January 2007 to 
December 2016 was obtained from the Ministry of health, Uganda whereas 
climate data was obtained from Uganda National Meteorological Authority. 
Generalized linear models, Poisson and negative binomial regression models 
were employed to analyze the data. These models were used to fit monthly 
malaria incidences as a function of monthly rainfall and average temperature. 
Negative binomial model provided a better fit as compared to the Poisson re-
gression model as indicated by the residual plots and residual deviances. The 
Pearson correlation test indicated a strong positive association between rain-
fall and malaria incidences. High malaria incidences were observed in the 
months of August, September and November. This study showed a significant 
association between monthly malaria incidence and climate variables that is 
rainfall and temperature. This study provided useful information for predict-
ing malaria incidence and developing the future warning system. This is an 
important tool for policy makers to put in place effective control measures for 
malaria early enough. 
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1. Introduction 

Uganda is one of the Sub-Saharan African countries where malaria is still en-
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demic in over 90% of the country’s regions [1] [2] [3]. According to the National 
Malaria Control Pro gramme, malaria alone has shown to contribute to between 
30% and 50% of outpatient visits, 15% - 20% of hospital admissions and 20% of 
hospital deaths with most of this burden found in children under 5 years and 
pregnant women; severe malarial anaemia is responsible for a case fatality rate of 
8.25% among pediatric admissions [4]. 

Transmission of malaria is very complicated. It can be determined by climatic 
or non-climatic factors. The impact of climatic variables on malaria patterns still 
remains controversial. The aim of this study is to model malaria incidences in 
Apac district, Northern Uganda with respect to climate variables specifically 
rainfall and temperature. 

The greatest burden of malaria, remains in the heart land of Africa, characte-
rized by limited infrastructure to monitor disease trends, large contiguous areas 
of high transmission, and low coverage of control interventions. The epidemiol-
ogy of malaria varies widely in Uganda, from highland regions with low preva-
lence and unstable disease to large regions with dense agricultural settlement 
and some of the highest recorded malaria intensities in the world [5]. 

The climate in Uganda allows stable, year round malaria transmission with 
relatively little seasonal variability in most areas. Malaria is highly endemic in 
Uganda with some of the highest recorded entomological inoculation rates (EIR, 
infective mosquito bites per person per year) in the world, including rates of 
1586 in Apac district and 562 in Tororo district measured in 2001 to 2002 [5]. 

Malaria has historically been a very serious health problem and currently pos-
es the most significant threat to the health of the people in malaria prone areas. 
Uganda show that more than 55 percent of pediatric cases are due to malaria [6].   

Malaria remains one of the leading health problems of the developing world, 
and Uganda bears a particularly large burden from the disease. Our under-
standing is limited by a lack of reliable data, but it is clear that the prevalence of 
malaria infection, incidence of disease, and mortality from severe malaria all re-
main very high. Uganda has made progress in implementing key malaria control 
measures, in particular distribution of insecticide impregnated bednets, indoor 
residual spraying of insecticides, utilization of artemisinin-based combination 
therapy to treat uncomplicated malaria, and provision of intermittent preventive 
therapy for pregnant women. However, despite enthusiasm regarding the poten-
tial for the elimination of malaria in other areas, there is no convincing evidence 
that the burden of malaria has decreased in Uganda in recent years. Major chal-
lenges to malaria control in Uganda include very high malaria transmission in-
tensity, inadequate health care resources, a weak health system, inadequate un-
derstanding of malaria epidemiology and the impact of control interventions, 
increasing resistance of parasites to drugs and of mosquitoes to insecticides, in-
appropriate case management, inadequate utilization of drugs to prevent malaria, 
and inadequate epidemic preparedness and response. Despite these challenges, 
prospects for the control of malaria have improved, and with attention to un-

https://doi.org/10.4236/ojs.2017.76063


A. Eunice et al. 
 

 

DOI: 10.4236/ojs.2017.76063 903 Open Journal of Statistics 
 

derlying challenges, progress toward the control of malaria in Uganda can be 
expected [7]. 

The relationship between climatic variables and malaria transmission has been 
reported in many countries [8]. A recent resurgence of malaria in the East Afri-
can highlands involves multiple factors; climate and land use change, drug resis-
tance, variable disease control efforts, and other socio-demographic factors [9]. 
Malaria is an extremely climate-sensitive disease [10] common in the tropics, 
but also reported in mild-to-cold climates [11]. 

Rainfall and temperature anomalies are widely considered to be a major driver 
of inter-annual variability of malaria incidence in the semi-arid areas of Africa 
[12], and recently recorded a warming trend in the East African Highlands that 
corresponded with concomitant increases in malaria incidences [13]. 

Based on the background study of malaria above, the impact of weather and 
environmental factors on dynamics of malaria has attracted considerable atten-
tion in recent years, yet uncertainties around future disease trends under envi-
ronment change remain. The role of climate as a driving force for malaria inci-
dences is still a subject of considerable attention [14]. Assessing the impact of 
climate variables on malaria incidences is challenging because of a high spatial 
climate variability and lack of a long term data series on malaria cases from dif-
ferent hospitals. Temperature affects the development rates and survival of ma-
laria parasites and mosquito vectors. Rainfall influences the availability of the 
mosquito larvae habitats and hence a breeding ground for mosquitoes. Temper-
ature and rainfall may have synergistic effects on the transmission of malaria. 
Therefore, there is need to analyze the simultaneous effects of rainfall and tem-
perature on malaria incidences. However, the association between climate va-
riables and malaria incidences in Apac district has not been studied. 

In this study, the association between malaria incidences and climate variables 
are modeled using Poisson and negative binomial Regression models respective-
ly. The significance of rainfall and temperature on the malaria incidences are 
determined. This knowledge is important since it gives clear understanding of 
malaria incidences predictors. This is necessary for the development of malaria 
warning systems in Apac district, Northern Uganda and hence enable effective 
malaria control measures to be put in place in a timely manner. 

2. Review of Malaria Models 

Several studies have been carried out on malaria incidence. [15] studied the 
trend of malaria prevalence in Minna, Nigeria, by employing Poisson and Nega-
tive binomial regression models. The results revealed that the prevalence of ma-
laria is still on increase by 6% on monthly basis. 

[16], carried out a study to identify the spatial and trends of malaria incidence 
in Nepal Poisson and negative binomial regression models were used to fit mala-
ria incidence rates as a function of year and location. The study showed a steady 
decreasing trend in malaria incidence, but the numbers of cases are still very 
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high. 
[17], carried out a study using logistic regression to estimate and assess mala-

ria prevalence and the use of malaria risk reduction measures and their associa-
tion with selected background characteristics in South Sudan. The results sug-
gest that educational attainment need not be very advanced to affect practices of 
malaria prevention and treatment. Primary school attendance was a stronger 
predictor for use of malaria risk reduction measures than any other selected 
background characteristics. 

[18], conducted a study on malaria vector control in South Sudan. The study 
revealed that the peak of malaria transmission season lasting 7 to 8 months of 
the year south of the country and 5 to 6 months in the north. 

[19], studied malaria incidence over time and its association with temperature 
and rainfall in four counties of Yunnan province, China. Seasonal trend decom-
position was used to examine secular trends and seasonal patterns in malaria in-
cidence, a Poisson regression with Distributed lag non-linear models were used 
to estimate the weather drivers of malaria seasonality. The study revealed that 
there was a declining trend in malaria incidence in all four counties. 

[20], estimated the effects of climate factors on P. vivax malaria transmission 
using Generalized linear Poisson models and distributed lag non linear models. 
Their findings suggested that malaria transmission in temperate areas was highly 
dependent on climate factors. 

[21], used Spearman’s correlation between weekly climatic variables (temper-
atures, relative humidity and rainfall) and malaria to analyze the bi variate rela-
tionships between types of malaria parasites and potential climatic factors. A 
discrete poisson model was used to identify purely spatial clusters of malaria in-
cidence in the high risk areas. A poisson regression model combined with dis-
tributed lag non-linear model was used to examine the effects of temperature, 
relative humidity and rainfall on the number of malaria cases. The residuals 
were checked to evaluate the adequacy of the model. Sensitivity analysis was 
performed to ensure that the associations between climate variables and malaria 
incidences did not change substantially when the degrees of freedom for climate 
variables were changed. 

[22], analyzed the temporal correlation between malaria incidence and cli-
matic variables using malaria incidence rates in Kokrajhar district of Assam over 
the period 2001 to 2010. Linear regressions were used to obtain linear relation-
ships between climatic factors and malaria incidence. Temperature was found to 
be negatively correlated with non-forest malaria incidence while relative humid-
ity was positively correlated with forest malaria incidence. 

[23], used semi-parametric regression models to model the dependence of 
malaria cases on spatial determinants and climatic covariates including rainfall, 
temperature and humidity in Burundi. The results obtained suggested that ma-
laria incidence in a given month is strongly associated with minimum tempera-
ture of the previous months. 
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[24] modeled separate meteorological factors, the model with rainfall per-
formed better than the models with other factors respectively. The results 
showed that the way rainfall influenced malaria incidence was different from 
other factors, which could be interpreted as rainfall having a greater influence 
than other factors. 

[25], investigated the effects of climate on malaria in Burundi using genera-
lized linear models and generalized additive mixed models. The results suggest a 
strong positive association between malaria incidence in a given month and 
minimum temperature of the previous month. In contrast, it was found that 
rainfall and maximum temperature in a given month have possible negative ef-
fect on malaria incidence of the same month. 

[26], presented a model for estimation of temperature effects on mortality that 
is able to capture jointly the typical features of every temperature death rela-
tionship, that is, nonlinearity and delayed effect of cold and heat over a few days. 
Using a segmented approximation along with a doubly penalized spline-based 
distributed lag parameterization, estimates and relevant standard errors of the 
cold and heat related risks and the heat tolerance are provided. The model is ap-
plied to data from Milano, Italy. 

[27], used negative binomial regression model to examine how spatial distri-
bution of the disease changes with inter annual variability of temperature. To 
analyze the variation in incidence with temperature and altitude, a negative bi-
nomial regression to the monthly cases was fitted. Covariates included season, 
altitude and linearly de-trended temperature (lagged by 3 months). 

[28], found that malaria was associated with rainfall and minimum tempera-
ture in Ethiopia. Daily average number of cases was modeled using a robust 
Poisson regression with rainfall, minimum temperature and maximum temper-
atures as explanatory variables in a polynomial distributed lag model in 10 dis-
tricts of Ethiopia. To improve reliability and generalizability within similar cli-
matic conditions, the districts were grouped into two climatic zones, hot and 
cold. In cold districts, rainfall was associated with a delayed increase in malaria 
cases, while the association in the hot districts occurred at relatively shorter lags. 
In cold districts, minimum temperature was associated with malaria cases with a 
delayed effect. In hot districts, the effect of minimum temperature was non-sig- 
nificant at most lags, and much of its contribution was relatively immediate. 

[29], compared the level of malaria infection in children from 22 communities 
in an area of unstable transmission in the Usambara mountains, Tanzania, im-
mediately before and after one of the strongest recorded El Niño Southern Os-
cillation events. They found strikingly less malaria than in the preceding year 
despite 2.4 times more rainfall than normal resulted from the event. 

[30], used non linear mixed-regression model to investigate the association 
between auto regression (number of malaria inpatients during previous time pe-
riod), seasonality and climate variability, and the number of monthly malaria 
inpatients of the past 10 to 20 years in seven highland sites in East Africa. The 
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model did not take into consideration other important factors that also impact 
on malaria incidences for example; topography, human settlement pattern, land 
use, and drug resistance. 

[31], examined the relationship between malaria and environmental and so-
cio-economic variables in the Sudan using health production modified model. 
The regression results showed significant relationships between malaria and 
rainfall and water bodies. Other variables including Human Development Index, 
temperature, population density and percent of cultivated areas were not signif-
icant. 

[32], investigated temporal associations between weekly malaria incidence in 
1993 children < 15 years of age and weekly rainfall. A time series analysis was 
conducted by using cross-correlation function and autoregressive modeling. The 
regression model showed that the level of rainfall predicted the malaria inci-
dence after a time lag of 9 weeks (mean = 60 days) and after a time lag between 
one and two weeks. The analyses provide evidence that high-resolution precipi-
tation data can directly predict malaria incidence in a highly endemic area. Such 
models might enable the development of early warning systems and support in-
tervention measures. 

3. Methodology 

In this study, data on monthly Malaria incidence in Apac district for the period 
January 2006 to December 2016 were obtained from the Ministry of health, 
Uganda. Climate data were obtained from Uganda National Meteorological Au-
thority. The response variable is the malaria incidence where as the climate va-
riables are the explanatory variables. 

4. Data Analysis 

Monthly malaria incidences for the period 2007-2016 was used. The data was 
obtained from the Ministry of health, Uganda. Table 1 summarizes the Malaria 
incidences for the period 2007-2016. 

From Table 1, the minimum value for malaria incidences is 5034, the maxi-
mum value is 19,289 cases, the mean value for the whole period is 9746 and the 
standard deviation is 3017.864. 

From Figure 1, we observe that the histogram is skewed to the right which is 
representation of count data. We conclude that malaria incidences is count data 
and we can model it using a distribution suited for count data which is the Pois-
son distribution. 

The generalized linear models were applied to fit the malaria incidence data as 
a function of rainfall and average temperature. Count data regression models  

 
Table 1. Descriptive statistics. 

Malaria incidences Mean Standard deviation range 

 9746 3017.864 5034 - 19,589 
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Figure 1. Monthly malaria incidences. 

 
can be represented and understood using generalized linear models (GLM) 
framework [33]. Poisson regression is commonly used for modeling the number 
of cases of disease in a specific population within a certain time interval. The 
Poisson regression is a member of a class of generalized linear models, which is 
an extension of traditional linear models that allows the mean of a population to 
depend on a linear predictor through a non linear link function and allows the 
response probability distribution to be any member of the exponential family 
distributions. Poisson regression is a special case of (GLM) where the response 
variable follows Poisson distribution. Poisson models for disease counts are of-
ten over-dispersed hence the need for a model which appropriately handles over 
dispersion in which case negative binomial is considered [34]. The negative bi-
nomial model is an extension of Poisson model for incidence rates that allows 
for the over dispersion that commonly occurs for disease count. The Poisson 
probability distribution is specifically suited for count data, with density func-
tion; 

( ) e , 0,1,2,
!

y

if Y y
y

λλ −

= = 

                   
(1) 

( )f Y  is the probability that the discrete random variable Y takes non-negative 
integer values, λ  is the parameter of the Poisson distribution. It can be proved 
that;  

( ) ( )E Y Var Y λ= =                       (2) 

A unique feature of Poisson distribution is that the mean is equal to the va-
riance [35]. This is called the equidispersion property of the Poisson distribution. 
In the Poisson regression model, the number of events y has a Poisson distribu-
tion with conditional mean that depends on an individual’s characteristics:  

( ) ( )expi i i iE y x xλ β= =                     (3) 

( )log i ixλ β=                          (4) 

This is the model for analyzing count data. Under this model as iλ  increases, 
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the conditional variance of y increases. The Poisson regression model can be 
thought of as a non-linear model [36]. 

The Negative binomial regression model allows the conditional variance of y 
to exceed the conditional mean. The mean λ  is replaced with the random va-
riable λ :  

( )expi i ixλ β ε= +

                       (5) 

where ε  is a random error that is assumed to be uncorrelated with x.  

( ) ( ) ( )exp exp expi i i i i i ixλ β ε λ ε λδ= = =

              (6) 

The assumption is that δ  has a gamma distribution with parameters: 

( ) 1E δ =  and 
1Var
v

 
 
 

. 

The expected value of y for the Negative binomial distribution is the same as 
for Poisson distribution but the conditional variance differs:  

( ) ( ) ( )exp
1 exp 1 ii

i i i i
i i

x
Var y x x

v v
βλ

λ β
  

= + = +  
              

(7) 

since λ  and v are positive, the conditional variance of y must exceed the con-
ditional mean, v is the same for all individuals:  

1
iv α−=                            (8) 

for 0α > , α  is the dispersion parameter since increasing α  increases the 
conditional variance of y.  

( ) ( ) ( )

( )

1 1

2

exp
1 exp 1

1

ii
i i i i

i i i i

x
Var y x x

βλ
λ β

α α

λ αλ λ αλ

− −

  = + = +  
   

= + = +           

(9) 

If 0α = , the mean and variance are equal [35]. 

4.1. Estimation of Parameters Using the Maximum Likelihood  
Estimation 

Estimation of parameters in Poisson regression relies on maximum likelihood 
estimation (MLE) method. Maximum likelihood estimation gives an under-
standing of the values of the regression coefficients that are more likely to have 
given rise to the data. The maximum likelihood estimation for Poisson regres-
sion is discussed in detail below; let iY  be the mean for the ith response, for 

1,2, ,i p=  . The mean response is assumed to be a function of a set of expla-
natory variables, 1 2, , , pX X X , the notation ( ),iXλ β  is used to denote the 
function that relates the mean response iλ  and iX  (the values of the expla-
natory variables for case i) and β  (the values of the regression coefficients). 
Let’s consider the Poisson regression model in the form below;  

( ) ,, e iX
i iX βλ λ β= =                      (10) 

Then, from the Poisson distribution;  
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( )
( ) ( )e

;
!

iY X
iX

P Y
Y

λ βλ β
β

−  =
                  

(11) 

The likelihood function is given as,  

( ) ( )
1

; ;
N

i
L Y P Yβ β

=

=∏
                               

(12) 
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λ β
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−
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∑
  =∏

                   
(14) 

The next thing to do is taking natural log of the above likelihood function. 
Then, differentiate the equation with respect to β  and equate the equation to 
zero. The log likelihood function is given as,  

( ) ( ) ( ) ( )
1

log , log , , log !
N

i i i i i
i

L Y Y X X Yβ λ β λ β
=

 = − − ∑
        

(15) 

( )log ; 0L Y β
β
∂

=  ∂                      
(16) 

The solution to the set of maximum likelihood given above must generally be 
obtained by iteration procedure. One of the procedure is known as iteratively re 
weighted least squares. This procedure will estimate the values of β . Maximum 
likelihood estimation produces Poisson parameters that are consistent, asymptotically 
normal and asymptotically efficient [37]. 

4.2. Negative Binomial Regression Analysis 

The negative binomial regression model is derived by re writing Poisson regres-
sion model such that,  

0log i i iXλ β β ε= + +                      (17) 

where e iε  is a Gamma distributed error-term with mean 1 and variance 2α . 
This addition allows the variance to differ from the mean as,  

( ) ( ) 21Var Y λ αλ λ αλ= + = +                   (18) 

α  also acts as a dispersion parameter. Poisson regression model is regarded 
as a limiting model of the negative binomial regression model as α  approaches 
zero, which means that the selection between these two models is dependent 
upon the value of α . The negative binomial distribution has the form,  

( )

1

1 1

1 1 1!

y

y
P Y y

y

α

λα α

λ λ
α α α

    Γ +          = =
        Γ + +                            

(19) 

where ( ).Γ  is a gamma function. This results in the likelihood function,  
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( )
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1 1

1 1 1!
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i
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i i i

y
L Y
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α

λα α

λ λ
α α α

    Γ +          =
        Γ + +                

∏

          

(20) 

Maximum likelihood estimation is used to estimate parameters in negative 
binomial. In addition, the interpretation of regression coefficients for negative 
binomial regression is the same as for Poisson regression. 

4.3. Goodness of Fit 

Deviance was used to test the goodness of fit of the model. Deviance is a measure 
of discrepancy between observed and fitted values. The deviance for Poisson 
responses takes the form  

( )ˆ2 log
ˆ

i
i i i

i

yD y y µ
µ

   = − −  
   

∑  

The first term represents ‘twice a sum of observed times log of observed over 
fitted’. The second term, a sum of differences between observed and fitted values, 
is usually zero, because maximum likelihood estimations in Poisson models have 
the property of reproducing marginal totals. For large samples of the distribu-
tion, the deviance is approximately a chi-square with n p−  degrees of freedom, 
where n is the number of observations and p the number of parameters. There-
fore, the deviance can be used directly to test the goodness of fit of the model. 

4.4. Residual Analysis 

The Poisson regression is a non-normal regression, that is residuals are far from 
being normally distributed and the variances are non constant. Therefore we as-
sess the model based on quantile residuals which removes the pattern in discrete 
data by adding the smallest amount of randomization necessary on cumulative 
probability scale. The quantile residuals are obtained by inverting the distribu-
tion function for each response. 

Mathematically, let ( )ˆˆlim ; ,
ii y ya F y µ↑= Θ  and ( )ˆˆ; ,i ib F y µ= Θ  where F is 

the cumulative function of the probability density function ( ); ,f y µ Θ  then the 
randomized quantile residuals for iy  is ( )1

,q r ir u−= Φ  with iu  the uniform 
random variable on ( ],i ia b . The randomized quantile residuals are distributed 
normally barring the variability in µ̂  and Θ̂  [38].  

5. Results and Discussion 

The expected malaria incidences was modeled using Poisson regression and the 
results are presented in Table 2. The model examines the association between 
monthly expected malaria incidences with monthly rainfall and monthly average 
temperature. From Table 2, it was observed that for every unit increase in rain-
fall, the expected malaria incidences increases by 0.1443e 1.1551=  and for a unit 
increase in average temperature, the expected malaria incidences increase by 
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0.4419e 0.6428− =  obtained from Equation (21). Based on the P-values, the aver-
age temperature and rainfall significantly affect the expected malaria incidences. 

The residual deviance for the fitted Poisson regression was given as 89489 on 
117 degrees of freedom. 

The fitted Poisson model is given as from Table 2  

( ) ( )04 02log 9.8881 7.877e 3.265e 9.888 0.1443 0.4419A R T R T− −= + − = + −
 

(21) 

where A is the expected malaria incidences, R stands for rainfall and T stands for 
average temperature. 

To check the goodness of fit of the fitted Poisson model, the value of the resi-
dual deviance 89,489 on 117 degrees of freedom was considered which is far 
greater than the number of degrees of freedom. Therefore it can be concluded 
that the model has lack of fit. Because the ratio between the residual deviance 
and the degrees of freedom is far greater than one which implies over dispersion 
exists. The fitted Poisson model had an AIC value of 90,813 and a null deviance 
of 100,505 on 119 degrees of freedom. The assumption of mean equal to variance 
was violated since the dispersion parameter was not approximately equal to the 1, 
an indication of over dispersion in the data. This meant that the parameters of 
the model had been over estimated and the standard errors had been under es-
timated which did not give a true reflection of the model that could provide ap-
propriate expected malaria incidences from 2007 to 2016. 

To address this error, Negative Binomial Regression was used to modify the 
model so that the case of over dispersion in the data was taken care of and the 
results were presented in Table 3. It was observed that the Negative Binomial 
was actually the best model which fit the expected malaria incidences because 
the dispersion parameter given by Poisson Regression Model had been reduced 
from 770 to 1.03. 

Figures 2-5, show plots of the deviance residuals against the normal quantiles 
based on Poisson model and Negative binomial models respectively. Figure 2  

 
Table 2. Parameter estimates of Poisson regression. 

 Estimate Standard Errors z value Pr (>|z|) 

Intercept 9.888 3.087e−02 320.35 <2e−16*** 

Rainfall 7.877e−04 1.493e−05 52.76 <2e−16*** 

Average Temperature −3.265e−02 1.187e−03 −27.51 <2e−16*** 

 
Table 3. Parameter estimates for negative binomial regression model for rainfall and av-
erage temperature. 

 Estimate Standard Errors z value Pr (>|z|) 

Intercept 10.1940861 0.7788004 13.089 <2e−16*** 

Rainfall 0.0008147 0.0003849 2.116 0.0343* 

Average Temperature −0.0451456 0.0298939 −1.510 0.1310 
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Figure 2. Normal Q-Q plot for Poisson regression. 

 

 

Figure 3. Normal Q-Q plot for negative binomial regression model between rainfall and expected malaria in-
cidences. 

 

 

Figure 4. Normal Q-Q plot for negative binomial regression model between average temperature and expected 
malaria incidences. 
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Figure 5. Normal Q-Q plot for negative binomial regression model between average temperature, rainfall and 
expected malaria incidences. 

 
Table 4. Parameter estimates for negative binomial regression model for average temper-
ature. 

 Estimate Standard Errors z value Pr (>|z|) 

Intercept 11.37160 0.54154 21 <2e−16*** 

Average Temperature −0.08822 0.02178 −4.05 5.12e−05*** 

 
Table 5. Parameter estimates for negative binomial regression model for rainfall. 

 Estimate Standard Errors z value Pr (>|z|) 

Intercept 9.0252866 0.0436207 206.904 <2e−16*** 

Rainfall 0.0011832 0.0002779 4.258 2.06e−05*** 

 
for Poisson regression, the plot was not approximately linear just as for Figure 4 
and Figure 5. This indicated poor fit of the models. Figure 3, for the Negative 
Binomial model relating Malaria incidences and rainfall, the plot was approx-
imately linear. This gave the best fit compared to the rest of the plots. 

From the Figure 2, the points form a curve instead of a straight line. Normal 
Q-Q plots that look like this usually imply the model has a lack of fit. 

Three models for Negative Binomial regression were considered and com-
pared using the Akaike information criterion (AIC). The results for the two 
Negative Binomial Regression models without collinearity respectively are given 
in Table 4 and Table 5 respectively. The model from Table 5 gave the lowest 
AIC value that is 2225.4 compared to the other model from Table 4 which gave 
higher AIC value that is 2227.7. Hence Negative Binomial model for the rela-
tionship between rainfall and expected malaria incidences whose results were 
presented in Table 5 was considered the model with better fit since it had lower 
AIC value. The lower the AIC value, the better the model. 

The Negative Binomial regression model whose results were presented in Ta-
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ble 3, showed null deviance to be 140.31 on 119 degrees of freedom, residual de-
viance to be 121.36 on 117 degrees of freedom and AIC to be 2225.3. 

The Negative Binomial regression model whose results were presented in Ta-
ble 4, showed null deviance to be 135.34 on 119 degrees of freedom, residual de-
viance to be 121.41 on 118 degrees of freedom and AIC to be 2227.7 

The Negative Binomial regression model whose results were presented in Ta-
ble 5 showed null deviance to be 137.88 on 119 degrees of freedom, residual de-
viance to be 121.38 on 118 degrees of freedom and AIC to be 2225.4. 

The Model whose results were presented in Table 3 was not considered be-
cause of a negatively strong correlation between the explanatory variables that is 
rainfall and average temperature which was reported in Table 6 as −0.6985212. 
Therefore one of the independent variables was removed from the model and 
two Negative Binomial regression models were developed and results for the pa-
rameter estimates presented in Table 4 and Table 5 respectively. Based on 
P-value, the results in Table 4 and Table 5 showed that average temperature and 
rainfall significantly affected the expected malaria incidences respectively.  

Pearson correlation test was performed and the results were presented in Ta-
ble 7. The results showed that malaria and rainfall were strongly positively asso-
ciated based on the P-value which is significant since it was found to be less than 
5% significance level and a positive confidence interval. Malaria and Average 
temperature were found to be negatively associated and not significant given the 
P-value was greater than 5% significance level. 

5.1. Interpretation of Coefficients 

From Table 5, we observe that rainfall is very significant at 5% significance level 
with their significance value equal to 0.01388. For every one unit increase in 
amount of rainfall, the expected malaria incidences increases by 0.0011832e =
1.0011839003  times. From Table 3, we observe that rainfall is slightly significant 
with significance value 0.0343* at 5% significance level while temperature is not 
significant at 5% significance level with P-value of 0.1310. This indicated the pres-
ence of collinearity between rainfall and average temperature. 
 
Table 6. Correlation between rainfall and average temperature. 

Climate Variables Correlation value 

Rainfall and Average Temperature −0.6985212 

 
Table 7. Pearson correlation test results. 

 Malaria and Average temperature Malaria and rainfall 

t-value −3.0311 3.4594 

P-value 0.9985 0.0003771 

confidence interval [ ]0.4033168,1.0000000−  [ ]0.1598574,1.0000000  

degrees of freedom 118 118 
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5.2. Discussion 

Malaria is transmitted by the female Anopheles mosquito. The female Anopheles 
mosquito go through four stages in their life cycle that is egg, larva pupa and 
adult [39]. The first three stages are aquatic and also depend on the temperature. 
The adult stage is when the female Anopheles mosquito acts as malaria vector 
[39]. Once adult mosquitoes have emerged, the temperature, humidity and rain-
fall determine their chances of survival. To transmit malaria successfully, female 
Anopheles must survive long enough after they have become infected to allow 
the parasites they harbor to complete their growth cycle [31]. A conducive cli-
matic environment will also shorten the time required for the parasite develop-
ment in the mosquito [32]. The climate variables can affect the malaria inci-
dences by affecting the life cycle of the mosquito development and the parasite 
in the mosquitoes. 

Pearson correlation between rainfall and average temperature showed a strong 
negative correlation. This highlights the importance of removing one of the cli-
mate variables from the model to avoid invalid association due to collinearity. In 
this study, rainfall was the only climate variable considered in the Negative Bi-
nomial Regression model since it presented the best fit. Negative Binomial re-
gression model relating expected malaria incidences, rainfall and temperature 
was not selected as the final model due to high correlation between rainfall and 
average temperature which affected the significance of individual climate va-
riables to expected malaria incidences. The model results showed that average 
temperature was not significant in the model while rainfall was weakly signifi-
cant. This result was seen to contradict the biology of mosquito develop-
ment.The model relating malaria incidences and average temperature showed a 
significant positive relationship though it was not the model selected since it had 
a higher AIC value. Modeling has shown that optimal malaria transmission oc-
curs at 25˚C and malaria transmission decreases at temperature above 28˚C [40]. 
Temperatures below 16˚C are also detrimental for survival of mosquitoes [41]. 
Results from previous study showed a strong positive association between mala-
ria incidence in a given month and the minimum temperature of the previous 
month. This indicates that minimum temperature also affects malaria transmis-
sion [23]. 

In previous studies of climatic effects on malaria incidence, different results 
on the effect of rainfall on malaria incidence were found. [29], found rainfall to 
be significant when precipitation was 2.4 times higher than the normal level. 
Rainfall plays an important role in the survival of mosquitoes, since water pools 
from the rain provide a habitat for mosquito larvae to develop. [19], found there 
was no significant effect when rainfall was less than 100 mm per month in Yun-
nan, China. A study in Ethiopia found that rainfall had a significant effect on 
malaria incidence in hot districts with an altitude lower than 1650 mm, but not 
in cold districts with an altitude higher than 1650 mm [28]. 

In the present study, there was a positive significant effect between rainfall 

https://doi.org/10.4236/ojs.2017.76063


A. Eunice et al. 
 

 

DOI: 10.4236/ojs.2017.76063 916 Open Journal of Statistics 
 

and malaria incidences, similar to previous findings [20] [28]. The positive ef-
fects were reasonable because rain water forms water pools which provide a 
breeding ground for mosquitoes, hence increasing the mosquito density which 
in turn leads to increase in malaria incidences. To our knowledge, no study has 
investigated the association between climate variables and malaria incidences in 
Apac district, Uganda. 

The study had it’s own limitations such as short data length and not being 
able to include non-climatic variables in the models. The relationship between 
malaria incidences and climate variables a period of 10 years was not found to be 
sufficient enough to predict future occurrences. Malaria incidence is associated 
with socio-economic conditions of the people as well as malaria control meas-
ures. These factors were not incorporated in the models.  

6. Conclusion and Recommendation 

Malaria remains an important public health problem in Apac district, Northern 
Uganda. The objective of this study was to model the factors associated with 
malaria incidences in Apac District. The study used monthly data for the period 
January 2007 to December 2016 in Apac district. The Poisson regression did not 
accurately fit the data on malaria incidences due to over dispersion in the data. 
The Negative Binomial Model was a better fit. The result obtained suggested that 
rainfall was positively significant on monthly malaria incidences whereas aver-
age temperature was not a significant predictor for malaria incidences based on 
results from Pearson correlation test in Apac District. A positive relationship 
between rainfall and expected malaria incidences was observed based on the 
coefficient value of parameter estimates in Table 5. The findings provide better 
insight of climate effects on malaria and provide important information for ma-
laria prediction. It is observed that rainfall is a strong predictor of malaria inci-
dences in Apac District. We recommend that in future studies, these factors 
should be incorporated in the models and more lengthy data set should be used. 
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