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Abstract 
We consider the problem of estimating a function g in nonparametric regres-
sion model when only some of covariates are measured with errors with the 
assistance of validation data. Without specifying any error model structure 
between the surrogate and true covariables, we propose an estimator which 
integrates orthogonal series estimation and truncated series approximation 
method. Under general regularity conditions, we get the convergence rate of 
this estimator. Simulations demonstrate the finite-sample properties of the 
new estimator. 
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1. Introduction 

Consider the following nonparametric regression model of a scaler response Y 
on multi-covariates ( ),X Z  

( ), ,Y g X Z ε= +                         (1) 

where ( )g ⋅  is an unknown function and ε  is a noise variable with 
( )| , 0E X Zε =  and ( )2E ε < ∞ . It is not uncommon that Z is measured 

exactly but X is measured with error and instead only its surrogate variable W 
can be observed. Throughout we assume  

[ ]| , 0 with probability1,E W Zε =                 (2) 

which is always satisfied if, for example, W is a function of X and some 
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independent noise (see [1]). 
The relationship between the true variable and the surrogate variable can be 

rather complicated. Misspecification of this relationship may lead to a serious 
misinterpretation of the data. Common solution is to use the help of validation 
data to infer the missing information. To be specific, one observes independent 
replicates ( ), ,i i iW Z Y , 1 i N≤ ≤ , of ( ), ,W Z Y  rather than ( ), ,X Z Y , where 
the relationship between iW  and iX  may or may not be specified. If not, the 
missing information for the statistical inference will be taken from a sample 
( ), ,j j jX W Z , 1N j N n+ ≤ ≤ + , of so-call validation data independent of the 
primary (surrogate) sample. We aim at estimating the unknown function ( )g ⋅  
by using the surrogate data ( ){ } 1

, ,
N

i i i i
Y W Z

=
 and the validation data 

( ){ }
= 1

, ,
N n

j j j j N
X W Z

+

+
. 

Recently, statistical inference based on surrogate data and a validation sample 
has attracted considerable attention (see [2]-[13]), and the above referenced 
authors developed suitable methods for different models. However, all these 
works mostly are concerned with the parametric or semi-parametric relationships 
between covariates and responses, and these approaches are difficult to 
generalize to nonparametric regression model. [14] and [15] proposed two 
nonparametric estimators for nonparametric regression model with measurement 
error using validation data, but their methods are not applicable to our problem 
since [14] assumes the response rather than the covariable is measured with 
error, and the method proposed by [15] applies for one-dimensional explanatory 
variable only. 

This article is organized as follows. In Section 2 we propose a regularization- 
based method. Under general regularity conditions, we give the convergence rate 
of our estimator in Section 3. Section 4 provides some numerical results from 
simulation studies, whereas proofs of the theorems are presented in Appendix. 

2. Description of the Estimator 

Recall model (1) and the assumptions below it. We assume that X, W and Z are 
all real-valued random variables. The extension to random vectors complicates 
the notation but does not affect the main ideas and results. Without loss of 
generality, let the supports of X, W and Z all be contained in [ ]0,1  (otherwise, 
one can carry out monotone transformations of X, W and Z). 

Let XWZf  and WZf  denote respectively the joint density of ( ), ,X W Z  and 
marginal density of ( ),W Z . Then, according to (2), we have  

( ) ( )

( ) ( )
( )

| , , | ,

, ,
, d .

,
XWZ

WZ

E Y W w Z z E g X Z W w Z z

f x w z
g x z x

f w z

= = = = =  

= ∫
           

(3) 

Let ( ) ( ) ( ), | , ,WZm w z E Y W w Z z f w z= = =  and  

[ ]( ) [ ] ( )( )1 22
2 0,1 : 0,1 , . . d .L s t x xϕ ϕ ϕ = → = < ∞ 

 ∫  
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Define the operator [ ]( ) [ ]( )2 2: 0,1 0,1zT L L→  as  

( )( ) ( ) ( ), , , d ,z z z XWZT w z x f x w z xϕ ϕ= ∫  

where ( ) ( ),z zϕ ϕ⋅ = ⋅  is any function on [ ]( )2 0,1L . So that Equation (3) is 
equivalent to the operator equation  

( ) ( )( ), , .zm w z T g w z=                      (4) 

According to Equation (4), the function g is the solution of a Fredholm 
integral equation of the first kind, and this inverse problem is known to be ill- 
posed and needs a regularization method. A variety of regulation schemes are 
available in the literature (see e.g. [16]) but we focus in this paper on the 
Tikhonov regularized solution:  

2 2arg min ,zg
g T g m gα α = − +                  

(5) 

where the penalization term 0α >  is the regularization parameter. 
We define the adjoint operator zT ∗  of zT   

( )( ) ( ) ( ), , d ,z z XWZT x w f x w z wψ ψ∗ = ∫  

where ( ) [ ]( )2 0,1z w Lψ ∈ . Then the regularized solution (5) is equivalently:  

( ) 1
.z z zg I T T T mα α

−∗ ∗= +
                     

(6) 

To obtain the estimator of ( ),g x z , we consider the orthogonal series method 
and kernel method. Under some regularity conditions in Section 3, for each 

[ ]0,1z∈ , ( ), ,XWZf z⋅ ⋅  and ( ),m z⋅  may be approximated by a truncated 
orthogonal series,  

( ) ( ) ( ) ( ) ( )
1 1 1

, ,  and  , ,
K K K

K K
XWZ zkl k l zk k

k l k
f x w z d x w m w z m wφ φ φ

= = =

= =∑∑ ∑  

where  

( ) ( ) ( )
( ) ( ) ( )

, , d d

| ,
zkl k l XWZ

k l Z

d x w f x w z x w

E X W Z z f z

φ φ

φ φ

=

= =  

∫∫  

and  

( ) ( ) ( )
( ) ( )

| , , d

| ,
zk k WZ

k Z

m w E Y W w Z z f w z w

E Y W Z z f z

φ

φ

= = =

= =  

∫  

Here, { }kφ  is an orthonormal basis of [ ]( )2 0,1L  which may be 
trigonometric, polynomial, spline, wavelet, and so on. A discussion of different 
bases and their properties can be found in the literature (see e.g. [17], [18]). Only 
to be specific, here and in what follows we are considering the normalized 
Legendre polynomials on [ ]0,1 , which can be obtained through the Rodrigues’ 
formula  

( ) ( )21 d .
d! 2 1

k k

k kx x x
xk k

φ  = −  +                  
(7) 

The integer K is a truncation point which is the main smoothing parameter in 
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the approximating series. 
Let ( ) ( )hK u K u h=  where ( )K ⋅  is a kernel function and 0h >  is a 

bandwidth. We consider the following estimators,  

( ) ( ) ( )
1

1ˆ ,
n

N n

zkl k j l j h j
j Nn

d X W K z Z
nh

φ φ
+

= +

= −∑  

and  

( ) ( )
1

1ˆ .
N

N

zk i k i h i
iN

m Y W K z Z
Nh

φ
=

= −∑  

Then, for each [ ]0,1z∈ , we have  

( ) ( ) ( ) ( ) ( )
1 1 1

ˆ ˆ ˆ ˆ, ,  and  , .
K K K

XWZ zkl k l zk k
k l k

f x w z d x w m w z m wφ φ φ
= = =

= =∑∑ ∑  

The operators zT  and zT ∗  can then be estimated by  

( )( ) ( ) ( ) ( )( ) ( ) ( )ˆ ˆˆ ˆ, , , d   and  , , , d .z z z XWZ z z z XWZT w z x f x w z x T x z w f x w z wϕ ϕ ψ ψ∗= =∫ ∫  

Hence, for each [ ]0,1z∈ , the estimator of ( ),g x z  is  

( ) 1ˆ ˆ ˆ ˆ .z z z zg I T T T mα α
−∗ ∗= +

                     
(8) 

Remark 2.1. Let nD  be the K K×  matrix whose ( ),k l  element is ˆ
zkld , 

and ( )T
1ˆ ˆ, ,N z zKb m m=  . Then estimator (8) has the following form  

( ) ( )
1

, ,
K

zk k
k

g x z g xα φ
=

= ∑ 

                     
(9) 

where { }, 1, ,zkg k K=


 is given by ( ) ( ) 1T T
1, ,z zK K n n n Ng g I D D D bα

−
= + 

  

 
 .  

3. Theoretical Properties 

In this section, we introduce the assumptions that will be used below to study 
the statistical properties of the estimator. We shall consider the following 
assumptions:  

(A1) (i) The support of ( ), ,X W Z  is contained in [ ]30,1 ; (ii) Conditioning 
on Z z= , the joint density XWZf  of ( ), ,X W Z  is square integrable w.r.t the 
Lesbegue measure on [ ]20,1 . 

(A2) (i) The r order partial or mixed partial derivative of XWZf  with respect 
to ( ),x w , and the r order partial derivative of XWZf  with respect to z, are both 
continuous in ( ) [ ]2, 0,1x w ∈  and for each [ ]0,1z∈ ; (ii) The s order partial 
derivative of ( ),m w z  with respect to z, is continuous in [ ]0,1w∈  and for each 

[ ]0,1z∈ . 
(A3) ( )2 | ,E Y W w Z z= =  is uniformly bounded in ( ) [ ]2, 0,1w z ∈ . 
(A4) The kernel function ( )K ⋅  is a symmetrical, twice continuously 

differentiable function on [ ]1,1− , and ( )1

1
d 0ju K u u

−
=∫  for = 1, , 1j r −  

and ( )1

1
dru K u u c

−
=∫ , with 0c ≠  being some finite constant.  

Assumption (A1) is sufficient condition for zT  to be a Hilbert-Schmidt 
operator and therefore to be compact (see [19], Theorem 2.34). As a result of 
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compactness, there exists a singular values decomposition. For each [ ]0,1z∈ , 
let , 0zk kλ ≥  be the sequence of singular values of zT , then there exist the two 
orthonormal sequences , 0zk kϕ ≥ , and , 0zl lψ ≥  such that:  

* * 2 * 2,  ;   ,  .z zk zk zk z zk zk zk z z zk zk zk z z zk zk zkT T T T T Tϕ λ ψ ψ λ ϕ ϕ λ ϕ ψ λ ψ= = = =  

Note that the regularization bias is  

( ) 1* *
2

1
, .z z z z zk zk

k zk

g g I I T T T T g gα α
α ϕ ϕ

α λ

∞−

=

 − = − + =   +∑  

In order to control the speed of convergence to zero of the regularization bias 
g gα− , we introduce the following regularity space βΨ  for 0β > :  

[ ]( )
2

2 2
0

,
0,1  such that  .z zk

z
k zk

Lβ β

ϕ ϕ
ϕ

λ≥

  Ψ = ∈ < +∞ 
  

∑  

We then obtain the following result by applying Proposition 3.11 in Carrasco 
et al. (2007).  

Proposition 3.1. Suppose Assumption (A1) hold, for each [ ]0,1z∈ , if 
( ),g z β⋅ ∈Ψ , then we have ( ) ( ) ( )2 2, ,g z g z Oα βα ∧⋅ − ⋅ = , where  

{ }2 min ,2β β∧ = .  
Therefore, when the regularization parameter α  is pushed towards zero, the 

smoother the function g of interest (i.e. g β∈Ψ  for larger β ) is, the faster the 
rate of convergence to zero of the regularization bias will be. 

Let { }min ,r sγ =  and ( )( )2 1 2 1r rτ γ γ= + +   , we then obtain the 
following convergence rate of ( ),g x zα

 .  
Theorem 3.1. Suppose Assumptions (A1)-(A4) are satisfied. Then, for each 
[ ]0,1z∈ , if ( ),g z β⋅ ∈Ψ , we have  

( ) ( )

( )

2 2 2 2 1
2

1 02 2 2
2

1 1 1, ,

1 1 .

r
P N n

N n

r
nr

n

g z g z O K h K h
Nh nhK

K h
nhK

α γ
γ

β β

α

α α

−

− ∧ ∧

    ⋅ − ⋅ = + + + +     
     

   + + + +   
     



 

Specially, let ( )( )1 2 1r
nh O n− += , ( )( )1 2 1

Nh O N γ− += , ( )( )( )1 2 1r rK O n γ + +  = , 
( )( )2 1O N τ βα − ∧ +=  and ( )lim 0,N n∈ ∞ . If r s≤  or ( )2 1s r s s< ≤ + , then, 

for each [ ]0,1z∈ , we have  

( ) ( )
2

2 2 1, , .Pg z g z O N
βτ

α β
∧

−
∧ +

 
⋅ − ⋅ =   

 
  

The proofs of all the results are reported in the Appendix. 

4. Simulation Studies 

In this section, we briefly illustrate the finite-sample performance of the 
estimator discussed above. We compare our estimator to the standard 
Nadaraya-Watson estimator (denoted as ( ),Ng x z ) base on the primary dataset 
( ){ } 1

, ,
N

i i i i
Y W Z

=
. In fact, ( ),Ng x z  is a gold standard in the simulation study, 
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even if it is practically unachievable due to measurement errors. Moreover, the 
performance of estimator estg  is assessed by using the square root of average 
square errors (RASE)  

( ) ( )
1 2

2

1

1RASE ,
M

est
s s

s
g u g u

M =

  = −   
∑  

where , 1, ,su s M=  , are grid points at which ( )est
sg u  is evaluated. 

We considered model (1) with the regression function being  

( ) ( )2 21, exp 0.5 0.5 ,
2π

g x z x z= − −  

and ε  being distributed as ( )0,0.1N . The covariate is generated according to 
( ) ( )T, ~ 0,X Z N Σ  with ( ) ( ) 1var X var Z= =  and the correlation coefficient 
between X and Z being 0.6, and W X vη= + , ( )~ 0,1v N . Results for 0.2η = , 

0.4η =  and 0.6η =  are reported. Simulations were run with different 
validation and primary data sizes ( ),n N  ranging from ( )10,30  to ( )50,250  
according to the ratio 3N nρ = =  and 5N nρ = = , respectively. We 
generate 500 datasets for each sample size of ( ),n N . 

To calculate ( ),g x zα
 , we used the normalized Legendre polynomials as basis 

and the standard normal kernel (denote ( )0K ⋅ ). For ( ),Ng x z , we used an 
product kernel ( ) ( ) ( )1 2 0 1 0 2,K x x K x K x= , and the bandwidth was selected by 
generalized cross-validation approach (GCV). For our estimator ( ),g x zα

 , we 
used the cross-validation approach to choosing the four parameters Nh , nh , 
K  and α . For this purpose, Nh , nh  and ( ),K α  are selected separately as 
follows. 

Define  

( ) ( )
1

1ˆ ; .
n

N n

Z n h j
j Nn

f z h K z Z
nh

+

= +

= −∑  

and  

( ) ( )
1

1; ,
N

N

Z N h i
iN

f z h K z Z
Nh =

= −∑  

Here, we adopt the cross-validation (CV) approach to estimate nh  by  

( ) ( ){ }2

1

1ˆ ˆarg min ; ,
n

N n
j

n j Z j nh j N
h Z f Z h

n

+
−

= +

= −∑  

where the subscript j−  denotes the estimator being constructed without using 
the jth observation. Similarly, we get ˆ

Nh . After obtaining ˆ
Nh  and ˆ

nh , we then 
select ( ),K α  by  

( ) ( )
( ) ( )

2

, 1 1

1ˆˆ, arg min ,
N K

i
i zk k iK i k

K Y g W
Nα

α φ−

= =

 = − 
 

∑ ∑   

where the subscript i−  denotes the estimator being constructed without using 
the ith observation ( ), ,i i iY W Z . 

We compute the RASE at 200 200×  grid points of ( ),x z . Table 1 presents  
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Table 1. The RASE ( 110−× ) comparison for the estimators ( ),g x zα
  and ( ),Ng x z .  

  0.2η =  0.4η =  0.6η =  

 ( ),n N  ( ),g x zα
  ( ),Ng x z  ( ),g x zα

  ( ),Ng x z  ( ),g x zα
  ( ),Ng x z  

3ρ =  (10, 30) 0.4617 0.5348 0.4638 0.5423 0.4825 0.5481 

 (30, 90) 0.3804 0.4997 0.4048 0.4687 0.4306 0.5111 

 (50, 150) 0.3716 0.4486 0.3734 0.4644 0.3784 0.4709 

5ρ =  (10, 50) 0.4508 0.5068 0.4399 0.5176 0.4738 0.5206 

 (30, 150) 0.3785 0.4548 0.3800 0.4624 0.3817 0.4687 

 (50, 250) 0.3397 0.3636 0.3432 0.3830 0.3483 0.3835 

 
the RASE for estimating curves ( ),g x z  when 0.2η = , 0.4η =  and 0.6η =  
for various sample sizes. It is obvious that our proposed estimator gα

  has 
much smaller RASE than Ng . As is expected, our proposed estimating method 
produces more accurate estimators than the Nadaraya-Watson estimators. 
Moreover, there is a drastic improvement in accuracy by using our estimator 
over the Nadaraya-Watson estimator; this improvement increases with ρ .  
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Appendix 

Proof of Theorem 3.1:  
Lemma 6.1. Suppose Assumptions (A1), (A2) (i) and (A4) hold. For each 
[ ]0,1z∈ , we have  

( ){ }2 12 2 2ˆ .r r
XWZ XWZ P n nf f O K nh h K− − − = + +   

Proof of Lemma 6.1.. For each [0,1]z∈ , by Assumptions (A2) (i) and (A4), 
we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1ˆ , , d d d

, , d d d

, , d d

, ,
d d d 1 1

d 1 1 ,

nzkl k l h XWZ
n

k l XWZ n

k l XWZ

r
XWZr r

n k lr

rr r
zkl n zkl

E d x w K z u f x w u x w u
h

x w K u f x w z uh x w u

x w f x w z x w

f x w z
h u K u u x w x w o

z

d h d u K u u o

φ φ

φ φ

φ φ

φ φ

= −

= +

=

 ∂ + + 
∂  

= + +

∫∫∫

∫∫∫
∫∫

∫ ∫∫

∫

 

where  

( ) ( ) ( ) ( ), ,
d d .

r
t XWZ

zkl k lr

f x w z
d x w x w

z
φ φ

∂
=

∂∫∫  

Note that kφ  are orthonormal and complete basis functions on 2 ([0,1])L . 
Under Assumptions (A2) (i), for each [ ]0,1z∈ , we have ( ), ,r r

XWZf x w z z∂ ∂  
[ ]( )2

2 0,1L∈ . Then, using Cauchy-Schwarz inequality, ( )r
zkld  is bounded in 

absolute value for each [ ]0,1z∈ . Hence, we obtain that  

( ) ( )ˆ .r
zkl zkl nE d d O h= +  

Moreover, for each [ ]0,1z∈ , we have  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )

( )

2 2
2

2 2
2

2
2

1ˆ

1 , , d d d

, , d d 1 1

1 ,

n

n

zkl k l h
n

k l h XWZ
n

k l XWZ
n

n

Var d E X W K z Z
nh

x w K z u f x w u x w u
nh

K u
x w f x w z x w o

nh

O nh

φ φ

φ φ

φ φ

≤ −  

= −  

= +  

 =  

∫∫∫

∫∫

 

where we have used the fact that XWZf  is uniformly bounded on [ ]20,1 . 
We conclude that  

( ) ( )ˆ 1 .r
zkl zkl n P nd d O h O nh= + +

                
(10) 

By the triangle inequality and Jensen inequality, we have  
2 2 2ˆ ˆ2 .K K

XWZ XWZ XWZ XWZ XWZ XWZf f f f f f − ≤ − + −  
 

Under Assumption (A2) (i), we can show that ( )2 2K r
XWZ XWZf f O K −− =  (see 
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Lemma A1 of [20]). 
By construction of the estimator, we have  

( ){ }2 2 12 2

1 1

ˆ ˆ ,
K K

K r
XWZ XWZ zkl zkl P n n

k l
f f d d O K nh h−

= =

  − = − = +   ∑∑  

where the last equality is due to (10). The desired result follows immediately. 
Proof of Theorem 3.1. Define ( ) 1*ˆ ˆ ˆz

z zA I T Tα α
−

= +  and ( ) 1*z
z zA I T Tα α

−
= + . 

Notice that *z
z z z zg A T T gα

α=  where ( ),zg g z= ⋅ . Then we have  

( )

2 22 22 2* *

22 2 2* *

ˆ ˆˆ ˆ ˆ ˆˆ4

ˆ ˆ .

z z
z z z z z z z z z z

z
z z z z z z z

g g A T m T g A T T T g g

A T T T g g g g

α α
α α

α α
α

− ≤ − + − −
+ − − + − 



 

It follows from Lemma 6.1 that 
2

ẑ zT T−  or 
2* *

ẑ zT T−  are  

( ){ }12 2 2r r
P n nO K nh h K− − + +  . Under Assumptions (A1), we have 

2

z zg gα − =

( )2O βα ∧  and ( ) ( )( )2 1 2
z z zT g g O βα α + ∧− = . Moreover, ( )

2*ˆ ˆ 1z
z PA T Oα α=  

and ( )2 2ˆ 1z
PA Oα α= . The main task remained is to establish the order of the 

term 
2ˆˆ z z zm T g− . By the triangle inequality and Jensen inequality, we have  

( ) 22 2ˆ ˆˆ ˆ2 .z z z z z z z zm T g m m T T g − ≤ − + −  
 

Similar to the proof of Lemma 6.1, under Assumptions (A2)(ii), (A3) and 
(A4), it is easy to show that  

( ){ }12 2 2ˆ .s
z z P N Nm m O K K Nh h γ−−  − = + +   

Then, according to the Lemma 6.1, we have  

( ) ( ){ }2 1 12 2 2 2ˆˆ .r
z z z P n n N Nm T g O K h nh K K Nh hγ γ− −−   − = + + + +     

Let 
1

2 1
Nh O N γ

−
+

 
=   

 
, 

1
2 1r

nh O n
−

+
 

=   
 

, ( )( )2 1 1
r

rK O n γ+ +
 
 =
 
 

 and 

2 1O N
τ

βα
−

∧ +
 

=   
 

, if r s≤  or ( )< 2 1s r s s≤ + , combining all these results, we 

complete the proof. 
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