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Abstract 
The strength of rock structures strongly depends inter alia on surface irregu-
larities of rock joints. These irregularities are characterized by a coefficient of 
joint roughness. For its estimation, visual comparison is often used. This is 
rather a subjective method, therefore, fully computerized image recognition 
procedures were proposed. However, many of them contain imperfections, 
some of them even mathematical nonsenses and their application can be very 
dangerous in technical practice. In this paper, we recommend mathematically 
correct method of fully automatic estimation of the joint roughness coeffi-
cient. This method requires only the Barton profiles as a standard. 
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1. Introduction 

A shape of geological discontinuities plays an important role in influencing the 
stability of rock masses. Many approaches have been used for its determination. 
The method of Barton and Choubey (1977) is well known in geotechnical prac-
tice. These authors introduced the method which is able to calculate the shear 
strength τ  of rock joints as 

tan logn r
n

JCSJRCτ σ ϕ
σ

 
= + ⋅


⋅ 


                   (1) 

where JRC is the joint roughness coefficient, JCS is the joint compressive 
strength, rϕ  is the residual friction angle, and nσ  is the normal stress. 

The method of Barton and Choubey [1] is well known in geotechnical prac-
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tice-a visual comparison a fracture rock surface to be analysed with the standard 
Barton profiles is preferred way for determining JRC values.  

A quick and easy estimate is probably one of the main reasons for this prefe-
rence. However, this method is very subjective. Therefore, objective methods for 
JRC estimation are searched—see [2] [3] [4] [5] [6] for example. Unfortunately, 
some published papers contain many inaccuracies and even mathematical non-
senses. Application of some published “indicators of similarity” may be very 
dangerous in civil engineering. We refer to some of them and we recommend a 
mathematically correct method of fully automatic estimation of the JRC index in 
the following text.  

2. Some Errors of Present Methods Based on Fractal  
Dimension 

As was said in Introduction, subjective visual comparison a fracture rock surface 
to be analyzed with the standard Barton profiles (see Figure 1) is preferred way 
for determining JRC values. Objective methods for JRC are searched, unfortu-
nately, many of them are incorrect.  

Many researchers believe that the surface roughness of rock joints needs to be 
characterized using scale invariant parameters such as fractal parameters. Several 
researchers have suggested using the fractal dimension to quantify rock joint 
roughness (see [7]-[13] for example).  

In [14], there is “derived” a “direct relationship” between the JRC index and 
fractal dimension D 

( )50 1JRC D≈ ⋅ −                          (2) 

However, it is a nonsense as the following example illustrates.  
 

 
Figure 1. Standard Barton roughness profiles and their joint rock coefficients. 
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Example: A fractal dimension is namely affine invariant, i.e. each bijective af-
fine transformation of the profile has the same dimension as an original. The 
profile ( )p x  in Figure 2 was generated as a fractional Brownian motion and 
for every x is ( ) ( )4P x p x= ⋅ . To easily determine the dimension of the result-
ing fractal, a random number must be generated by the Gaussian distribution 

( )0;1N  and the i-th iteration step variations iσ  have to be adjusted in accor-
dance with 

2
2 0

22i Hi

σ
σ =                           (3) 

where 0;1H ∈  is so called Hurst exponent. 
Due to affine invariance, both profiles have the same dimension ( 1.5D = ) 

and should have the same roughness therefore. This is evidently not true. More-
over, JRC of both profiles is 25JRC ≈  according to (1). This is also not true.  

In [14] [15], another „direct relationship” between dimension and JRC was 
published: 

21 10.87804 37.7844 16.9304
0.015 0.015
D DJRC − −   = − + ⋅ − ⋅   

   
       (4) 

This relationship is often cited (see [16] [17] [18] [19] for example) but it is 
quite false. Equation (4) gives a totally nonsensical results for Barton profiles as 
will be shown in 2.5 (see the last column of Table 3). 
 
Table 1. Hausdorff dimension and grid measure of the original Koch curve A and its af-
fine representation B estimated by box-counting method and power-function method. 
Used affinity is [ ] [ ]; ; 2x y x y→ . 

Koch curve A Koch curve B 

ε N (ε) ln(ε) ln(p) ε N (ε) ln(ε) ln(p) 

5 4322 1.6094 8.3715 5 32474 1.6094 10.3882 

10 20449 2.3026 9.9257 10 13364 2.3026 9.5003 

15 12296 2.7081 9.4170 15 7978 2.7081 8.9844 

20 8701 2.9957 9.0712 20 5470 2.9957 8.6070 

25 6512 3.2189 8.7814 25 4222 3.2189 8.3481 

30 5201 3.4012 8.5566 30 3351 3.4012 8.1170 

35 4250 3.5553 8.3547 35 2718 3.5553 7.9077 

40 3585 3.6889 8.1845 40 2316 3.6889 7.7476 

45 3049 3.8067 8.0226 45 2014 3.8067 7.6079 

50 2674 3.9120 7.8913 50 1743 3.9120 7.4634 

 
Power. f. Box-counting 

 
Power. f. Box-counting 

Dim. 1.2621 
 

1.2662 
 

1.2627 
 

1.2599 

Meas. 33365 exp (10.4184) =33470 
 

52739 exp (10.8730) =52733 
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Figure 2. The profile ( )p x  was generated as a fractional Brownian motion. Due to af-

fine invariance, the profiles ( )p x ; ( )P x  have the same dimension but evidently dif-

ferent roughness. 
 

We can often read that for computing of fractal dimension, it is necessary to 
decide whether the object is self-similar or self-affine (see [20] [21] [22] [23]). It 
is said that “the computation of fractal dimensions of self-affine fractals requires 
modified computational methods” [14] [20] and their dimensions D have to be 
computed by others methods than the dimension of self-similar curves. Alleged 
reason is “different scaling” in the x-and y-directions which changes its dimen-
sionality (see [14] for example). However, it is a deep mistake. One example for 
all: The curve B in Figure 3 contains two its copies with the same scaling (red 
and pink). These copies required “non-modified” method. However, the same 
curve contains two copies with different scaling (green and blue). These copies 
required “modified” method. Can we use the modified or the non-modified me-
thod for its dimensionality estimation?  

3. Hausdorff Measure and Hausdorff Dimension 

Hausdorff defined the first dimension that allows non-integer values. Hausdorff 
s-dimensional outer measure of a set A is defined as 

( ) ( ) ( )
;

; ;
1lim inf

n i

ss
n i n in A A i I

H A diam A diam A
n

∗

→∞ ⊆ ∈

 
= ≤ 

 
∑



           (5) 

where I is an at most countable index set. Restriction of ( )sH  to the sets mea-
surable with ( )sH∗  (H-measurable sets) is called Hausdorff s-dimensional 
measure of the set A. The number  

( ) { } ( ) ( ){ } { } ( ) ( ){ }0 0sup inf 0d
H

dD A d H A d H A+ += ∈ ∞ = ∞ = ∈ ∞ =   (6) 

is called Hausdorff dimension of the set A.  
Mandelbrot [24] defined fractal as a set which Hausdorff dimension is sharply 

greater than the topologic dimension. Ever after several dimension which allows 
non-integer values was defined (see [25] for example). Each of them is called the 
fractal dimension.  

For estimation of the Hausdorff dimension of sets which are constructed on 
digital devices, so called grid measure and grid dimension are used. The grid 
s-dimensional outer measure is defined as 

( ) ( ) ( )
;

; ;
1lim inf

n i

ss
n i n in A A i I

G A diam A diam A
n

∗

→∞ ⊆ ∈

 
= = 

 
∑



            (7) 
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(a)                                (b) 

Figure 3. “Different scaling” in x- and y-directions can change the self-similar set (a) to 
self-affine set (b). However, “different scaling” in x- and y-directions can change the 
self-affine (b) to self-similar set (a). 
 

Its restriction ( )sG  to the sets measurable with ( )sG∗  (G-measurable set) is 
called the grid measure. The grid dimension (G-dimension) of the set A is de-
fined as 

( ) { } ( ) ( ){ } { } ( ) ( ){ }0 0sup inf 0d d
GD A d G A d G A+ += ∈ ∞ = ∞ = ∈ ∞ =    (8) 

The G-dimension is suitable for digital data and since the limit condition 
n →∞  in Formula (7) cannot be realized, the limit is omitted and the Formula 
(7) is replaced with the approximate equality 

( ) ( ) ( )
;

; ;
1inf

n i

ss
n i n iA A i I

G A diam A diam A
n

∗

⊆ ∈

 
≈ = 

 
∑



            (9) 

4. Box Counting and Power-Function Method 

For the infimum to be computed in (9), only those sets ;n iA  are taken to the 
union ;n iA  for which ;n iA A ≠ ∅

. Due to the fact that only bounded sets (or 
more precisely their approximations containing finite elements) can be 
represented in the computer, the system { };n iA  is always finite. Let us denote its 
cardinality by ( )N n . The measured approximations are always G-measurable. 
In software implementations of the measurement, used metric is a square metric, 
where the diameter of a square is equal to its side. According to Formula (9) we 
obtain for measure in Hausdorff dimension 

( ) ( )
( )
( )

( )
( );

1 1

1N n N n
DD D

n i D
i i

G A diam A N n n
n

−

= =

≈ = = ⋅∑ ∑            (10) 

Therefore, 

( ) ( )D DN n G n≈ ⋅                         (11) 

Applying the logarithm on both sides of the approximate equality (11) we ob-
tain 

( ) ( )ln ln ln DN n D n G≈ ⋅ +                     (12) 

Measuring with a specified n, a ( )N n  is obtained for a covering of the 
measured set. The values D and ( )DG  are calculated by fitting the straight line 
in the form (12) using the least square method. It is evident that for a high 
enough n we can calculate D as 
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( )ln
ln
N n

D
n

≈                          (13) 

and even define the dimension as the limit of that fraction, i.e. 

( )ln
lim

lnB n

N n
D

n→∞
=                        (14) 

This dimension and the method for its measurement are known as the box 
counting. 

Note that n is the reciprocal value of the diameter of covering sets, which is 
often marked as ε . Therefore, if we denote the cardinality ( )N n  of the cover-
ing of the set to be measured as ( )N ε , we obtain 

( ) ( ) ( )D DN G Aε ε −≈ ⋅                      (15) 

from (11) 

( ) ( ) ( )ln ln ln DN D G Aε ε≈ − ⋅ +                  (16) 

from (12) or 

( )
10

ln
lim

lnB
N

D
ε

ε
ε −→ +

=                       (17) 

from (14) respectively. 
To calculate this dimension for the fractal F, it is necessary to insert this frac-

tal into an evenly spaced grid and count how many squares (2D case) or boxes 
(3D case) are required to cover the set. The box-counting dimension is calcu-
lated by seeing how this number changes as we make the grid finer by applying a 
box-counting algorithm.  

It is possible to shown that the theoretically defined box counting dimension 
(14) is equal to the Hausdorff dimension—see Formula (8). A problem is that 
the dimension (14) has to be estimated with the least-square method form the 
linear function (12). If we denote the power function (11) as ( ) Df x G x= ⋅ , sum 
of its residues is ( ) ( ) 2

ΣnR N n f n= −   , while sum of residues for the linear 
function (12) is ( ) ( ) 2* Σ ln lnnR N n f n= −   . Of course *

n nR R . Thus the 
box-counting method systematically overestimates residues of low values and unde-
restimates residues of its high values. Moreover, negative values of the difference  

( ) ( )ln lnN n f n−  have lower weights than positive values. This somehow low-
ers the tangent of the straight line as thus the value of the estimated dimension. 

This problem can be overcome by searching for the power function (11) in-
stead of the linear function (12). The least square method requires in this case 
minimization of the function 

( ) ( )2
, D

n
f N D N G n= − ⋅∑                   (18) 

This leads to the equation 

( ) ( )2 2ln ln 0D D D D

n n n n
Nn n n Nn n n− =∑ ∑ ∑ ∑            (19) 

This equation is then solved numerically—see [26] for more information.  
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5. Self-Similarity and Self-Affinity 

Many technical papers describe the fractals. We can read that the fractals can be 
either self-similar or self-affine and the original box counting method is a 
self-similar method and it provides accurate results only for self-similar profiles. 
Natural rock joint profiles are self-affine, therefore, the box-counting method is 
not useable for their fractal dimension—see [27] for example. However, these af-
firmations are very inaccurately. It is said that self-affine curves, in contrast to 
self-similar ones, are not identically scaled in x- and y-directions (see [14] [20] 
[21] [22] for example). This “definition” is unprofessional and very narrow (re-
stricted). Many others fractals are self-affine. 

A self-affine fractal is any fractal F, for which there exist affine mappings 
; 1;2; ;i i nϕ =   so it holds 

( )
1 1

n n

i i
i i

F F Fϕ
= =

= =
 

                        (20) 

If all affinities iϕ  are the similarities then the self-affine fractal is concur-
rently self-similar. It means that the self-similarity is a special case of the 
self-affinity, i.e. each self-similar set is self-affine concurrently.  

In Euclidean space, each affinity is given by 

i iX X⋅′ = +F v                        (21) 

where iF  is any square matrix and v  is any vector. If 
T 2

i i λ=⋅ ⋅F F I                        (22) 

(where I  is the identity matrix) then the affinity is called the similarity, 
number λ  is its coefficient. Except self-similar and self-affine fractals, there 
exist sets which are neither self-similar nor self-affine (Mandelbrot set for exam-
ple).  

According of the definition of the Hausdorff dimension is  

( ) ( ) ( ); ;
10 inf

nkk

s
n i n iA A

D

k I
H A diam A diam A

n⊆ ∈

 
< = ≤ < ∞ 

 
∑



       (23) 

If a set A is self-similar and 1 2; ; ; pλ λ λ
 are coefficients of the similarities 

iϕ  from (20), and for each i j≠  is ( ) ( ) ( )( ) 0D
i jH A Aϕ ϕ =  then  

( ) ( ) ( )

( )
( )( )

; ;

1

1inf

inf diam

nkk

nk

D

k

D
n i n iA A k I

p
D D

iA A

H A

D

i

H A diam A diam A
n

A λ

⊆ ∈

⊆ =

 
= ≤ 

 

=

∑

∑







          (24) 

It means that 

( ) ( ) ( ) ( )
1

p
D
i

i

D DH A H A λ
=

= ⋅∑                   (25) 

1 2 1D D D
pλ λ λ+ + + =                     (26) 

In case of 1 2 pλ λ λ λ= = = =
 is 
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1 2
ln1 1ln

D D D D
p

pp Dλ λ λ λ

λ

+ + + = ⋅ = ⇒ =                (27) 

Example: the Koch curve is self-similar with four copies of itself, each scaled 

by the factor one third, its dimension is ln 4
ln 3

D = . The Sierpinski triangle or  

Sierpinski square are also self-similar with three copies scaled by one half or  

eight copies scaled by one third respectively, their dimensions are ln 3
ln 2

D =  or 

ln 8
ln 3

D =  respectively. 

For H-measure of any fractal, the H-measure of its covering C nkk
A=



 is 
determinative. This covering consists of cubes in case of square metric. The 
measure of self-affine fractals (19) is equal to the sum of measures its affine 
copies iϕ . Each affinity iϕ  transforms a cubical covering C to the set of 
parallelepipeds ( )Ciϕ . We have to find how the volume of cube will change by 
its transform to the parallelepiped. 

Each cube is given by orthonormal vectors ( )1 2 3; ;a a a=a ; ( )1 2 3; ;b b b=b ; 
( )1 2 3; ;c c c=c  which are transform to linearly independent vectors ( )1 2 3; ;a a a′ ′ ′ ′=a ; 
( )1 2 3; ;b b b′ ′ ′ ′=b ; ( )1 2 3; ;c c c′ ′ ′ ′=c  by bijective affinity iϕ , i.e.  

T T T T T T; ;i i i′ ′ ′= = ⋅ =⋅ ⋅a F a b F b c F c               (28) 

or  
T T T T; ;i i i′ ′ ′= ⋅ = ⋅ = ⋅a a F b b F c F c                 (29) 

where iF  is the matrix of the affinty iϕ . This implies  

( ) ( ) ( ) ( ) ( )( )
11 21 31

1 2 3 1 2 3 12 22 32 1 2 3

13 23 33

; ; ; ; ; ; ; ; ;
z z z

a a a a a a z z z
z z z

 
 ′ ′ ′ = ⋅ = 
 
 

a f a f a f     (30) 

By analogy 

( ) ( ) ( ) ( )( )1 2 3 1 2 3; ; ; ; ; ; ;b b b′ ′ ′ = b f b f b f                  (31) 

( ) ( ) ( ) ( )( )1 2 3 1 2 3; ; ; ; ; ; ;c c c′ ′ ′ = c f c f c f                  (32) 

Volume of the parallelepiped which is given by vectors ; ;′ ′ ′a b c  is equal to 
the scalar triple product. Therefore, we obtain  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 11 21 31

1 2 3 12 22 32

1 2 3 13 23

2 3

2 3

2 3

33

; ; ;
; ; ;
; ; ;

a a a
b b b
c c c

a a a f f f
b b b f f f
c c c f f f

′ ′ ′
′ ′ ′ =
′ ′ ′

= ⋅

a f a f a f
b f b f b f
c f c f c f

              (33) 

from (30), (31), (32). Therefore 

( ) ( ) ( )T; ; det ; ; det ; ;i iV V V′ ′ ′ = ⋅ = ⋅a b c F a b c F a b c           (34) 
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It is possible to obtain 

( ) ( ); det ;iS S′ = ⋅′a b F a b  

for the area of the parallelogram in two-dimensional space. The diameter of cube 
(or square) which have the same volume (or area) in square metric is  

( )3 3diam det ; ; det diamnk i i nkA V A′ = ⋅ = ⋅F a b c F          (35) 

or 

( )diam det ; det diamnk i i nkA S A′ = ⋅ = ⋅F a b F           (36) 

respectively.  
For the H-measure of a self-affine fractal A which contains p affine copies of 

itself, we obtain 

( ) ( ) ( )

( )

( ) ( )

( )
( )( )

( )

( ) ( )

;

1

1

1

1inf diam diam

1inf det diam diam

1inf det diam diam

inf diam det

d

nkk

nkk

nkk

nkk

D

D
n i nkA A k I

D

i nk nkA A k I

p D D
i nk nkA A i k I

p D

D

D

D
nk iA A k I i

H A

p

i

H A A A
n

A A
n

A A
n

A

H A

⊆ ∈

⊆ ∈

⊆ = ∈

⊆ ∈ =

=

 
= ≤ 

 
 

= ⋅ ≤ 
 
  

= ≤  
  

=

=

∑

∑

∑ ∑

∑ ∑

∑

F

F

F











( )et
D

iF

 

i.e. 
( ) ( ) ( ) ( ) ( )

1
detD D

p D

i
i

H A H A
=

= ∑ F                 (37) 

Therefore 

( )
1

det 1
p D

i
i=

=∑ F                        (38) 

and 

( )3

1
det 1

p D

i
i=

=∑ F                        (39) 

in three-dimensional space by analogy. 

6. Experiments with Approximations of Theoretical Sets 

According to [27], the original box counting methods are the self-similar me-
thods and they provide accurate results only for self-similar profiles. Problems 
are supposedly encountered when self-similar methods are used in the calcula-
tion of fractal dimensions for the self-affine objects. However, this is incorrect. 
The box counting method gives accurate or inaccurate results in case of 
self-similarity or self-affinity in the same way. However, the power function 
method does not suffer by any systematic error and is more precise as was said 
in the previous section.  
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Bijective affine transform (scaling in one direction for example) changes the 
measure of the transformed set but it does not change its dimensionality. For 
these measurement, the same methods may be used (without any modification). 
We estimated the dimensionality and measure of the Koch curve (see Figure 3), 
i.e. namely the self-similar original A and further its self-affine scaling 

[ ] [ ]: ; ;2B x y x y→ . The box counting method and power function method with 
the same parameters are used in both cases. Both curves have been generated as 
image with resolution 4096 4096×  pixels. Results of these measurement are 
summarised in Table 1 and graphically represented in Figure 4 (box counting) 
and Figure 5 (power function). For both curves (self-similar and self-affine), 
approximately the same dimension has been measured ( 1.26D ≈ ) using two 
methods (box counting and power function) with the same parameters 
( 5,10, ,50ε =  ) and withouth any modification. Theoretical dimension is  

ln 4 2.261859
ln 3

D = =   in both cases. 

Straightlines (in case of the box counting) or power curves (in case of the 
power function) differs in shifting (extension) in vertical direction only. By this 
shifting (extension), set measure in corresponding fractal dimension is 
determined. Remind that the measure is the length in case of 1D =  which is 
measured in linear micrometers (μm1) for example. In case of 2D = , the 
measure is caled the area which is measured in square micrometers (μm2) for  

example. In case of Koch curve which dimension is ln 4
ln 3

D = , we must measure 

in micrometers powered by ln 4
ln 3

D = . If we presume that the pixel is a square 

with a side 1 μm then the measure of the curve A is 
 

 
Figure 4. Box-counting dimension and box-counting measure of the Koch curve A and 
its affine representation B. Used affinity is [ ] [ ]; ; 2x y x y→ . 
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Figure 5. Hausdorff dimension and grid measure of the Koch curve A and its affine re-
presentation B. Power-function method, used affinity is [ ] [ ]; ; 2x y x y→ . 

 
( ) ( ) ( )exp 10.4184 33470 mD DG A ≈ ≈ µ                (40) 

according to box counting method and 
( ) ( ) 33365 mD DG A ≈ µ                       (41) 

according to power function method. For the affine representation B of the 
curve A, these values are 

( ) ( ) ( )exp 10.8730 52733 mD DG B ≈ ≈ µ                (42) 

according to box counting method and 
( ) ( ) 52739 mD DG B ≈ µ                      (43) 

according to power function method. 
For testing of the power function method, following fractals has been chosen: 

Koch curve, Sierpinski triangle and Sierpinski square (see previous example). 
The subsequent set (triangle) is constructed as the union of three affine copies of 
itself, matrices of the affinities—see Equation (21)—are  

1 2 3

0.36 0.48 0.36 0.48 0.28 0
; ;

0.48 0.36 0.48 0.36 0 0.28
− −     

= = =     − − −     
F F F     (44) 

(vectors iv  are irrelevant for its dimension) then it implies from (38) 

( ) ( ) ( )21 3det det det 1
DD D

+ + =F F F             (45) 

in our case 

( ) ( ) ( )0.36 0.36 0.0784 1
D D D
+ + =               (46) 

and 1.622339D = 
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This triangle is self-affine, however it also holds 
T T 2 T 2

1 1 2 2 3 30.6 ; 0.28⋅= = = ⋅F F F F I F F I             (47) 

It means that this fractal is not only self-affine but also self-similar. It consists 
of two contractions with 1 2 0.36λ λ= =  and one contraction with 3 0.28λ = . 
Therefore, we can also use Equation (26)  

0.6 0.6 0.28 1D D D+ + =                      (48) 

It is the same equation as (46) and gives the same result. This fractal is illu-
strated in Figure 6 on the left and it is called “subsequent triangle” in Table 2. 

As the next fractal, a self-affine set is constructed (see Figure 6 on the right, it 
is named as “self-affine square” in Table 2). It contains five affine copies of itself, 
matrices of the affinities are  

1 2 3 4 5

1 0
3

10
2

 
 
 = = = = =
 
 
 

F F F F F                 (49) 

 

 
Figure 6. The self-affine triangle and self-affine square. 
 
Table 2. The theoretical dimension of some self-similar and self-affine fractals and the 
dimension estimated by the power function method. 

 
self- theoretical 

Dimension 
estimated 

error (%) 

Koch curve -similary 1l .n 4 2 5
ln 3

618≈  1.26377 0.152 

Sierpinski triangle -similary 1l .n 3 5 6
ln 2

849≈  1.58466 0.019 

Sierpinski square -similary 1l .n8 8 9
ln 3

927≈  1.88729 0.291 

Subsequent triangle -similary 1.62234 1.62342 0.067 

Self-affine square -affine 1.79649 1.79134 0.287 

Barnsley fern -affine 1.76462 1.76249 0.121 

Tree -affine 1.81616 1.80511 0.612 

Sea horse -affine 1.79616 1.78110 0.846 
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its dimension is 

( )
5

1

1 ln 5det 1 5 1 2 1.796488
6 ln 6

D
D

i
i

D
=

 
= ⇒ ⋅ = ⇒ = ⋅ ≈  

 
∑ M      (50) 

Sixth set in Table 2 is the Barnsley fern (see Figure 7 on the left), it has the af-
finity matrices 

1 2 3 4

0.01 0 0.2 0.2 0.1 0.3 0.83 0.05
; ; ;

0 0.2 0.3 0.2 0.3 0.2 0.05 0.83
− −       

= = = =       −       
F F F F  (51) 

According to (37) its dimension is 1.764625D = 
 

Seveth tested fractal is a tree (see Figure 7 in the middle) with matrices 

1 2

3 4

0.195 0.488 0.462 0.414
; ;

0.344 0.443 0.252 0.361

0.058 0.070 0.637 0
;

0.453 0.111 0 0.501

−   
= =   −   

− − −   
= =   −   

F F

F F
          (52) 

and dimension 1.816162D = 
 

The last fractal-“sea horse” has matrices  

1 2

0.8 0.3 0.3 0.3
;

0.3 0.8 0.4 0.3
−   

= =   − − −   
F F              (53) 

and dimension 1.796166D = 
 (see Figure 7 on the right). 

In Table 2, we can compare these theoretical dimensions of previous eight 
sets with the dimension which was estimated by the power function method. 
Data was generated by the IFS method (original resolution 4096 4096×  pixels). 
It is clear that the results of this method are sufficiently precise for both types of 
fractals. 

7. Estimation of Hausdorff Dimension of Barton Profiles 

Some authors alerts, that any fractal dimension itself cannot be used for rough-
ness modelling (see [7] [28] [29] [30] for example). It is also clear from the ex-
ample in Section 2 and from Figure 2. We illustrate this fact also in the case of 
the Barton Profile. 
 

 
Figure 7. The self-affine fractals—fern, tree and sea horse. 
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In Figure 8, we can see the original of fourth Barton profile (K) and its scal-
ings [ ] [ ]: ; ;5L x y x y→ ; [ ] [ ]: ; ;10M x y x y→ . These three profiles have been 
measured by the power function method with the same parameters.  

These measurement are graphically represented in Figure 9. For all three 
profiles, approximately the same dimension has been measured.  

8. JRC Estimators 

As is clear from previous text, JRC depends not only on the fractal dimension, 
but also on its statistical variability. Remember that the important variability 
characteristics are: 

The square root of average of the squared differences from the mean, i.e. 

( ) ( )2

1

1 n

i
i

n x x
n

σ
=

= −∑                     (54) 

where n is the number of elements of the set, ix  are its elements and x  is 
arithmetic mean (standard deviation) and the arithmetic mean of absolute val-
ues of differences between elements of statistical sets and their arithmetic mean, 
i.e. 

( )
1

1 n

i
i

x xn
n

ρ
=

= −∑                       (55) 

 

 
Figure 8. The fourth Barton profile and its affine copies. 
 

 
Figure 9. Hausdorff dimension and grid measures of the fourth Barton profile (K) and its 
affine representations ,K M . Power-function method, used affinities are [ ] [ ]; ;5x y x y→  

or [ ] [ ]; ;10x y x y→  respectively. 
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(average deviation). 
The Hurst exponent is directly related to the fractal dimension, which meas-

ures the smoothness of a surface, or, in our case, the smoothness of a rock pro-
files. The relationship between the fractal dimension D and the Hurst exponent 
H, is given by 

1H n D= + −                         (56) 

where n is the topological dimension of the measured set (see (59) for example). 
The Equation (56)—see [31] or [32] for proof—enables to compare the rough-
ness in different topological dimensions and also to compare the standard Bar-
ton 2D profile with the real 3D profiles to be measured. Therefore, a roughness 
estimator can be designed to be able to determine the JRC in different topologi-
cal dimensions, i.e. the JRC of fractal curves and the JRC of fractal surfaces as 
well. Therefore, it works with the Hurst exponent for which values is 0;1H ∈  
in both cases instead the fractal dimension for which is 1;2D∈  in case of the 
fractal curves and 2;3D∈  in case of the fractal surfaces.  

The JRC is given not only by the Hurst exponent but also by heights of curve 
or surface irregularities. These irregularities can be quantified using the standard 
deviation (54) or average deviation (55). 

Increasing irregularities heights denotes increasing of the JRC and conversely. 
Therefore, the standard deviation (53) or average deviation (55) must be placed 
to numerator of expression to be found. Thus, corresponding formulas are:  

E
Hσ
σ

=                            (57) 

(standard deviation estimator) 

E
Hρ
ρ

=                           (58) 

(average deviation estimator), σ  and ρ  are given by (54), (55).  
For JRC estimation of any profile or surface, so called characteristic functions 

( )JRC Eσ σ ; and ( )JRC Eρ ρ  have been constructed. Each of them has been de-
signed to pass through the origin of the coordinate system (if surface variability 
is equal to zero then surface is completely smooth horizontal plane, Hurst expo-
nent is equal to one and 0JRC = ). Each of them must be non-negative and in-
creasing (as the JRC). Each of them must describe a dependence of the JRC on 
Eσ  or Eρ  respectively and has been found using of the least squares method. 

9. Estimation of the Characteristic Functions 

In this section, Hausdorff dimension of all standard Barton profiles has been es-
timated using power function method and values of Eσ ; Eρ  for the standard 
Barton profiles have been measured. Results of these measurements are summa-
rized in Table 3. 

For JRC estimation of any profile or surface, so called characteristic functions 
( )JRC Eσ σ ; and ( )JRC Eρ ρ  have been constructed. Each of them has been de- 
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Table 3. Hausdorff dimensions, Hurst exponents, standard deviations, average devia-
tions, standard deviation estimators and average deviation estimators of the standard 
Barton profiles. In the last column, “JRC” assigned to corresponding dimension by 
present used and often cited expression (4). 

No Dim Hurst σ  ρ  Eσ  Eρ  JRC JRC (2) 

1 1.023 0.977 0.081 0.030 0.083 0.031 1 17.253 

2 1.147 0.853 0.159 0.124 0.187 0.146 3 −1256.586 

3 1.192 0.808 0.334 0.272 0.414 0.337 5 −2291.114 

4 1.241 0.759 0.498 0.397 0.656 0.524 7 −3764.184 

5 1.286 0.714 0.646 0.552 0.904 0.773 9 −5435.295 

6 1.314 0.686 0.894 0.760 1.303 1.108 11 −6628.901 

7 1.335 0.665 1.134 0.933 1.705 1.403 13 −7601.534 

8 1.357 0.643 1.416 1.186 2.202 1.844 15 −8691.665 

9 1.365 0.635 1.641 1.460 2.585 2.299 17 −9106.136 

10 1.398 0.602 1.910 1.693 3.172 2.813 19 −10917.635 

 
signed to pass through the origin of the coordinate system (if surface variability 
is equal to zero then surface is completely smooth horizontal plane, Hurst expo-
nent is equal to one and 0JRC = ). Each of them must be non-negative and in-
creasing (as the JRC). Each of them must describe a dependence of the JRC on 
Eσ  or Eρ  respectively and has been found using of the least squares method. 

Equations of these functions are 

( ) 0.6519.186JRC E Eσ σ σ= ⋅                   (59) 

(see Figure 10) 

( ) 0.61210.095JRC E Eρ ρ ρ= ⋅                   (60) 

(see Figure 11). 

10. Estimation of the JRC Index of Real Samples 

All geological data used in this paper has been acquired by prof. Tomáš Ficker 
from the Faculty of Civil Engineering of our university. All the samples are spe-
cimens of limestone (locality Brno-Hády, Czech Republic). All processing and 
visualization of these data have been made by original author’s software. For 
more information of these reconstructions and visualizations see [33] [34] [35] 
[36]. 

In this section, limestone surfaces in Figure 12 have been used for testing. 
If we presume that the surface is isotropic, i.e. its joint roughness coefficient is 

not dependent on the direction, one JRC may be assigned to 3D surface. In this 
case, the surface is covered by diminishing cubes (thickening spatial grid) for es-
timation of the Hausdorff dimension using power function method according to 
(21). There is ( )2;3D∈ , 3n =  and ( )0;1H ∈  in expression (56) which 
serves for JRC estimation. This JRC we call the global JRC.  
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Figure 10. The JRC as function of standard deviation estimator Eσ —see (59). 

 

 
Figure 11. The JRC as function of average deviation estimator Eρ —see (60). 

 
However, the JRC may have different values along different orientations on a 

rock surface. In this case, we can choose the direction of the JRC estimation. The 
profile curve is generated for selected direction and its Hausdorff dimension is 
measured by power function method according to (11). There is ( )1;2D∈ , 

2n =  in expression (56) and also ( )0;1H ∈  in expressions (57), (58) which 
serves for JRC estimation. This JRC we call the directional JRC.  

The global JRC has been estimated for the samples ; ; ;A B C D  from Figure 
12. For each of them, thirty six directions have been chosen for estimation of the 
directional JRC. These directions are illustrated in Figure 13 for the sample D. 
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(A)                                      (B) 

   
(C)                                      (D) 

Figure 12. The limestone samples under tests. 3D reconstruction from the series of par-
tially focused images (see [33] [34] [35] [36] for more information). 
 

 
Figure 13. Directions that were used for estimation of the directional JRCs of the samples 

; ; ;A B C D . The profiles marked as blue on the left are illustrated on the right. 
 

Results of these measurements are summarized in Table 4 and Table 5 and 
graphically represented in Figures 14-19. In Figure 14 we can see dimension 
estimation of the profile with direction 0˚ on the sample A, the profile with di-
rection 90˚ on the sample B, the profile with direction 100˚ on the sample C and 
the profile with direction 200˚ on the sample D using box counting method. In 
Figure 15, there are illustrated estimation of the same profiles using power func-
tion method.  

In the second last row of Table 2 and Table 3, averages of Hausdorff dimen-
sions, Hurst exponents, standard deviations, average deviations and JRCs in in-
dividual directions are stated. In the last row of Table 4 and Table 5, the Haus-
dorff dimension, Hurst exponent, standard deviation, average deviation and 
JRCs measured over the whole surface are stated. In Figures 16-19. 
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Table 4. Hausdorff dimensions estimated by power function method, Hurst exponents, 
standard deviations, average deviations and directional JRCs of the samples ,A B . Aver-
aged values on these quantities are in the second last row, corresponding values of the 
global JRCs are in the last row. 

Angle 
Sample A Sample B 

Dim Hurst σ  ρ  JRCσ  JRCρ  Dim Hurst σ  ρ  JRCσ  JRCρ  

0˚ 1.330 0.670 1.028 1.076 5.523 5.481 1.280 0.720 1.405 1.519 6.450 6.464 

10˚ 1.381 0.619 0.960 1.037 5.560 5.620 1.269 0.731 1.484 1.543 6.622 6.469 

20˚ 1.448 0.552 0.934 0.989 5.886 5.856 1.195 0.805 1.706 1.854 6.806 6.818 

30˚ 1.395 0.605 0.914 0.971 5.468 5.479 1.250 0.750 1.894 2.040 7.630 7.545 

40˚ 1.373 0.627 0.808 0.869 4.931 5.011 1.250 0.750 1.893 2.133 7.624 7.751 

50˚ 1.403 0.597 0.698 0.668 4.632 4.403 1.237 0.763 1.480 1.941 6.425 7.242 

60˚ 1.337 0.663 0.656 0.650 4.156 4.060 1.262 0.738 1.348 1.586 6.183 6.539 

70˚ 1.316 0.684 0.551 0.538 3.638 3,553 1.250 0.750 1.141 1.328 5.492 5.814 

80˚ 1.218 0.782 0.584 0.562 3.463 3.363 1.214 0.786 1.385 1.416 6.040 5.875 

90˚ 1.277 0.723 0.603 0.556 3.722 3.504 1.268 0.732 1.141 1.204 5.577 5.558 

100˚ 1.448 0.552 0.505 0.502 3.951 3.879 1.299 0.701 0.807 1.255 4.586 5.854 

110˚ 1.367 0.633 0.581 0.604 3.959 3.996 1.264 0.736 0.775 1.303 4.328 5.813 

120˚ 1.376 0.624 0.613 0.694 4.139 4.385 1.381 0.619 0.803 1.063 4.954 5.708 

130˚ 1.260 0.740 0.918 0.914 4.811 4.674 1.262 0.738 0.838 1.262 4.546 5.692 

140˚ 1.289 0.711 1.074 1.081 5.466 5.299 1.466 0.534 0.936 1.066 6.018 6.252 

150˚ 1.262 0.738 1.211 1.231 5.768 5.607 1.313 0.687 1.248 1.322 6.163 6.114 

160˚ 1.296 0.704 1.213 1.212 5.952 5.713 1.350 0.650 1.522 1.500 7.265 6.828 

170˚ 1.244 0.756 1.202 1.214 5.651 5.479 1.316 0.684 1.620 1.705 7.314 7.152 

180˚ 1.306 0.694 1.036 0.983 5.424 5.075 1.268 0.732 2.141 2.344 8.385 8.327 

190˚ 1.286 0.714 0.933 0.915 4.974 4.775 1.334 0.666 2.241 2.427 9.189 9.012 

200˚ 1.279 0.721 0.930 0.868 4.934 4.601 1.249 0.751 2.541 2.683 9.220 8.903 

210˚ 1.246 0.754 0.889 0.828 4.653 4.349 1.233 0.767 2.777 2.902 9.629 9.213 

220˚ 1.283 0.717 0.717 0.708 4.185 4.079 1.143 0.857 3.139 3.692 9.701 9.970 

230˚ 1.334 0.666 0.669 0.600 4.196 3.858 1.141 0.859 3.653 4.028 10.689 10.498 

240˚ 1.305 0.695 0.576 0.554 3.705 3.580 1.066 0.934 4.256 4.565 11.179 10.766 

250˚ 1.326 0.674 0.541 0.510 3.629 3.470 1.184 0.816 4.395 4.850 12.460 12.124 

260˚ 1.291 0.709 0.474 0.443 3.222 3.090 1.084 0.916 4.730 5.288 12.126 11.913 

270˚ 1.273 0.727 0.488 0.434 3.234 3.006 1.179 0.821 4.651 5.155 12.878 12.538 

280˚ 1.368 0.632 0.480 0.426 3.500 3.234 1.107 0.893 4.713 5.053 12.296 11.768 

290˚ 1.350 0.650 0.511 0.474 3.581 3.393 1.094 0.906 4.410 4.679 11.664 11.130 

300˚ 1.350 0.650 0.541 0.525 3.715 3.610 1.180 0.820 4.010 4.349 11.708 11.318 

310˚ 1.348 0.652 0.631 0.636 4.098 4.048 1.116 0.884 3.858 4.270 10.871 10.690 

320˚ 1.359 0.641 0.684 0.673 4.364 4.232 1.124 0.876 3.633 4.060 10.521 10.428 

330˚ 1.320 0.680 0.819 0.781 4.723 4.471 1.165 0.835 3.412 3.833 10.421 10.367 

340˚ 1.351 0.649 0.879 0.868 5.092 4.903 1.218 0.782 2.421 2.281 8.700 7.867 

350˚ 1.340 0.660 0.998 0.996 5.471 5.276 1.280 0.720 1.418 1.804 6.491 7.177 

Aver. 1.326 0.674 0.774 0.766 4.538 4.400 1.228 0.772 2.441 2.720 8.370 8.424 

3D 2.312 0.688 0.783 0.761 4.549 4.369 2.205 0.795 2.349 2.468 8.443 8.174 
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Table 5. Hausdorff dimensions estimated by power function method, Hurst exponents, 
standard deviations, average deviations and directional JRCs of samples ,C D . Averaged 
values on these quantities are in the second last row, corresponding values of 3D surface 
are in the last row. 

Angle 
Sample C Sample D 

Dim Hurst σ  ρ  JRCσ  JRCρ  Dim Hurst σ  ρ  JRCσ  JRCρ  

0˚ 1.318 0.682 3.994 4.156 13.149 12.306 1.087 0.913 2.765 3.232 8.579 8.852 

10˚ 1.459 0.541 3.319 3.689 13.564 13.185 1.109 0.891 3.404 3.933 9.970 10.119 

20˚ 1.494 0.506 2.909 3.495 12.992 13.275 1.161 0.839 3.511 4.508 10.578 11.403 

30˚ 1.455 0.545 3.500 3.411 13.968 12.514 1.157 0.843 3.517 4.607 10.555 11.518 

40˚ 1.401 0.599 3.888 4.073 14.063 13.158 1.156 0.844 4.151 4.693 11.743 11.640 

50˚ 1.372 0.628 4.749 4.507 15.526 13.598 1.150 0.850 4.427 4.776 12.192 11.718 

60˚ 1.399 0.601 4.283 4.656 14.945 14.246 1.117 0.883 4.449 4.821 11.932 11.514 

70˚ 1.346 0.654 4.284 4.504 14.137 13.253 1.116 0.884 4.057 4.713 11.232 11.349 

80˚ 1.293 0.707 4.260 4.166 13.402 12.064 1.105 0.895 3.730 4.286 10.549 10.631 

90˚ 1.415 0.585 3.120 3.356 12.385 11.872 1.132 0.868 2.953 3.397 9.248 9.406 

100˚ 1.481 0.519 2.142 2.488 10.491 10.645 1.094 0.906 4.227 4.147 11.351 10.346 

110˚ 1.385 0.615 1.939 2.104 8.809 8.670 1.086 0.914 5.082 4.872 12.721 11.350 

120˚ 1.396 0.604 1.865 1.846 8.689 8.099 1.103 0.897 5.948 6.555 14.253 13.741 

130˚ 1.419 0.581 1.783 1.809 8.656 8.190 1.047 0.953 7.430 10.987 15.831 18.124 

140˚ 1.474 0.526 1.609 1.819 8.636 8.729 1.142 0.858 8.048 11.253 17.850 19.603 

150˚ 1.398 0.602 1.705 1.797 8.220 7.986 1.059 0.941 9.160 12.247 18.281 19.509 

160˚ 1.338 0.662 2.288 2.540 9.345 9.295 1.062 0.938 8.338 10.554 17.234 17.857 

170˚ 1.357 0.643 2.630 2.903 10.420 10.256 1.061 0.939 6.999 8.614 15.376 15.776 

180˚ 1.270 0.730 3.976 4.447 12.550 12.307 1.050 0.950 5.728 7.242 13.408 14.104 

190˚ 1.279 0.721 4.487 4.769 13.679 12.933 1.082 0.918 6.110 6.520 14.293 13.510 

200˚ 1.256 0.744 3.871 3.862 12.179 11.164 1.076 0.924 6.594 7.103 14.948 14.170 

210˚ 1.341 0.659 2.901 2.715 10.938 9.709 1.104 0.896 7.429 9.604 16.480 17.344 

220˚ 1.389 0.611 2.006 1.724 9.038 7.712 1.044 0.956 9.084 12.200 17.998 19.277 

230˚ 1.464 0.536 1.476 1.475 8.069 7.599 1.059 0.941 9.968 12.504 19.312 19.758 

240˚ 1.293 0.707 2.257 2.359 8.878 8.539 1.047 0.953 9.273 12.537 18.282 19.641 

250˚ 1.359 0.641 2.206 2.253 9.322 8.813 1.061 0.939 6.954 7.819 15.318 14.881 

260˚ 1.299 0.701 2.556 3.251 9.680 10.432 1.126 0.874 4.916 4.973 12.810 11.803 

270˚ 1.258 0.742 2.704 3.393 9.675 10.343 1.156 0.844 3.479 2.549 10.476 8.038 

280˚ 1.269 0.731 3.062 3.612 10.589 10.841 1.168 0.832 2.007 1.992 7.402 6.981 

290˚ 1.283 0.717 3.271 4.590 11.189 12.685 1.203 0.797 1.653 1.454 6.711 5.918 

300˚ 1.229 0.771 4.576 6.858 13.262 15.480 1.223 0.777 2.021 2.052 7.771 7.407 

310˚ 1.273 0.727 5.372 7.117 15.294 16.415 1.219 0.781 2.294 2.474 8.410 8.274 

320˚ 1.255 0.745 5.775 7.138 15.770 16.198 1.131 0.869 2.798 3.073 8.924 8.845 

330˚ 1.224 0.776 5.668 6.636 15.178 15.120 1.154 0.846 2.435 2.700 8.303 8.315 

340˚ 1.298 0.702 4.931 5.576 14.793 14.452 1.111 0.889 2.514 2.735 8.205 8.128 

350˚ 1.376 0.624 4.124 4.400 14.221 13.445 1.089 0.911 2.406 2.584 7.849 7.736 

Aver. 1.350 0.650 3.319 3.708 11.825 11.542 1.112 0.888 4.996 5.953 12.399 12.461 

3D 2.398 0.602 3.356 3.612 12.739 12.193 2.081 0.919 5.144 5.487 12.775 12.159 
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Figure 14. Graphical representation of profile dimension estimation: sample A, direction 
0˚, sample B, direction 90˚, sample C direction 100˚, sample D, direction 200˚ (box 
counting method). 
 

 
Figure 15. Graphical representation of profile dimension estimation: sample A, direction 
0˚, sample B, direction 90˚, sample C direction 100˚, sample D, direction 200˚ (power 
function method). 
 

1) Directional JRCσ  is marked as red solid 
2) Directional JRCρ  is marked as green solid 
3) Average of directional JRCσ  is marked as red dashed 
4) Average of directional JRCρ  is marked as green dashed 
5) Global JRCσ  is marked as blue 
6) Global JRCρ  is marked as dark pink 
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Figure 16. Directional JRCσ  and JRCρ , average of directional JRCσ  and JRCρ , 

global (3) JRCσ  and JRCρ  of the sample A. 

 

 
Figure 17. Directional JRCσ  and JRCρ , average of directional JRCσ  and JRCρ , 

global (3D) JRCσ  and JRCρ  of the sample B. 
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Figure 18. Directional JRCσ  and JRCρ , average of directional JRCσ  and JRCρ , 

global (3D) JRCσ  and JRCρ  of the sample C. 

 

 
Figure 19. Directional JRCσ  and JRCρ , average of the directional JRCσ  and 

JRCρ , global (3D) JRCσ  and JRCρ  of the sample D. 
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11. Conclusions 

This article showed that the fractal dimension does not dependent on scaling. 
Therefore, there exists no direct relationship between the fractal dimension and 
JRC, any fractal dimension itself cannot be used for roughness modelling. JRC 
depends not only on the fractal dimension, but also on other variables. In this 
paper, statistical variability of the surface has been used. Increasing irregularities 
heights denote increasing of the JRC and conversely. Therefore, the standard 
deviation or average deviation must be placed to numerator of the JRC estima-
tor.  

The JRC estimator is designed to be able to determine the JRC in different to-
pological dimensions, i.e. the JRC of fractal curves and the JRC of fractal surfaces 
as well. Therefore, Hurst exponent was used instead the fractal dimension. In-
creasing dimension denotes increasing roughness and decreasing Hurst expo-
nent. Conversely-decreasing dimension denotes decreasing roughness and in-
creasing Hurst exponent. For this reason, Hurst exponent must be placed to de-
nominator of the JRC is estimator.  

The estimator enables fully automatic estimation of the isotropic (global) joint 
roughness coefficient (this assumes independence on the direction) and also 
anisotropic (directional) joint roughness coefficient (which value depends on the 
direction). In case of the isotropic JRC, the estimator works with whole surface 
which is topologically two-dimensional, in case of the anisotropic JRC, the esti-
mator works in chosen direction, i.e. with topologically one-dimensional profile. 
The average of the anisotropic JRC estimated for 360˚ with step 10˚ is approx-
imately equal to the isotropic (global) JRC. 
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