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Abstract 
This paper uses panel data for the 1980-2004 period to estimate the contribu-
tions of public research to US agricultural productivity growth. Local and so-
cial internal rates of return are estimated accounting for the effects of R & D 
spill-in, extension activities and road density. R & D spill-in proxies were con-
structed based on both geographic proximity and production profile to ex-
amine the sensitivity of the rates of return to these alternatives. We find that 
extension activities, road density, and R & D spill-ins, play an important role 
in enhancing the benefit of public R & D investments. We also find that the 
local internal rates of return, although high, have declined through time along 
with investments in extension, while the social rates have not. Yet, the social 
rates of return are not robust to the choice of spill-in proxy. 
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1. Introduction 

Since the pioneering work by Griliches [1] [2] and Evenson [3], several empirical 
studies have shown that public investment in agricultural research and devel-
opment (R & D) is a primary driver of productivity growth. No matter the me-
thodology used, analysts are in agreement that returns to investments in agri-
cultural research are high, though the rates of return may differ depending on 
the research program or the data used to estimate returns. In a literature survey, 
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Alston et al. [4] found that the median of the estimated rate of return to agricul-
tural research was 48 percent per year. Huffman and Evenson [5] reviewed stu-
dies of the US agricultural sector covering the 1965-2005 period and found that, 
on average, the social rate of return was more than 50 percent per annum. Fuglie 
and Heisey [6] reviewed studies on Federal-State investment in agricultural re-
search. They reported that the rates of return are in range of 20 to 60 percent for 
most studies.  

Previous studies on the contribution of R & D to productivity growth can be 
grouped into four main categories. First, there are international studies [7] [8] 
[9] versus single country studies [2] [10]; second, there are studies that construct 
knowledge stocks using patent data [8] [11] [12] versus data on R & D expendi-
tures [13] [14] [15] [16]; third, there are those studies that focus on individual 
commodities or commodity programs [1] [17] [18] [19] versus aggregate output 
[20] [21]; and fourth, there are studies that directly incorporate an R & D stock 
variable in the estimation of a production or cost function [22] [23] versus those 
that use a two-step procedure regressing an index of productivity growth on R & 
D stocks [14] [15] [24]. 

Methodological differences aside, many of these studies point to significant 
technology spillovers across geographic boundaries. While the contribution of R 
& D spill-ins1 to US agricultural productivity growth from nearby states is widely 
recognized, it is less clear why productivity growth in some states with similar 
characteristics and with similar potential R & D spill-ins is faster than in other 
states. Nor is it clear through which channels technical knowledge is dissemi-
nated. Some studies ([24] [25] [26] [27] [28]) have emphasized the important 
role of the extension service in promoting productivity growth. Antle [29] and 
Paul et al. [30] suggest that road infrastructure can also be an important contri-
butor to productivity growth. Yet, aside from addressing the important role of 
extension, R & D spill-ins, or road infrastructure on productivity growth, not 
many have addressed the question of how the return to public R & D is en-
hanced by R & D spill-ins, extension, and roads. There are also very few studies 
addressing the impact of alternative proxies to capture research spill-ins since 
measures based on geographic proximity have become the norm.  

The objectives of this paper are, first, to study the interaction between local 
(i.e., own) R & D and R & D spill-ins, extension activities, and road density2. 
Second, we estimate the own as well as social internal rates of return to invest-
ment in research in each state. Third, we develop alternative estimates of poten-
tial R & D spill-in variables based on geographic proximity and production pro-
file similarity, to investigate sensitivity of the rates of return to these alternative 
proxies. Finally, we evaluate how changes in extension activities and in road 
density affect the estimated internal rates of return.  

 

 

1R & D Spill-ins are R & D knowledge stocks developed by other states. See data section for details 
regarding alternative R & D spill-ins measures in the study. 
2See the Data section below for a precise definition of each of these variables. 
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We model technology in agriculture by a dual cost function using a panel of 
US states. Knowledge stocks, measured as the accumulation of past research ex-
penditures, are treated as a public (i.e., exogenous) capital input. We treat R & D 
spill-ins, extension, and infrastructure differently from own R & D because we 
think that while own R & D is fully usable by state these “efficiency” variables are 
only partially usable and enter the cost function through interaction terms with 
local R & D stock.  

We find that, although sensitive to the alternative proxies for knowledge 
spill-ins, the internal rates of return to R & D investments in US agriculture have 
been persistently high. Moreover, the rates of return are enhanced through the 
interaction of own R & D with extension activities, knowledge spill-ins, and road 
density.  

2. Model 

A number of model specifications have been used to assess the contribution of 
public R & D to US agricultural productivity. Some have first constructed an in-
dex of productivity growth and, in a two-step procedure, related this index to R 
& D investments [14] [15] [16] [24]. Still others have estimated the production 
or dual cost function to obtain simultaneously a measure of productivity growth 
of the sector and R & D’s contribution to that growth [21] [27] [30] [31]. In this 
study, we specify a dual cost function and incorporate own R & D stock, as well 
as its interactions with R & D spill-ins from other states, extension activities, and 
road density.  

While local investment in public agricultural research is viewed as a major 
driver of technological advancement, investment in research in other states, es-
pecially those with similar production characteristics, also contributes to local 
productivity growth. This effect is generally referred to as a research “spill-in” 
from other states. We assume that research spill-ins, along with extension activi-
ties and the road network, interact with local public research to enhance diffu-
sion and absorption of technical information. An intensive road network can 
provide farmers with an easier and less costly way to acquire new technologies 
by attending workshops or other extension activities. It can also save on the time 
it takes the extension staff to contact producers around the state. Given the de-
velopment of internet technology and broadband investment, extension staff 
now have more ways to directly strengthen and speed the dissemination and ab-
sorption of technical information. Similarly, research spill-ins from nearby states 
as well as from states with similar production profiles could provide a “cluster” 
effect and generate a multipliable impact with local R & D on productivity 
growth. In this way, these factors may act as catalysts in stimulating diffusion 
and utilization of technical information. 

We proceed by estimating a translog cost function using state-by-year panel 
data. We then derive estimates of productivity growth that capture the impact of 
local R & D investments as well as the magnifying effects of R & D spill-ins, ex-
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tension activities, and infrastructure. Given its importance, we pay particular at-
tention to construction of R & D spill-in variables. Finally, we estimate state- 
level internal rates of return to public agricultural research.  

We assume that each state produces three outputs, livestock (V), crops (C) 
and other farm related goods and services (O), using four variable inputs in-
cluding land (A), labor (L), materials (M), and capital (K), and one fixed input, 
own agricultural R & D stock (RD). We include interactions between own R & D 
and extension activities (ET), road density (RO), and R & D spill-ins (SR), which 
we term “efficiency variables” (E). These variables have the potential of increas-
ing the marginal productivity of local R & D capital. The translog variable cost 
function is:  
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where the w’s are input prices, the y’s are output quantities, RD is the own-state 
R & D stock, the E’s are efficiency variables, the D’s are regional dummy va-
riables, and P is a measure of rainfall. We introduce regional dummies in the 
first-order terms to allow for differences in cost shares across the production re-
gions. The regions are the USDA’s farm production regions defined in Table 1.  

Symmetry and linear homogeneity in prices are imposed during estimation. 
Using Shephard’s lemma, the cost share for input i is: 
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Table 1. USDA’s production regions. 

Region States 

Northeast NH, PA, ME, MD, RO, MA, DE, CT, VT, NY, NJ 

Lake States MN, MI, WI 

Corn Belt OH, IA, MO, IN, IL 

Appalachian WV, TN, NC, VA, KY 

Southeast SC, AL, GA, FL 

Delta LA, AR, MS 

Northern Plains ND, SD, KS, NE 

Southern Plains TX, OK 

Mountain CO, UT, AZ, NM, WY, NV, ID, MT 

Pacific OR, CA, WA 

Data source: USDA. 
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The estimated system of equations includes the total variable cost Equation 
(1) and the input cost share Equation (2). Additive disturbances are appended to 
each share equation and the variable cost function. These disturbances are pre-
sumed temporally independent, multivariate normal with zero mean and non-
zero contemporaneous covariances. The contemporaneous covariance matrix of 
the disturbance terms of the cost and share equations is singular since the cost 
shares must sum to unity at every sample point. Hence, a single share equation is 
dropped in estimation. The system of equations is estimated using the Iterative 
Seemingly Unrelated Regression (ITSUR) algorithm in SAS. The estimation re-
sults are independent of the equation dropped under the maintained assump-
tions on the error structure.  

Price responsiveness can be measured by the input price elasticities of derived 
demand (η):  

2
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where Si and Sj are the fitted cost shares for inputs i and j. The marginal cost 
elasticity (e) is also estimated: 
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as are the cost elasticities (ε) with respect to local R & D stocks and the efficiency 
variables (Eh) — spill-in stocks (SR), extension activities (ET), and road density 
(RO):  
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As noted above, one of the effects that we would like to highlight in this study 
is the interaction between local R & D stocks and the efficiency variables. This 
cross effect is: 

3
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If εRD or εE is negative, then an increase in local R & D stock or any of the effi-
ciency variables Eh reduces total variable cost, given input prices and output levels. 
If 

hE RDME  is negative then the efficiency variables have a further cost reducing 
effect; they magnify the cost-reducing impact of own R & D, as hypothesized.  

3. Internal Rate of Return to Agricultural Research 

To evaluate the benefits of public research, we proceed to calculate the internal 
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rate of return (IRR)3, which is the rate of discount that makes the net present 
value of all cash flows (including both inflows and outflows) from a particular 
investment equal to zero. In other words, the IRR of an investment is the rate of 
discount at which the present value of the stream of benefits equals the initial 
investment. In this framework of analysis, benefits are measured as cost savings 
(−∆TVC). Furthermore, an investment in public R & D (R) at time t is assumed 
to increase the stock of local R & D (RD) in t τ+  ( 0, , sτ = � ) at a rate of: 

t

t

RD
R

τ
τω

+∆
=

∆
                         (9) 

Therefore, the local internal rate of return is the rate r1 that solves the follow-
ing formula:  

( ) ( )

( )

0 01 1

0 1

1 11
1 1

1

s s
t t t

t t t

s
t

t

TVC TVC RD
R RD Rr r

TVC
RD r

τ τ τ
τ τ

τ τ τ

τ τ
τ

τ τ

ω

+ + +

= = +

+

= +

−∆ −∆ ∆
= ⋅ = ⋅ ⋅

∆ ∆ ∆+ +

−∆
= ⋅

∆ +

∑ ∑

∑
     (10) 

The impact of a one-dollar increase in a state’s local public agricultural R & D 
stock (RD) on that state’s total variable cost (TVC) can be approximated as (for 
simplicity the time subscript t is dropped): 
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To obtain the local internal rate of return we substitute (6) into (10), and solve 
for r1: 
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Given that R & D investments in agriculture have the characteristics of an 
impure public good4, the relevant concept in evaluation should include not only 
the local benefits (cost-savings) but also the benefits reaped by other states 
through R & D spillovers (i.e., the social rate of return). Taking into account 
both effects, the social internal rate of return, r2, is derived by solving for r2 in 
the following equation: 
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where f indicates the state that makes the investment in public R & D, g indexes 
the states hypothesized to benefit from the spillovers from the research invest-
ment in state f, and q indicates the total number of states that benefit from the 

 

 

3Most studies have calculated internal rates of return, although the study by Alston et al. [15] has al-
so calculated a modified internal rate of return [32]. For a detailed discussion of the IRR rule in in-
vestment projects see Chapter 8 in Brealey, Myers, and Marcus [33]. 
4Pure public goods are non-excludable and non-rival. Public research in other states, though “pub-
lic”, is not fully non-excludable, and therefore an “impure public good” [34]. 
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research investment in state f (including f). The first term in (13) is similar to 
Equation (12), and represents the local benefits. The second term in (13) cap-
tures the social benefits in other states generated by state f’s local research in-
vestment. The second term in Equation (13) can be alternatively expressed as: 

( ) ( )
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The R & D spill-in stock for state f ( fSR ) is constructed as a weighted sum of 
contemporaneous local R & D stocks in other states: 

1
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where Ωfg are the weights used to capture the gth state’s R & D stock contribution 
to state’s f spill-in stock. Therefore, the change in spill-ins stocks in state g at 
time t + τ from an investment in R & D in state f at time t is:  
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The impact of research spill-ins from other states on state g’s total variable 
cost can be approximated as follows (excluding time indexes for simplicity): 
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We obtain the social internal rate of return by substituting (6) and (7) into 
(11) and (17), correspondingly, and substituting those results and (16) into (14), 
and solving for r2: 
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4. Data 
4.1. Output Quantities and Input Prices 

Our data consist of a panel of state-level observations spanning the years 1980 to 
2004. This section provides a brief overview of data sources and aggregation 
procedures. Details on the data construction are in the USDA productivity web 
page [35] and Ball et al. [36]. 

State-specific aggregates of output and labor, capital and intermediate inputs 
are Törnqvist indexes over detailed output and input accounts. Törnqvist output 
indexes are formed by aggregating over agricultural goods and services using 
revenue-share weights based on shadow prices. The changing demographic cha-
racter of the agricultural labor force is used to build a quality adjusted index of 
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labor input. The measure of capital input begins with data on the stock of capital 
for each component of capital input. For depreciable assets, the capital stocks are 
the accumulation of all past investments adjusted for discards of worn-out assets 
and loss of efficiency of assets over their service life. For land and inventories, 
capital stocks are measured as implicit quantities derived from balance sheet da-
ta. Indexes of capital input are formed by aggregating over the various capital 
assets using cost share-weights based on assets-specific rental prices. Törnqvist 
indexes of energy consumption are calculated for each state by weighting the 
growth rates of petroleum fuels, natural gas, and electricity consumption by their 
share in the overall value of energy input. Fertilizers and pesticides are impor-
tant intermediate inputs. Price indexes for fertilizers and pesticides are con-
structed using hedonic methods. The corresponding quantity indexes of fertiliz-
ers and pesticides are formed implicitly by taking the ratio of the value of each 
aggregate to its hedonic price index. A Törnqvist index of intermediate inputs is 
constructed for each state by weighting the growth rates of each category of in-
termediate inputs by their value share in the overall value of intermediate inputs. 
Finally, following Caves, Christensen, and Diewert [37], output and input in-
dexes with spatial as well as temporal integrity are developed. The result is data 
for a panel of states that can be used for both cross section and time series analy-
sis.  

4.2. Local R & D 

There are many different methods used to construct knowledge stocks. In stu-
dies of the impact of private research in manufacturing, research stocks are fre-
quently constructed from data on research expenditures using the perpetual in-
ventory method. However, as noted by Griliches [38], the usual declining bal-
ance or geometric depreciation does not fit very well the likely gestation, blos-
soming, and eventual obsolescence of knowledge. He also notes that there is no 
agreement as to the best model to use in constructing R & D stocks. Except for 
some studies that have based the construction on best statistical fit [4] [14] [39], 
most approaches are ad-hoc and based on intuition5. 

We use a knowledge stock variable developed by Huffman that uses the tra-
pezoidal distribution proposed by Huffman and Evenson [5] [40]. More specifi-
cally, this distribution assumes a 2 year gestation period, followed by 7 years of 
increasing impacts, 6 years of maturity with constant weights, and 20 years of 
decay with declining weights. Nominal research expenditures are deflated by an 
agricultural research price index. Index construction details can be found in [5] 
[41]. 

4.3. R & D Spill-Ins 

In this study, we use two public research stock variables, an own-state variable 
and an R & D spill-in variable. Most studies that include potential spill-ins as-

 

 

5See [14] for a discussion on alternative shapes and lag length. These assumptions also have implica-
tions on the rates of return. 
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sume that discoveries from public research in a given state are an impure public 
good and use one particular approach to calculate them. Most impose the sim-
plifying assumption that research benefits are regionally confined and apply 
simple aggregation over USDA production regions (see [16] [24] [27] [31]). Stu-
dies by Alston et al. [14] [15] and Plastina and Fulginiti [21] are the exception. 
Alston et al. [14] [15] constructed this variable based on “similarity” of the pro-
duction mix, while Plastina and Fulginiti [21] used a stochastic “concentric 
rings” approach.  

Because this is a key variable in the calculation of social returns, and because 
other studies estimated rates of return using just one of these approaches, we 
construct four alternative measures of the R & D spill-in variable. Our objective 
is to provide information on the sensitivity of the estimated rates of return to al-
ternative models for the R & D spill-in stocks. The first two approaches we use 
are based on geographic proximity6, while the last two reflect “production pro-
file” similarities across states7. The differences in the R & D spill-in stocks reside 
in the weights used in (15), as described below: 

Model 1: Ωfg = 1 for state j in the same USDA production region (Table 1). 
The R & D spill-in stock for state i is the sum of research stocks in all other states 
in that region.  

Model 2: Ωfg = 1/distfg for an R & D spill-in variable generated based on the 
geographic distance among states. This approach, inspired by gravity-type trade 
models [42], is offered to allow for a geographic “correction” to Model 1. The R 
& D stock generated by a state is scaled using the inverse distance between the 
sending state and the receiving state. The distance between Montana and New 
Mexico is chosen as the cutoff distance. Any state g with its geographical center 
within the cutoff distance from state f’s geographical center was assumed to have 
an impact on state f’s production and was given a weight equal to the inverse of 
the distance between two states, while states beyond that distance were assigned 
a zero weight.  

Model 3: Ωfg = 1 for states f and g within the same production profile cluster. 
We use cash receipts from twelve categories of outputs to generate a production 
profile for each state. The twelve outputs categories are: meat animals, dairy 
products, poultry/eggs, miscellaneous, food grains, feed crops, cotton, tobacco, 
oil crops, vegetables, fruits/nuts, and all other crops. We use cluster analysis to 
group the states with similar production profiles. While there are several clus-
tering techniques, we use the complete linkage clustering method following So-
rensen [43]8. In complete linkage clustering, the distance between two clusters is 
the maximum distance between an observation in one cluster and an observa-
tion in the other cluster, considering multiple elements. It avoids the drawback 

 

 

6Versions of the approach used by Huffman and Evanson and colleagues. 
7Versions of the approach used by Alston and colleagues. 
8While we prefer using the complete linkage method we compared results with those based on alter-
native cluster methods, such as the centroid method and the average linkage method ([44] among 
others). The results were similar so we only report the results based on the complete linkage method. 
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of the single linkage method that may force states to be grouped together due to 
closeness in one single element while many other elements are very different. 
The procedure is implemented using the SAS econometric package and results 
are presented in Table 2. Under this methodology, distant states such as Florida 
and California are in the same group due to the similarity of their production 
profiles. 

Model 4: Ωfg = 1/Tecdistfg for an R & D spill-in variable generated based on 
the technical distance among states within the same cluster from Model 3. Tec-
distfg is the technological distance measured by the inverse of the Spearman cor-
relation coefficient on the production mix among states. The higher is the corre-
lation relationship, the smaller is the technical distance among states within the 
same cluster. 

Descriptive statistics for the four R & D spill-in variables, along with other ef-
ficiency variables described below, are presented in Table 3. In Figure 1, we 
show the alternative series of R & D spill-in stocks for Alabama to give a sense of 
the different spill-in proxies. From information in Table 3 and in Figure 1, we  

 
Table 2. Clusters for 48 States Based on Production Profile. 

Cluster States 

1 IA, IL, IN, MN, MO, NE, OH, SD 

2 CO, ID, KS, MI, NM, NV, OK, OR, TX, UT, WY 

3 AL, AR, DE, GA, MD, NC, SC, TN, VA, WV 

4 NY, VT, WI 

5 CT, NH, PA, RI 

6 CA, FL, MA, ME, NJ, WA 

7 AZ, LA, MS 

8 MT, ND 

9 KY 

Data source: Developed by authors. 
 

Table 3. Descriptive statistics for efficiency variables. 

statistics extension road density 
R & D spilii-in 

(Model 1) 
R & D spilii-in  

(Model2) 
R & D spilii-in  

(Model3) 
R & D spilii-in  

(Model4) 

(unit) (FTE per farm) 
(mile per  

square mile) 
(constant  
dollars) 

(constant  
dollars) 

(constant  
dollars) 

(constant  
dollars) 

N 1200 1200 1200 1200 1200 1200 

MIN 0.0000 0.0583 11,696,201 100,129,407 5406,608 1,270,725 

MAX 0.0476 2.5634 219,463,954 1,155,346,530 217,905,010 175,632,026 

MEAN 0.0100 0.6193 86,160,408 575,183,765 119,101,019 85,945,211 

STD 0.0069 0.4828 39,880,052 239,590,346 60,382,324 48,655,117 

Note: FTE indicates full time equivalent staff numbers. 
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Figure 1. Trends for alternative R & D spill-in stocks based on alternative measures for AL. 

 
note that Model 2 yields a higher level of potential R & D spill-in stocks than all 
other models mainly because it includes more states in its cluster. 

4.4. Extension 

Extension is measured by total extension full-time equivalent staff days per year 
(FTEs). Extension FTEs have declined between 1980 and 2010 at national and 
regional levels [42]. Figure 2 shows the extension FTEs trends for three 
states—CA, NE, MD. The declining trend is common in all of the 48 contiguous 
states9. Ahearn et al. [45] reported the series of state Extension FTEs for 
1977-92 by 4 major program areas and by total state FTE’s of extension staff 
for 1977-97. The disaggregated data are no longer available. We use total FTEs 
at the state level to construct the extension (ET) capacity indexes for each 
state. The extension capacity index uses total FTEs as the numerator and the 
number of farms as the denominator to capture scale differences10. Data on FTEs 
by state were drawn from [46]. No lags were included in the construction  

 

 

9Jin and Huffman [16] show increasing trends for some individual states over time. The main dif-
ferences between their variable and ours are: 1) the study period of Jin and Huffman covers 
1970-2004 while this study covers 1980-2004. Although extension FTEs during 1970-1980 have in-
creased in some states, they have mostly been either constant or lower starting in the 1980s; 2) [16] 
uses extension stock rather than current extension FTEs. The stock measures may have a slower de-
clining trend as they are accumulations from previous extension investment. In this study we use 
FTEs from current years as we evaluate their interactions with concurrent R & D stocks. 
10Normalizing by number of farms has potential implications as number of farms as well as exten-
sion FTE’s have been declining. It is also important to notice that along with the changes in farm 
size distribution and information technology, the nature of service has changed from one-on-one to 
group-level engagement. This change in delivery mode reflects the increasing public-good characte-
ristic of the service provided. 
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Figure 2. Trends of extension full-time equivalent staff days per year, 1980-2004 for CA, 
NE, and MD. 

 
of this variable11. 

4.5. Roads 

We construct a road density index to examine the impact of road infrastructure 
on dissemination of local R & D. The state road density index was constructed 
using total annual road miles, excluding local (i.e. city street) miles for each 
state, obtained from [47], divided by total land area. We expect that with higher 
road density the cost of disseminating technical information is lower and the 
impact of public R & D on productivity is enhanced. Figure 3 shows the evolu-
tion of this variable for five selected states—AL, CA, IA, IL, and MI. Although 
this variable is rather stable for each state, it varies considerably among states.  

4.6. Weather 

Weather is treated as a control variable in this model. While several alternative 
weather indexes have been applied to studies in the past, such as the Palmer in-
dex and the Stallings weather index, we use total precipitation in inches from 
March to November [48] [49].  

5. Empirical Results 

We estimate the variable cost function (1) and the cost share Equation (2) using  

 

 

11While Huffman and colleagues use short lags in building the extension stock variable, Alston and 
colleagues use longer lags. 
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Figure 3. Road density for selected US states, 1980-2004. 
 

the four alternative measures of R & D spill-ins defined above. Prior to estima-
tion, we investigate the time series properties of the data. We conduct panel unit 
root tests proposed by Levin, Lin, and Chu [50]. All of the test statistics pre-
sented in Table 4 are less than the critical value at the 5% level. Therefore, we 
reject the presence of a unit root and proceed by estimating Equations ((1) and 
(2)) assuming stationarity.  

We then estimate a total of 100 parameters based on 1200 observation for 
each model subject to symmetry and linear homogeneity in input prices. The 
curvature and monotonicity properties of the cost function were inspected after 
estimation. Monotonicity was satisfied globally. Concavity in prices implies a 
negative semi-definite Hessian. We find that this condition holds locally.  

In Table 5, we present the parameter estimates for the four models, excluding 
constant and interactive terms between regional dummies and input prices from 
each model. We note that 184 of the 236 parameter estimates for the four models 
are significant at the 5% confidence level. Moreover, the parameter estimates 
(other than those for the R & D spill-in variables) are stable across the different 
model specifications, giving an indication of the robustness of the estimates. Fi-
nally, as can be seen in Table 5, the coefficients on the interactive terms between 
own R & D and the efficiency variables (extension activities, roads, and R & D 
spill-ins) are all significant except for the coefficient on the R & D spill-in varia-
ble in Model 2. The mean and standard deviation of the own-price elasticities, 
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cross-price elasticities, output cost elasticities, and the Hessian over 1200 obser-
vations are reported in Appendix Table A1.  

The impacts of public R & D, extension activities, roads, and R & D spill-ins 
on agricultural productivity growth can be examined through the alternative 
cost elasticities and the marginal effects of the efficiency variables on R & D’s 
cost saving effect. The cost elasticities of own R & D, extension activities, road 
density, and R & D spill-ins are all negative (see Table 6). From Table 6, we see 
that a 1-percent increase in own R & D reduces total variable cost by 0.13 - 0.15 
percent, depending on the model specification. Extension activities had the 
greatest impact on variable cost (0.23% - 0.25%), followed by the effect of R & D 
spill-ins (0.01% - 0.16%) and road density (0.04% - 0.06%).  

Table 7 presents the marginal effect of each efficiency variable on cost dimi-
nution through their interaction with own R & D (equation 8). The estimates are 
all significant at 1% level except when we proxy spill-ins using geographic dis-
tance (Model 2.) We find that an increase in extension activities, road density,  

 
Table 4. Panel unit root tests of variables used in the study. 

Variables LLC’ Statistic1 p-value 

LnTVC −5.10 0.0000 

SK −8.65 0.0000 

SL −2.37 0.0090 

SM −1.78 0.0377 

LnV −2.86 0.0021 

LnC −3.88 0.0001 

LnO −9.75 0.0000 

LnRD −36.83 0.0000 

LnET −2.48 0.0066 

LnRO −4.71 0.0000 

LnSR1 −30.60 0.0000 

LnSR2 −34.84 0.0000 

LnSR3 −34.21 0.0000 

LnSR4 −34.65 0.0000 

LnA −3.61 0.0002 

LnM −2.37 0.0088 

LnK −11.73 0.0000 

LnL −1.68 0.0462 

LnW −10.14 0.0000 

Note 1: The LLC panel unit root test is based on the method proposed by Levin, Lin, and Chu (2002). Our 
tests include a constant term for every variable except LnK. In the case of LnTVC, LnET, a time trend was 
included. Note 2: SR1, SR2, SR3 SR4 are alternative R & D spillins based on the estimates from Model 1 
through Model 4. Note 3: V stands for livestock, C for crops, O for other farm related goods and services, A 
for land, L for labor, M for materials, K for capital, RD for own agricultural R & D stock, ET for extension, 
RO for road density, SR for R & D spillins. 
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Table 5. Coefficient Estimates of cost share equations, 48 states, US Agriculture, 1980-2004, alternative R & D spill-in stocks.  

 
Model 1 

 
Model 2 

 
Model 3 

 
Model 4 

 

Parameters coefficients t ratio 
 

coefficients t ratio 
 

coefficients t ratio 
 

coefficients t ratio 
 

βV 1.4720 5.46 *** 1.7428 6.11 *** 1.8615 6.39 *** 1.7991 6.33 *** 

βC −0.6314 −2.59 *** −0.6989 −2.66 *** −0.9780 −3.61 *** −1.0304 −3.88 *** 

βO −0.5048 −1.81 * −0.6410 −2.16 ** −0.3581 −1.20 
 

−0.4313 −1.47 
 

βV V 0.0401 1.80 * 0.0579 2.45 ** 0.0302 1.25 
 

0.0463 1.96 ** 

βV C −0.0139 −0.77 
 

−0.0059 −0.31 
 

−0.0041 −0.21 
 

−0.0147 −0.77 
 

βV O −0.0595 −3.54 *** −0.0869 −4.90 *** −0.0646 −3.48 *** −0.0692 −3.82 
 

βC C 0.1213 6.19 *** 0.1221 5.88 *** 0.1352 6.39 *** 0.1441 6.89 *** 

βC O −0.1174 −7.16 *** −0.1306 −7.50 *** −0.1445 −8.21 *** −0.1390 −8.01 *** 

βO O 0.1830 7.28 *** 0.2376 9.00 *** 0.2313 8.58 *** 0.2284 8.54 *** 

γRD −0.4867 −1.16 
 

−0.5864 −1.29 
 

−0.5960 −1.36 
 

−0.7470 −1.71 
 

γRD RD −0.0103 −0.50 
 

−0.0085 −0.38 
 

−0.0019 −0.09 
 

−0.0017 −0.08 
 

αA A 0.0487 17.96 *** 0.0517 19.02 *** 0.0496 18.20 *** 0.0497 18.21 *** 

αA M −0.0350 −10.57 *** −0.0322 −9.85 *** −0.0343 −10.51 *** −0.0340 −10.42 *** 

αA K −0.0029 −1.61 
 

−0.0044 −2.45 ** −0.0029 −1.62 
 

−0.0030 −1.65 * 

αA L −0.0108 −4.87 *** −0.0151 −6.91 *** −0.0125 −6.01 *** −0.0128 −6.16 *** 

αM M 0.1607 21.39 *** 0.1675 22.98 *** 0.1627 23.40 *** 0.1679 23.90 *** 

αM K −0.0760 −14.89 *** −0.0793 −15.76 *** −0.0744 −15.55 *** −0.0780 −15.98 *** 

αM L −0.0498 −11.77 *** −0.0561 −13.79 *** −0.0541 −14.26 *** −0.0559 −14.72 *** 

αK K 0.1353 24.60 *** 0.1364 24.96 *** 0.1325 25.04 *** 0.1350 25.08 *** 

αK L −0.0563 −28.77 *** −0.0527 −27.92 *** −0.0552 −31.90 *** −0.0541 −30.62 *** 

αL L 0.1169 31.58 *** 0.1238 34.62 *** 0.1217 37.01 *** 0.1228 37.38 *** 

δA V −0.0294 −15.17 *** −0.0297 −14.64 *** −0.0286 −14.37 *** −0.0278 −13.81 *** 

δA C 0.0119 5.29 *** 0.0151 6.80 *** 0.0141 6.25 *** 0.0124 5.41 *** 

δA O 0.0032 1.35 
 

0.0018 0.78 
 

0.0027 1.16 
 

0.0033 1.41 
 

δM V 0.0713 19.37 *** 0.0681 17.51 *** 0.0667 18.54 *** 0.0643 17.30 *** 

δM C −0.0675 −16.92 *** −0.0664 −16.66 *** −0.0585 −15.25 *** −0.0594 −15.05 *** 

δM O 0.0395 9.25 *** 0.0386 8.99 *** 0.0316 7.61 *** 0.0354 8.44 *** 

δK V −0.0093 −6.90 *** −0.0079 −5.60 *** −0.0076 −5.94 *** −0.0071 −5.20 *** 

δK C 0.0214 13.49 *** 0.0203 13.15 *** 0.0164 10.84 *** 0.0180 11.36 *** 

δK O −0.0273 −15.99 *** −0.0271 −16.00 *** −0.0238 −14.67 *** −0.0261 −15.61 *** 

δL V −0.0326 −12.31 *** −0.0305 −11.09 *** −0.0304 −11.67 *** −0.0294 −11.00 *** 

δL C 0.0343 11.77 *** 0.0309 10.85 *** 0.0281 9.98 *** 0.0290 10.07 *** 
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Continued 

δL O −0.0154 −4.87 *** −0.0133 −4.25 *** −0.0105 −3.38 *** −0.0126 −4.03 *** 

θA RD −0.0165 −6.06 *** −0.0205 −7.98 *** −0.0193 −7.61 *** −0.0199 −7.84 *** 

θM RD −0.0044 −0.94 
 

−0.0010 −0.22 
 

−0.0045 −1.04 
 

0.0000 0.01 
 

θK RD −0.0129 −6.88 *** −0.0131 −7.41 *** −0.0122 −7.25 *** −0.0140 −8.04 *** 

θL RD 0.0338 9.58 *** 0.0346 10.32 *** 0.0360 10.90 *** 0.0339 10.18 *** 

φV RD −0.0416 −2.73 *** −0.0574 −3.56 *** −0.0586 −3.58 *** −0.0557 −3.46 *** 

φC RD 0.0498 3.70 *** 0.0560 3.80 *** 0.0683 4.62 *** 0.0690 4.79 *** 

φO RD 0.0453 2.95 *** 0.0484 2.98 *** 0.0311 1.89 * 0.0360 2.21 ** 

ξET RD −0.0154 −18.82 *** −0.0144 −16.48 *** −0.0149 −17.65 *** −0.0150 −17.49 *** 

ξRO RD −0.0021 −4.38 *** −0.0031 −5.83 *** −0.0035 −7.27 *** −0.0033 −6.85 *** 

ξSR RD −0.0091 −12.45 *** −0.0010 −1.12 
 

−0.0037 −9.46 *** −0.0026 −8.42 *** 

ρET A −0.0106 −4.11 *** −0.0101 −3.82 *** −0.0104 −3.95 *** −0.0094 −3.62 *** 

ρRO A −0.0063 −3.71 *** −0.0092 −5.21 *** −0.0083 −4.85 *** −0.0077 −4.55 *** 

ρSR A −0.0159 −3.45 *** 0.0110 3.08 *** −0.0013 −1.13 
 

−0.0028 −3.02 *** 

ρET M 0.0636 13.04 *** 0.0582 11.87 *** 0.0570 12.15 *** 0.0593 12.45 *** 

ρRO M 0.0096 3.15 *** 0.0119 3.76 *** 0.0114 3.91 *** 0.0118 4.01 *** 

ρSR M 0.0112 1.52 
 

0.0029 0.48 
 

0.0202 9.57 *** 0.0133 7.83 *** 

ρET K −0.0210 −11.50 *** −0.0198 −10.91 *** −0.0180 −10.53 *** −0.0199 −11.24 *** 

ρRO K −0.0056 −4.72 *** −0.0052 −4.35 *** −0.0049 −4.50 *** −0.0057 −5.04 *** 

ρSR K −0.0006 −0.17 
 

−0.0058 −2.33 
 

−0.0086 −11.57 *** −0.0043 −7.03 *** 

ρET L −0.0320 −9.04 *** −0.0284 −8.14 *** −0.0287 −8.34 *** −0.0300 −8.66 *** 

ρRO L 0.0023 1.04 
 

0.0025 1.09 
 

0.0018 0.85 
 

0.0016 0.75 
 

ρSR L 0.0051 0.87 
 

−0.0081 −1.77 * −0.0103 −6.79 *** −0.0062 −5.12 *** 

ρW A −0.0002 −0.39 
 

−0.0005 −0.99 
 

−0.0002 −0.48 
 

−0.0002 −0.46 
 

ρW M 0.0007 1.05 
 

0.0004 0.67 
 

0.0004 0.57 
 

0.0003 0.51 
 

ρW K −0.0014 −4.24 *** −0.0012 −3.73 *** −0.0013 −4.12 *** −0.0013 −3.93 *** 

ρW L 0.0009 1.55 
 

0.0012 2.21 ** 0.0011 2.03 * 0.0011 2.05 ** 

equations R2 
adjusted 

R2  
R2 

adjusted 
R2  

R2 
adjusted 

R2  
R2 adjusted R2 

 

LnTVC 0.9811 0.98 
 

0.9779 0.98 
 

0.9795 0.98 
 

0.9789 0.98 
 

SM 0.4856 0.48 
 

0.4719 0.47 
 

0.5240 0.52 
 

0.5026 0.50 
 

SK 0.7396 0.74 
 

0.7405 0.74 
 

0.7737 0.77 
 

0.7513 0.75 
 

SL 0.6642 0.66 
 

0.6711 0.67 
 

0.6838 0.68 
 

0.6740 0.67 
 

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. Note 2: V stands for livestock, C for crops, O for other farm related goods and services, A for land, L for labor, 
M for materials, K for capital, RD for own agricultural R&D stock, ET for extension, RO for road density, SR for R & D spillins. Note 3: ***indicates signifi-
cant at 1% level. **indicates significant at 5% level. *indicates significant at 10% level. 
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Table 6. Cost Elasticity of R & D, Extension Services (ET), Roads (RO), and Spill-in R & D Stocks (SR), 48 States, US Agriculture, 
1980-2004, alternative spill-in models. 

Elasticity Frequencies 
Model 1 Model 2 Model 3 Model 4 

mean standard deviation mean standard deviation mean standard deviation mean standard deviation 

ξRD 1200 −0.1287 0.0903 −0.1518 0.0860 −0.1347 0.0808 −0.1511 0.0889 

ξET 1200 −0.2482 0.0209 −0.2329 0.0191 −0.2419 0.0193 −0.2428 0.0197 

ξRO 1200 −0.0361 0.0038 −0.0538 0.0054 −0.0608 0.0051 −0.0579 0.0049 

ξSRD 1200 −0.1637 0.0103 −0.0142 0.0064 −0.0576 0.0061 −0.0402 0.0041 

Note: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. 
 
Table 7. Marginal Effect of the Extension Service, Roads and R & D spill-ins on R & D’s Cost Saving, 48 States, US Agriculture, 
1980-2004, alternative Spill-in models. 

Marginal effect 
Model 1 Model 2 Model 3 Model4 

value t ratio value t ratio value t ratio value t ratio 

MERDET −0.015 −18.82 −0.014 −16.48 −0.015 −17.65 −0.015 −17.49 

MERDRO −0.002 −4.38 −0.003 −5.83 −0.004 −7.27 −0.003 −6.85 

MERDSR −0.009 −12.45 −0.001 −1.12 −0.004 −9.46 −0.003 −8.42 

Note: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. 
 

and R & D spill-ins significantly enhance the cost-reducing effect of local R & D 
expenditures. Among the efficiency variables, extension activities have the greatest 
impact while road density has the smallest impact. This effect, paired with the de-
creasing trend of the extension variable through time, is important in understand-
ing the evolution of the own-state internal rate of return, as will be seen later. 

The results presented in Table 6 and Table 7 provide evidence that own R & 
D, as well as R & D spill-ins, extension activities, and road density, have a posi-
tive and significant effect on the productivity of US agriculture (except R & D 
spill-ins from Model 2). It also shows that the estimated impacts of R & D 
spill-ins on productivity vary across models with Model 1, based on the USDA 
production regions, having the largest impact and Model 2, based on geographi-
cal distances, having the smallest. This finding is consistent with [14] even when 
using a different data set and procedure. 

Next, we use the estimated coefficients and Equations (13) and (17) to calcu-
late own and social rates of return to agricultural research by state and by year. 
The annual rates of return for all states by year are shown in Table 8. Note that 
own-state rates of return (r1) are robust across the different model specifications. 
Note also the sensitivity of the estimated social rates of return to alternative 
proxies for research spill-ins. Estimates from Models 3 and 4 that use the “pro-
duction mix” approach to the construction of the R & D spill-in stocks are very 
close while those from Model 1 and 2, based on geographical proximity are very 
different. The rates in Model 1, estimated using the most common approach 
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found in the literature (i.e., grouping states according to the USDA production 
regions) are the largest, while those from Model 2 are the smallest. This is con-
sistent with the relative magnitude of the spill-in R & D stocks calculated across 
these models (see Table 3 and Figure 1). Alston et al. [14] using a different ap-
proach and data set also found larger internal rates of return when using the 
geographical proximity rather than the production mix approach. 

Figure 4 and Figure 5 show the evolution of the internal rates of return. We 
 
Table 8. Internal Rate of Return of Public R & D in Agriculture by Year, 48 US States, 1980-2004, alternative Spill-in models. 

Year 

Model 1 Model 2 Model 3 Model 4 

r1 r2 r1 r2 r1 r2 r1 r2 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

1980 13.89 11.02 39.26 19.49 15.90 12.85 16.43 12.77 14.31 12.37 25.96 15.46 15.48 12.60 28.11 21.72 

1981 16.01 11.65 43.36 21.02 18.11 13.51 18.58 13.43 16.12 12.82 29.11 16.80 17.42 13.12 31.63 23.94 

1982 13.87 8.45 42.56 19.51 16.56 10.70 17.01 10.65 14.96 10.86 28.60 15.54 16.20 10.95 30.91 23.88 

1983 15.05 9.11 42.23 18.90 17.35 11.18 17.74 11.13 16.22 11.48 28.69 15.49 17.30 11.57 31.36 23.66 

1984 14.95 9.19 43.08 19.37 17.30 11.45 17.11 11.93 15.57 11.63 29.31 15.93 16.69 11.82 31.85 24.59 

1985 13.02 7.67 41.29 18.47 15.74 9.98 16.19 9.99 14.34 10.31 28.20 15.19 15.51 10.35 30.42 23.98 

1986 10.95 7.08 38.03 17.19 13.77 9.19 14.38 9.17 12.31 9.87 26.11 14.31 13.59 9.74 28.25 22.75 

1987 10.53 7.07 36.87 16.53 13.01 9.35 13.65 9.33 11.67 10.01 25.36 14.07 12.93 9.84 27.41 22.59 

1988 10.59 7.22 37.51 16.58 13.33 9.46 13.53 9.89 12.56 10.15 25.91 14.21 13.52 10.15 28.07 22.38 

1989 10.19 7.50 37.76 16.94 12.71 9.43 13.51 9.39 11.62 10.34 25.95 14.44 12.82 10.11 27.73 22.78 

1990 10.07 6.85 38.14 17.13 12.82 9.10 13.67 9.09 11.64 9.80 26.44 14.59 12.76 9.74 28.24 23.74 

1991 9.75 6.69 37.23 16.73 12.42 8.85 13.22 8.86 11.48 9.62 25.73 14.36 12.49 9.59 27.63 23.51 

1992 9.77 6.91 37.38 17.10 12.42 8.98 13.25 9.01 11.14 9.52 25.80 14.58 12.23 9.49 27.52 24.02 

1993 10.07 7.01 37.56 16.67 12.73 9.03 13.60 9.01 11.60 9.73 26.31 14.62 12.69 9.65 28.75 24.98 

1994 9.23 6.42 38.40 17.25 12.57 8.73 13.51 8.74 11.09 9.42 26.88 14.91 12.30 9.38 29.26 25.75 

1995 9.66 6.84 38.23 16.81 12.72 9.17 13.64 9.13 11.71 10.09 26.96 14.95 12.80 10.01 28.92 25.61 

1996 9.92 7.55 39.43 17.15 13.15 9.51 14.12 9.42 11.65 10.25 27.74 15.10 12.91 10.11 29.75 26.86 

1997 9.30 6.77 39.70 17.20 12.77 8.68 13.77 8.64 11.38 9.63 27.86 14.81 12.61 9.41 30.54 26.65 

1998 7.95 7.44 39.31 17.24 11.37 7.87 12.58 7.79 10.31 9.08 28.00 15.14 11.34 8.95 30.59 28.00 

1999 8.27 6.37 39.15 17.04 11.37 7.79 12.43 7.77 10.41 9.11 28.04 14.93 11.64 8.78 30.51 27.37 

2000 8.78 6.87 40.32 17.35 12.65 8.79 13.64 8.76 11.47 10.20 28.96 15.27 12.74 9.87 31.23 27.71 

2001 8.35 7.50 40.39 17.34 12.42 8.29 13.46 8.26 11.62 9.44 29.01 15.01 12.40 9.56 31.72 28.07 

2002 9.03 6.91 40.28 17.23 12.78 8.94 13.90 8.86 11.98 9.92 29.14 15.18 12.73 10.15 32.30 29.08 

2003 9.55 6.71 40.69 17.51 12.21 8.95 13.46 8.74 11.17 10.07 29.18 15.49 12.65 9.50 32.16 29.30 

2004 8.55 6.60 40.77 17.89 11.53 7.39 12.37 8.05 9.91 8.81 29.23 15.63 11.48 8.22 31.47 28.85 

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return.  
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Figure 4. Own internal rate of return, US agriculture, 1980-2004, alternative spill-in 
models (without social benefit). 

 

 

Figure 5. Social internal rate of return, US agriculture, 1980-2004, alternative spill-in 
models (with social benefit). 
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see that both the own-state internal rate of return r1 and the social rate of return 
r2 in all four models declined beginning in the mid-1980s. While the own-state 
internal rates of return (r1) continued to decline over the sample period, the so-
cial internal rates of return (r2) stabilized or exhibited a slight increase. The de-
clining own-state internal rates of return estimated here are associated with de-
clining extension staffing during these years. However, in the estimation of the 
social rates of return, this effect seems to be outweighed by research spill-ins. 
The average local rate of return across models ranged from 10.69% in Model 1 to 
13.49% in Model 4. The average social rate of return ranged from 14.35% in 
Model 2 to 39.56% in Model 1. These IRR rates are lower than the ones in [15] 
and [16]12. 

Table 9 reports the rates of return by production region. The estimates of lo-
cal rates of return are robust to the model specification. Estimates of the social 
rates of return across the regions are much lower for Model 2 than for the other 
three models. The rates of return for the Lake States, Corn Belt, Appalachia, 
Delta, Southern Plains, and Pacific regions are less dispersed than the rates for 
the Northeast region. The Lake States, Corn Belt, Northern Plains, and Southern 
Plains regions have both higher local and social rates of return. 

Based on the estimated marginal effects (Equation (8)) of extension activities, 
road density, and R & D spill-ins, we calculate the impacts of these variables on 
the internal rates of return (Equations (12)-(17)). These results are presented in 
Table 10. A 10 percent increase in extension activities increases the local inter-
nal rate of return, on average, by approximately 1.44 percent. If, for example, the 
local internal rate of return on investments in R & D is 12 percent, a 10 percent 
increase in extension services increases this rate to 13.44 percent. This boosts the 
social rates of return from an average of 0.36 percentage points in Model 1 to 
1.18 percentage points in Model 2. We note, however, that the extension variable 
shows a decreasing trend during the period of analysis. Research spill-ins also 
have an important positive effect on social rates, ranking second in magnitude to 
investments in extension activities. Contrary to the evolution of the extension 
variable, the spill-in stock variables have all trended up over the sample period. 

6. Summary and Conclusions 

This paper uses data for a panel of states developed by USDA to estimate the 
own and social internal rates of return to public R & D expenditures in agricul-
ture. The social rates of return incorporate the interaction with R & D spill-ins 
from other states, extension activities, and road density. We construct four al-
ternative measures of potential R & D spill-ins based on geographic proximity  

 

 

12[16] uses the same USDA data set, an updated R & D stock variable, construct spill-ins using the 
geographical proximity approach (our Model 1), use a different proxy for Extension, do not include 
roads and use a two-step approach regressing the USDA productivity index on research and exten-
sion variables. [14] uses the same two-step procedure but the productivity index and the research 
and extension stocks are obtained using a different data set and different functional specifications. 
They use the production profile approach (our Model 3) to obtain spill-in stocks. Note that they 
calculate an internal rate of return and a modified internal rate of return. 
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Table 9. Internal Rate of Return by Region, US Agriculture, 1980-2004, alternative Spill-in models. 

Region 

Model 1 Model 2 Model 3 Model 4 

r1  r2  r1  r2  r1  r2  r1  r2  

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

1. Northeast 9.88 10.06 31.14 19.85 10.98 11.28 11.43 11.42 10.13 11.23 19.57 20.02 11.18 11.38 29.98 30.56 

2. Lake States 11.35 5.30 51.09 8.54 15.02 4.15 15.86 3.90 12.59 4.74 35.34 4.31 13.72 4.40 25.25 5.43 

3. Corn Belt 13.05 6.00 55.22 11.47 16.58 6.57 17.19 6.74 13.31 6.20 36.94 8.25 14.26 6.65 28.55 6.59 

4. North Plains 16.16 13.86 52.95 16.11 24.70 16.70 25.92 16.04 23.62 19.44 38.84 15.22 25.82 18.84 38.03 15.42 

5. Appalachian 11.62 5.55 26.09 9.73 14.10 6.55 14.38 6.58 13.03 6.38 26.90 10.33 14.09 6.44 43.02 45.81 

6. Southeast 7.32 5.14 34.69 9.43 9.65 4.04 10.15 3.72 8.22 5.44 25.05 5.91 9.40 4.28 16.91 3.91 

7. Delta States 7.62 3.34 34.87 5.86 9.19 4.18 9.53 4.17 8.42 4.20 24.18 7.82 9.22 4.07 23.38 4.31 

8. Southern Plains 20.76 6.64 54.53 18.42 27.26 4.77 27.63 4.59 29.51 4.69 47.44 9.97 29.82 4.54 32.25 4.76 

9. Mountain 9.31 5.17 40.14 14.30 10.72 5.92 12.58 5.79 9.78 6.09 20.53 8.74 10.99 6.00 31.98 26.52 

10. Pacific 9.27 3.23 36.99 16.45 11.67 3.88 11.98 5.53 8.97 4.09 31.40 9.37 10.74 4.02 18.28 4.98 

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return.  
 
Table 10. Impacts of the Extension Service, Roads, and Spill-in R & D on Internal Rate of Return in US Agriculture, 1980-2004, 
alternative Spill-in models. 

 Model 1 Model 2 Model 3 Model 4 

 r1  r2  r1  r2  r1  r2  r1  r2  

 mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  

 
mean 

standard  
deviation 

internal rate of return 10.75 7.98 39.56 17.62 13.61 9.71 16.96 10.32 12.36 10.29 27.54 14.96 13.52 10.23 29.29 15.56 

add 10% of ET 12.15 8.35 39.92 17.55 15.06 10.15 18.17 10.67 13.79 10.77 28.21 15.09 15.01 10.72 30.01 15.64 

contribution of ET 1.40 0.38 0.36 0.43 1.44 0.44 1.18 0.59 1.43 0.48 0.67 0.57 1.49 0.49 0.72 0.61 

add 10% of RO 10.95 8.03 39.61 17.61 13.94 9.81 17.22 10.41 12.71 10.41 27.70 14.99 13.86 10.35 29.46 15.58 

contribution of RO 0.20 0.05 0.05 0.06 0.32 0.10 0.26 0.15 0.35 0.12 0.16 0.13 0.34 0.11 0.16 0.14 

add 10% of SR 11.60 8.20 39.77 17.58 13.72 9.74 17.04 10.35 12.73 10.42 27.71 14.99 13.78 10.32 29.42 15.57 

contribution of SR 0.84 0.23 0.22 0.26 0.10 0.03 0.08 0.05 0.37 0.12 0.17 0.14 0.27 0.09 0.13 0.11 

Note 1: The spillin RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. Note 2: r1 indicates local internal rate of return, and r2 indicates social internal rate of return.  
 

and similarities in production to determine the sensitivity of the estimated rates 
of return to model specification. We estimate four models, using a different 
measure of potential R & D spill-in in each model. Our estimates indicate that 
extension activities, road density, and R & D spill-ins from other states play an 
important role in determining the efficacy of R & D expenditures. Among these 
variables, the impact of extension activities seems to be the strongest. These ac-
tivities enhance productivity growth by facilitating dissemination of technical 
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information.  
We estimate own and social rates of return that, although high, are lower than 

the ones found in previous literature. Local internal rates are, on average across 
all years, states and models, 12 percent while social rates are 27 percent. The es-
timates of the own internal rates of return are robust across the alternative mod-
els, while the social internal rates of return deviate from each other depending 
on the particular measure of R & D spill-ins. The social rates of return based on 
USDA production regions are much higher than those estimated by the other 
models. This is important given the prevalence in the literature of the produc-
tion mix approach for the calculation of knowledge spill-in stocks. We find that 
the decline in own rates is associated with declines in extension investments 
during this period. These findings can inform decisions about allocating public 
resources to alternative research and extension activities. 
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Appendix 
Table A1. Average input price elasticities and output cost elasticities, 48 states, US Agriculture, 1980-2004, alternative Spill-in 
models. 

Elasticity 

Model 1 Model 2 Model 3 Model 4 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

mean 
standard  
deviation 

Input own price elasticity 
        

ηA −0.4538 0.1229 −0.4244 0.1511 −0.4443 0.1386 −0.4432 0.1362 

ηM −0.1724 0.0244 −0.1582 0.0224 −0.1675 0.0257 −0.1571 0.0249 

ηK 0.1545 0.2457 0.1607 0.2412 0.1363 0.2467 0.1526 0.2444 

ηL −0.2163 0.1295 −0.1781 0.1583 −0.1866 0.1609 −0.1815 0.1580 

Input cross elasticity 
        

ηA M 0.1988 0.1146 0.2206 0.1172 0.2038 0.1226 0.2064 0.1191 

ηA K 0.1170 0.0350 0.1037 0.0366 0.1174 0.0357 0.1164 0.0352 

ηA L 0.1380 0.0644 0.1001 0.0746 0.1230 0.0699 0.1203 0.0704 

ηM A 0.0568 0.0345 0.0623 0.0343 0.0579 0.0341 0.0586 0.0342 

ηM K −0.0133 0.0366 −0.0200 0.0369 −0.0102 0.0369 −0.0175 0.0371 

ηM L 0.1289 0.0554 0.1159 0.0553 0.1198 0.0560 0.1160 0.0559 

ηK A 0.1063 0.0364 0.0950 0.0367 0.1065 0.0357 0.1058 0.0360 

ηK M −0.0701 0.1513 −0.0929 0.1555 −0.0589 0.1518 −0.0841 0.1551 

ηK L −0.1908 0.1197 −0.1629 0.1125 −0.1839 0.1234 −0.1743 0.1183 

ηL A 0.0771 0.0351 0.0562 0.0386 0.0684 0.0368 0.0669 0.0369 

ηL M 0.2634 0.0634 0.2315 0.0739 0.2405 0.0738 0.2315 0.0743 

ηL K −0.1243 0.0880 −0.1095 0.0909 −0.1222 0.0986 −0.1168 0.0946 

Output cost elasticity 
        

ηV 0.4211 0.0673 0.4422 0.0784 0.4407 0.0739 0.4497 0.0757 

ηC 0.3640 0.0864 0.3759 0.0921 0.3699 0.1026 0.3688 0.1042 

ηO 0.0046 0.0910 −0.0006 0.1170 0.0080 0.1171 0.0022 0.1142 

Hessian −0.0004 0.0017 −0.0003 0.0014 −0.0004 0.0016 −0.0003 0.0016 

Note 1: The spill-in RD stocks are based on production region, geographical distance, un-weighted production profile, and correlation weighted production 
cluster for Model 1 to Model 4, respectively. Note 2: V stands for livestock, C for crops, O for other farm related goods and services, A for land, L for labor, 
M for materials, K for capital. 
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