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Abstract 
The paper shows that the variational principle serves as an element of the 
mathematical structure of a quantum theory. The experimentally confirmed 
properties of the corpuscular-wave duality of a quantum particle are elements 
of the analysis. A Lagrangian density that yields the equations of motion of a 
given quantum theory of a massive particle is analyzed. It is proved that if this 

Lagrangian density is a Lorentz scalar whose dimension is 4L−    then the as-

sociated action consistently defines the required phase of the quantum par-

ticle. The 4L−    dimension of this Lagrangian density proves that also the 

quantum function ( )xµψ  has dimension. This result provides new criteria 

for the acceptability of quantum theories. An examination of the first order 
Dirac equation demonstrates that it satisfies the new criteria whereas the 
second order Klein-Gordon equation fails to do that. 
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1. Introduction 

A physical theory has two primary elements: it has a self-consistent mathematical 
structure and it describes adequately data which are obtained from experiments 
that are included in the theory’s domain of validity. The present work concentrates 
on the mathematical structure of quantum theories of electromagnetic interactions. 
Like any other physical theory, it takes few experimental data as elements that the 
theory must satisfy. The discussion shows that these requirements lead to a quite 
unique mathematical structure of the theory. The results provide another example 
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of Wigner’s well known statement about the unreasonable effectiveness of 
mathematics in the natural sciences [1]. 

Special relativity is a well established theory. In particular, modern 
accelerators produce particles whose velocity is very close to the speed of light. 
The design of these machines and the data which are obtained from them are 
consistent with the laws of special relativity. It means that accelerators provide 
an astronomical number of experimental tests which are consistent with 
special relativity. Therefore, it is assumed here that the required quantum 
theory must take a relativistic covariant form. 

This work aims to derive the structure of a quantum theory of an elementary 
massive particle. Historically, the first purpose of quantum theories was to 
describe experimental data of the electron. As a matter of fact, the electron is the 
most well-known elementary massive particle and it provides many kinds of 
experimental data. Hence, the ample electronic data enable to carry out many 
different tests of the validity of its quantum theory. This issue is very useful 
because a physical theory becomes unacceptable if it is inconsistent with even 
one kind of well established experiment that is included within its domain of 
validity. 

Physical principles play an important role in the search for new physical 
theories because they provide general requirements that should be satisfied by 
any new theoretical candidate. The title of this work indicates that it discusses 
the variational principle. The correspondence principle is also used in the 
following discussion and the meaning of this principle is explained before it is 
applied. 

Units where 1c= =  are used. Greek indices run from 0 to 3 and Latin 
indices run from 1 to 3. The metric is diag. (1, −1, −1, −1). Relativistic 
expressions are written in the standard notation. Square brackets [ ]  denote 
the dimension of the enclosed expression. In a system of units where 1c= =  
there is just one dimension, and the dimension of length, denoted by [ ]L , is 
used. In particular, energy and momentum take the dimension 1L−    and the 
electric charge is a dimensionless pure number. The value of the electron’s 
charge is 2 1 137e  . The second section discusses hierarchical relations 
between physical theories and the significance of the correspondence principle. 
The role of the variational principle in the structure of quantum theories is 
explained in the third section. The experimental information used in the analysis 
is shown in the fourth section. The fifth section proves the validity of a new 
reason for the need of the variational principle. The sixth section describes 
specific results which are derived from the variational principle. The last section 
contains concluding remarks. 

2. Hierarchical Relationships between Physical Theories 

An essential feature of an acceptable physical theory is the existence of a domain 
of validity where the theory describes properly experimental results. For example, 
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it is well known that Newtonian mechanics yields good predictions in cases 
where the particles’ velocity is much smaller than the speed of light and if 
quantum effects can be ignored. These restrictions define the domain of validity 
of Newtonian mechanics. 

The founders of quantum mechanics have recognized that the classical limit of 
quantum mechanics should be consistent with classical physics. And indeed, a 
proof showing that the classical limit of quantum mechanics agrees with classical 
physics was published in 1927 (see the Ehrenfest theorem in [2], pp. 25-27, 
136-138). This matter can be found in many textbooks. For example: “classical 
mechanics must therefore be a limiting case of quantum mechanics” (see [3], p. 
84). A general discussion of this topic is presented in pp. 1-6 of [4]. 

Let ,A B  denote two physical theories and ,A BD D  denote their domain of 
validity, respectively. If A BD D⊂  then these domains of validity can be used 
for a definition of hierarchical relationships between ,A B . It means that theory 
B is good in all cases where theory A is good, but not vice versa. In this case the 
rank of theory B is higher than that of theory A. For example, the rank of special 
relativity is higher than that of Newtonian mechanics. 

Generally the hierarchical relationship between two theories is obtained in 
cases where AD  is relevant to a limit of a certain variable. For example, the 
domain of validity of Newtonian mechanics is relevant to the limit 0iv → , 
where iv  is the velocity of the ith particle. In this case, formulas of special 
relativity boil down to corresponding formulas of Newtonian mechanics. The 
domain of validity of Newtonian mechanics holds not only for the case where 

0iv =  because the continuity of expressions indicates that if iv c
 then 

errors of Newtonian mechanics are smaller than measurements’ errors and this 
theory is acceptable. The limit process used for the definition of AD  means that 
the correspondence between theories ,A B  relies on a solid mathematical basis. 

The relationship A BD D⊂  means that theory B has a more profound 
meaning than that of theory A. However, the merits of theory A should not be 
underestimated because an appropriate limit of expressions of theory B must 
be consistent with the corresponding expressions of theory A. It means that 
theory A provides theoretical constraints on the acceptability of theory B. 
These constraints are useful in an examination of the acceptability of new 
theoretical ideas. They are related to a certain limit of a variable that defines 
the domains of validity of the two theories. Therefore, these constraints belong 
to the mathematical structure of the theories. 

The hierarchical relationships between the following quantum theories are 
discussed in this work: non-relativistic quantum mechanics (QM), relativistic 
quantum mechanics (RQM) and quantum field theory (QFT). Here the 
hierarchical rank of RQM is higher than that of QM because QM is restricted to 
cases where the particles’ velocity iv  (or in a quantum parlance i ip m ) is 
much smaller than the speed of light. RQM is restricted to cases where the 
number of particles can be regarded as a constant of the motion whereas QFT 
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discusses cases where additional particle-antiparticle pairs are included in the 
system. For example, experiments show that a non-negligible probability of the 
existence of quark-antiquark pairs is found in the proton (see [5], p. 282). 
Therefore, QFT should be used for a description of the proton structure. Figure 
1 illustrates the hierarchical relations between these theories. Here the domains 
of validity of the three theories are represented by the corresponding rectangles 
which satisfy the following relations QM RQM QFT⊂ ⊂ . 

The relationships between QFT and QM is recognized in the literature. For 
example: “First, some good news: quantum field theory is based on the same 
quantum mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, 
and others in 1925-26, and has been used ever since in atomic, molecular, 
nuclear and condensed matter physics” (see [6], p. 49). In this work, these 
constraints are called Weinberg correspondence principle. 

In the physical literature the relationship between QM and classical physics is 
sometimes called the Bohr correspondence principle (see [2], p. 4). The 
philosophical literature discusses general aspects of the correspondence between 
theories and this topic is called the generalized correspondence principle [7]. 

3. The Role of the Variational Principle in Quantum 
Theories 

Items of the following list mention briefly examples that point out the relevance of 
the variational principle, its Lagrangian density   and the associated action S to 
quantum theories. These items are not new and it is shown here that they can be 
found in textbooks. Furthermore, the variational principle has a mathematical 
structure and it means that one can prove the correctness of these items. 

• The variational principle is used in a demonstration of the consistence of the 
classical limit of quantum mechanics with classical physics (see e.g. [3], section 
32; [8], pp. 19-21). 

• The discussions in the previous references also show that in the classical 
limit, the wave function of a quantum particle takes the following form 

e ,iSAψ =                              (1) 

where S is the action of the given Lagrangian. In the units used herein 1=  and 
it can be removed from (1). 
 

 
Figure 1. A chain of three rectangles that represent 
domains of validity of three quantum theories, 
respectively. The figure shows that a smaller 
rectangle is included in a larger rectangle (see text). 
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• An application of the Lagrangian that is used in the variational principle 
yields a definition of canonical momenta, where each of which is related to a 
generalized coordinates (see e.g. [9], p. 16). It can be shown that the Poisson 
brackets of a classical Hamiltonian and a dynamical variable correspond to an 
appropriate commutation relations of quantum mechanics (see e.g. [3], section 
21 ; [8], pp. 26-28). 

• The Noether theorem (see [10]) proves that a conservation law of a physical 
quantity corresponds to an appropriate invariance of the Lagrangian with 
respect to a certain transformation. Analogous relations are found for the 
Lagrangian density of QFT (see [6], pp. 306-314; [11], pp. 17-22). 

• Relativistically covariant QFT equations are obtained from a Lagrangian 
density that is a Lorentz scalar (see [6], p. 300). This property emphasizes the 
significance of this kind of Lagrangian density. 

• The variational principle is also used in other fields of physics. For example, 
textbooks prove that Newtonian mechanics can be derived from this principle 
(see [9, 12]). 

The main objective of this work is to show that the foregoing items do not 
cover all aspects of the relevance of the variational principle to quantum theories. 
Consequences of the new applications of the variational principle are discussed. 

4. Experimental Elements Used in the Analysis 

The following fundamental experimental data are a combination of two features 
of a quantum particle. Some experiments show that it has corpuscular properties 
whereas other experiments show that it has wave properties (see [2], pp. 1-3; [13] 
p. 59). The combination of these properties is called corpuscular-wave duality. 
In classical physics this duality is a contradiction. Indeed, in classical physics an 
elementary particle is point-like (see [14], pp. 46-47) whereas a wave has a 
spatial distribution. Therefore, a new theory which is consistent with this duality 
is required. 

The following discussion shows how these requirements lead to the structure 
of quantum theories. In particular, the primary role of the variational principle is 
derived. 

5. Properties of Relativistic Quantum theories 

The primary experimental properties of a quantum particle which are described 
in the previous section are used here for a construction of the main elements of a 
quantum theory. This task is done stepwisely. 

• In order to be consistent with the pointlike property of an elementary 
quantum particle, the theory describes it by means of a wave function whose 
form is 

( ) ,xµψ                             (2) 

where xµ  denotes a single set of four space-time coordinates. The following 
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argument explains why the form of (2) describes an elementary pointlike 
particle. 

Take for example the ground state of the positronium, which is a bound state 
of an electron and a positron. This object, which has a non-vanishing volume, is 
described by a function of the form ( )1 2, ,tψ x x , where 1 2,x x  denote the 
three spatial coordinates of the electron and the positron, respectively. This 
example shows that in order to describe a composite non-pointlike particle one 
needs more than four space-time degrees of freedom. 

As a matter of fact, the form of (2) is used in QFT textbooks in expressions for 
the Lagrangian density of any elementary quantum particle [6] [11] [15]. This 
issue means that there is a consensus about this requirement. 

• In order to be consistent with the wave properties of a quantum particle, the 
function ( )xµψ  must have a phase factor. The de Broglie work has proven that 
the argument of the phase factor of a free quantum particle takes the form 
( )tω⋅ −k x , where 

; Eω= =k p  
                       (3) 

and , Ep  denote the particle’s linear momentum and energy, respectively. 
Historically, de Broglie published his relations (3) before they were experimentally 
confirmed (see [2], p. 3; [8], pp. 48-49). This is certainly an example of a successful 
theoretical work. 

• The wave properties of the quantum function (2) show that it must satisfy a 
wave equation. 

• A wave function of a free particle that travels in the x-direction and satisfies 
the de Broglie relations can be written as a linear combination of the following 
expressions (see [2], p. 18) 

( ) ( ) ( )( )cos , sin , expkx t kx t i kx tω ω ω− − ± −                (4) 

The first and the second expressions of (4) are real functions whereas the last 
expression is a complex function. 

The following argument proves that real functions cannot describe a massive 
quantum particle. Let us use the real functions of (4) and examine a massive 
quantum particle which is in a field free region. In a particular inertial frame this 
particle is at rest and its linear momentum 0=p . Substituting this value and (3) 
into (4), one finds that in this frame the general form of a real wave function of a 
massive quantum particle is 

( ) ( ) ( ) ( ), sin cos sin ,t x A t B t C tψ ω ω ω δ= + = −          (5) 

where , ,A B C  and δ  are appropriate real constant numbers. It follows that for 
every integer N, there is an instant when πt Nω δ− =  and the wave function of 
(5) vanishes throughout the entire 3-dimensional space. The following 
argument proves that this function is unacceptable. In the non-relativistic QM 
the particle’s density is *ψ ψ . It means that if ψ  vanished throughout the 
entire 3-dimensional space then the particle does not exist. The Weinberg 
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correspondence principle and the limiting process prove that this result also holds 
for higher quantum theories because these theories must use ψ  as a factor for 
the definition of density. 

For these reasons, the phase factor of the quantum function of a motionless 
particle must be complex and the last expression of (4) shows that this function 
takes the form 

( )e , , .i x y zψ χΦ=                        (6) 

The foregoing argument holds for a motionless particle. Such a particle is in a 
state which is the limit of states of particles that move inertially in a field-free 
region and their velocity tends to zero. Hence, a quantum function of particles 
that move inertially in a field-free region must be complex, because the limit of 
real functions is a real function. 

Furthermore, a field-free region is the limit of regions where the intensity of 
the interaction tends to zero. Therefore, using a similar argument, one finds that 
the general state of a quantum particle is described by a complex function. This 
issue is also discussed in [16]. 

• Let us examine the power series of the phase factor of the quantum function 
(6) 

e 1i iΦ = + Φ +                      (7) 

Now, a very well known law of physics states that all terms of a physically 
acceptable expression must have the same dimension, and, in a relativistic theory, 
they must also satisfy covariance. Since each of the numbers 1, i  on the right 
hand side of (7) is a dimensionless Lorentz scalar, one concludes that also the 
phase Φ  must be a dimensionless Lorentz scalar. The following argument 
explains how these constraints are satisfied. 

• Let us use the variational principle and a Lagrangian density   that yields 
the required equations of the given quantum particle. The case of a Dirac 
particle is used here as an illustration of this issue 

1 .
16πD i m F F e Aµ µν µ

µ µν µψ γ ψ ψγ ψ = ∂ − − −             (8) 

Here † 0ψ ψ γ≡ . The first term of (8) represents a free Dirac particle, the 
second term represents free electromagnetic fields and the last term represents 
the interaction between a Dirac charged particle and electromagnetic fields (see 
[11], p. 84, [15], p. 78). 

The action of (8) is obtained from its 4-dimensional integral 
4d .DS x= ∫                            (9) 

The action S  and   have the same dimension (see e.g. [8], p. 20, Equation 
(6.1)). It follows that in the unit system used herein where 1= , the action is a 
dimensionless Lorentz scalar. Evidently, 4d x  is a Lorentz scalar whose 
dimension is 4L    (see [14], p. 21). Hence, the action (9) proves that the 
Lagrangian density   of a quantum particle must be a Lorentz scalar whose 
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dimension is 4L−   . These constraints are imposed on an acceptable theory of a 
quantum particle. This kind of action can be used for the particle’s phase. This 
general result is an extension of (1) which applies to the classical limit of the 
wave function. 

The foregoing discussion proves that the action which is obtained from the 
Lagrangian density of a quantum theory can be used as the required phase of a 
quantum particle if the Lagrangian density is a Lorentz scalar whose dimension 
is 4L−   . The Weinberg correspondence principle proves that this conclusion 
holds for QM, RQM and QFT. Item 5 of section 3 indicates that the need for a 
Lorentz scalar Lagrangian density is already documented in the literature. The 
required 4L−    dimension of the Lagrangian density is the main subject of the 
following discussion. 

6. Discussion 

This section describes some results that demonstrate powerful consequences of 
the requirement of a Lagrangian density whose dimension is 4L−   . 

Let us take the Lagrangian density of a Dirac electron (8). Its dimension is 
4L−    and in the unit system used herein 1c =  and the dimension of each 

component of the partial derivatives µ∂  is 1L−   . It follows that the dimension 
of the product ψψ  is 3L−   . This is the dimension of density and indeed, the 
theory of a Dirac particle yields a consistent expression for a conserved 4-current 

,; 0.j jµ µ µ
µψγ ψ= =                     (10) 

It is well known that density is the 0-component of the 4-current 0j ψ ψ= †  
(see [17], pp. 23, 24). 

The following product of the Schroedinger wave function *ψ ψ  denotes 
density and it is used in a consistent expression for density-current (see [8], p. 54; 
[13], pp. 117-120). This result shows that the Dirac equation is consistent with the 
Weinberg correspondence principle of section 2. In particular, a construction of a 
Hilbert space is a requirement that should be satisfied by a consistent quantum 
theory (see [6], p. 49). The consistent expression for density of a Dirac particle (10) 
enables a construction of a Hilbert space for a Dirac electron, where the required 
inner product of two functions is † 3di j xψ ψ∫ . 

In the case of quantum theories, the dimension 4L−    of the Lagrangian 
density provides a simple proof of the role of the electromagnetic 4-potential in 
the interaction term of an electric charge. Indeed, the laws of Maxwellian 
electrodynamics prove that electromagnetic interaction is proportional to the 
charge. Therefore, in a quantum theory it should be proportional to the charge 
density whose dimension is 3L−   . Hence, due to the 4L−    dimension of the 
Lagrangian density, the dimension of the electromagnetic factor of the 
interaction term must be 1L−   . This is the dimension of the electromagnetic 
potentials. By contrast, this argument proves that the electromagnetic field 
tensor F µν  is unsuitable for this purpose because it is the 4-curl of the 
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4-potential and its dimension is 2L−   . 
The Dirac equation is a first order differential equation. As a matter of fact, 

one can find in the literature quantum equations of the second order. The 
Klein-Gordon (KG) equation is a quite simple example of this kind of equations. 
The KG function is a Lorentz scalar and its Lagrangian density is (see [18], p. 
198 of the English translation) 

( )( ) ( )( )
3

* * * * 2 *
,0 ,0 , ,

1
.k k k k

k
ieV ieV ieA ieA mφ φ φ φ φ φ φ φ φ φ

=

= − + − + − −∑  (11) 

The KG equation is derived from (11) (see Equation (39) therein) 
3

2

1
k kk k

k
ieV ieV ieA ieA m

t t x x
φ φ φ

=

∂ ∂ ∂ ∂     − − = + + +     ∂ ∂ ∂ ∂     
∑     (12) 

and the KG density is (see Equation (42) therein) 

( )* * *
,0 ,0 2 .i eVρ φ φ φ φ φ φ= − −                      (13) 

The product of two derivatives of the KG Lagrangian density (11) proves that 
the dimension of the KG function φ  is 1L−   . Therefore, the following 
inconsistencies arise. 

• The dimension of the product *φ φ  of the KG function is 2L−   . On the other 
hand it is shown earlier in this section that the dimension of the corresponding 
product of the Schroedinger functions is 3L−   . Hence, the KG function is 
inconsistent with the Weinberg correspondence principle because the continuity 
of a limit process does not alter the discrete value of the wave function’s 
dimension. 

• The dimension 2L−    of the product *φ φ  of the KG function explains why 
its expression for density (13) contains a derivative with respect to time. Hence, 
unlike the case of the non-relativistic QM, one cannot use density of a KG 
function and construct a Hilbert space in the Heisenberg picture where the 
quantum function is time-independent (see [3], p. 112; [11], p. 6). This is 
another violation of the Weinberg correspondence principle. 

• The KG Lagrangian density (11) contains a second order term of the 
potentials. For example, a factor 2V  of the electric potential is obtained from 
the first term on the right hand side of (11). By contrast, Maxwell equations are 
derived from a Lagrangian density that depends linearly on the 4-potential (see 
[14], pp. 78, 79). Hence, the KG Lagrangian density (11) is inconsistent with 
Maxwellian electrodynamics. 

These problematic results support Dirac lifelong objection to the KG equation 
(see [19], pp. 3,4). It can be shown that analogous problems hold in other kinds 
of second order quantum equations (see [20], Section 4). 

7. Concluding Remarks 

This work examines some aspects of the relevance of the variational principle to 
the mathematical structure of quantum theories. The experimentally confirmed 
corpuscular-wave duality is the basis of the analysis. This analysis focuses on the 
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role of a consistent expression for the phase factor of a given quantum function. 
For this end, the paper examines a Lagrangian density which depends on a 
quantum function whose form is ( )xµψ . It is proved that each term of this 
Lagrangian density must be a Lorentz scalar whose dimension is 4L−   . The 
results show that such a Lagrangian density yields an action that can be used as 
the phase of a quantum particle. Moreover, it is shown that the 4L−    dimension 
of the Lagrangian density defines a specific dimension for the quantum function 

( )xµψ . The correspondence principle proves that the dimension of the quantum 
function provides a new kind of constraint that an acceptable quantum theory 
must satisfy. It is shown that the Dirac first order quantum theory complies with 
this constraint. By contrast, problems arise in the case of second order quantum 
theories, like that of the KG equation. 
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