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Abstract

Non-response is a regular occurrence in Sample Surveys. Developing estima-
tors when non-response exists may result in large biases when estimating
population parameters. In this paper, a finite population mean is estimated
when non-response exists randomly under two stage cluster sampling with
replacement. It is assumed that non-response arises in the survey variable in
the second stage of cluster sampling. Weighting method of compensating for
non-response is applied. Asymptotic properties of the proposed estimator of
the population mean are derived. Under mild assumptions, the estimator is
shown to be asymptotically consistent.
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1. Introduction

In survey sampling, non-response is one source of errors in data analysis. Non-
response introduces bias into the estimation of population characteristics. It also
causes samples to fail to follow the distributions determined by the original
sampling design. This paper seeks to reduce the non-response bias in the estima-
tion of a finite population mean in two stage cluster sampling.

Use of regression models is recognized as one of the procedures for reducing
bias due to non-response using auxiliary information. In practice, information
on the variables of interest is not available for non-respondents but information
on auxiliary variables may be available for non-respondents. It is therefore de-

sirable to model the response behavior and incorporate the auxiliary data into
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the estimation so that the bias arising from non-response can be reduced. If the
auxiliary variables are correlated with the response behavior, then the regression
estimators would be more precise in estimation of population parameters, given
the auxiliary information is known.

Many authors have developed estimators of population mean where
non-response exists in the study and auxiliary variables. But there exist cases
that do not exhibit non-response in the auxiliary variables, such as: number of
people in a family, duration one takes to go through education. Imputation
techniques have been used to account for non-response in the study variable.
For instance, [1] applied compromised method of imputation to estimate a finite
population mean under two stage cluster sampling, this method however pro-
duced a large bias. In this study, the Nadaraya-Watson regression technique is
applied in deriving the estimator for the finite population mean. Kernel weights

are used to compensate for non-response.

Reweighting Method

Non-response causes loss of observations and therefore reweighting means that
the weights are increased for all or almost all of the elements that fail to respond
in a survey. The population mean, Y , is estimated by selecting a sample of size 1
at random with replacement. If responding units to item y are independent so that
the probability of unit / responding in cluster 7is p; (i=1,2,--,n;j=12,---,m)

then an imputed estimator, V,, for Y ,is given by

_ 1 .
y Z—{ZV‘GI‘VUJF_ZWHVU} (1.0)

! Zi,jeswii i,jesy i,jesy
where W; =ﬂi gives sample survey weight tied to unit j in cluster 7 and
ij
m; = p[i, jes] is its second order probability of inclusion, s, is the set of r
units responding to item yand s, is the set of m units that failed to respond to
item yso that r+m=n and Yy; is the imputed value generated so that the
missing value Y; is compensated for, [2].

2. The Proposed Estimator of Finite Population Mean

Consider a finite population of size A consisting of N clusters with N, ele-
ments in the /" cluster. A sample of n clusters is selected so that N, units re-
spond and N, units fail to respond. Let Y; denote the value of the survey va-
riable Y for unit jin cluster 4 for i=12,---,N, j=1,2,---,N; and let popula-

tion mean be given by

= 1 MM
Y=—03Y, 2.1)

MNi i=l j=1 R
Let an estimator of the finite population mean be defined by Y as follows:
= 101 Yii 1 1|
Y="a 23>t +— 1-—1Y;5; (2.2)
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is an indicator variable defined by
™ unit in the i™ cluster responds

0, elsewhere

where & i
1 if j
i =
and n, and n, are the number of units that respond and those that fail to re-

spond respectively.
is the probability of selecting the /" unit in the /* cluster into the sample
to be the inverse of the second order inclusion probabilities

T

Let W(X;|=—
(x)-2
and that X; is the /* auxiliary random variable from the /* cluster. It follows
} (2.3)

2 ies jes

that Equation (2.2) becomes
7 e+ 1wy )
ies jes
is known to be Bernoulli random variables with probability of
=5; and (&;)=6;(1-5;), [3]. Thus,

)

Suppose 0;
success 5” , then, E(5ij): pr(5ij =1)=4;
the expected value of the estimator of population mean is given by
ZZE((l w(x))Y, )5;} (2.4)

1 ies jes
Assuming non-response in the second stage of sampling, the problem is

therefore to estimate the values of Y;;. To do this, a linear regression model ap-

e(7 ) S T e w0 )0+ EF

(2.5)

plied by [4] and [5] given below is used
Y =m(%;)+§

where m(.) is a smooth function of the auxiliary variables and €; is the resi-

)+e

dual term with mean zero and variance which is strictly positive, Substituting
Equation (2.5) in Equation (2.4) the following result is obtained:
=(7)- e (%) (s )
1 ies jes (2.6)
e (- w(n))(n(5) 4 )i
2 ies jes
Assuming that n, =n, =n, and simplifying Equation (2.6) we obtain the fol-
lowing
22 F (( ()A( )W(Xij ))‘sij
(2.7)

() w2z
cEE(i-uly))n(i) )

A detailed work done by [5] proved that E (éij) 0. Therefore Equation (2.7)

5
(2.8)

S SE(m(R))E(w(x;))

reduces to
()l
Mn ies jes
+§§E(1 w( ,J))E( (iu)+éij)5i]f}
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The second term in Equation (2.8) is simplified as follows:

ﬁ{ZZE (L-w(x ) E(m(%)+é, )‘Sii*}

igs jes

:%{%“%E(l—w(xu))m(iij)éij} 29
i Tl o

But E (m (Xij )) = m(f(ij ) =m (Xij ) , [6]. Thus we get the following:

ﬁ{ZZE (L-w(x;))E(m(%)+& )55}

1S Sl )-euinlan)]

e (-uln )e(n(i) 4 )

— (M=) (N = (n+D)[(8,)m(x, ) -w(x,)am(x )]} @1)
+ﬁ{(|\/| ~(m+1))(N=(n+1

But E (eij ) =0, for details see [5].
On simplification, Equation (2.11) reduces to

o el (o)) -
R CRE TP R

Mn

~—
~

1
Recall w(x. |=—
(x)-2
so that Equation (2.12) may be re-written as follows:

e EEew(x (i) )

igs jes

(M- (msD)(N-(n+1) { 5()(_1]} o1

B Mn

ij
Assume the sample sizes are large ie. as n— N and m— M, Equation
(2.13) simplifies to

%{ZZE(PW(’% )E(m(%;)+&; )55}

igs jes
1 ;-1
=W{5ﬂm(xij)( ;Tii ]}
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Combining Equation (2.14) with the first term in Equation (2.08) becomes;

(7 ok mzelota)e 2o mpainta) 2| e

ies jes ij ies jes ij

Since the first term represents the response units, their values are all known.
The problem is to estimate the non-response units in the second term. Let the
indicator variable J; =1, the problem now reduces to that of estimating the
function m()?ij), which is a function of the auxiliary variables, X;. Hence the
expected value of the estimator of the finite population mean under

non-response is given as;

E[vﬁjﬁ{zzmzzf%(m(ﬁu >){”2;1]} @216)

ies jes ies jes ij

In order to derive the asymptotic properties of the expected value of the pro-
posed estimator in 2.16, first a review of Nadaraya-Watson estimator is given

below.

3. Review of Nadaraya-Watson Estimator

Given a random sample of bivariate data (X;,¥;),"-,(X,,Y,) having a joint pdf
g(x,y) with the regression model given by
Y, = m(xij )+ e; as in Equation (2.5), where m(.) is unknown. Let the error

term satisfy the following conditions:
E(e;)=0, Var(e;) =0y, cov(e,e;)=0 fori=j (3.0)

=0y,

Furthermore, let K(.) denote a symmetric kernel density function which is

twice continuously differentiable with:
[ k(w)dw=1
I_Z wk (w)dw =0
[7 K (w)dw <oo (3.1)
_[j; w?k (w)dw=d,
k(w) =k (-w)

In addition, let the smoothing weights be defined by

K )
b . -
W(le)z X—X ’ |=1121'“1n1_]=1121'”1m (3'2)
ST K
ies ies b
where b is a smoothing parameter, normally referred to as the bandwidth such
that, ), > w(x;)=1.

Using Equation (3.2), the Nadaraya-Watson estimator of m(xij) is given by:
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(%)= S Sw(x ¥ = ZiestESK(X— X, jYij

yi=1!2|”'|n;j=1121”.1m (3'3)

Given the model YAij = m()A(ij )+ €; and the conditions of the error term as ex-
plained in 3.0 above, the expression for the survey variable Y; relative to the

auxiliary variable X;

can be given as a joint pdf of ¢ (Xij Yi ) as follows:
[ya (x,y)dy

[g(xy)dy

where _[g (x,y)dy is the marginal density of X;;. The numerator and the de-

m(xij>=E(Yij/xij =Xi) Iyg y/x]dy

(3.4)

nominator of Equation (3.4) can be estimated separately using kernel functions
as follows:

g(xy) isestimated by;

I

[yg(xy)d ZZI ( [ % ]%K[y_TY”Dydy (3.6)

Using change of variables technique; let

and

y-=Y;
WzT
y=Wb+Yij (3.7)
dy = bdw
So that
« 1 1 X=X; )1
J'yg(x,y)dy:%zi“zj:J'BK( - JJE(bWJrYij)K(W)de (3.8)

ZZ [ J[ij w)bdw + = Y,J [k w)bdw} (3.9)

mnb

From the conditions specified in Equation (3.1), the following (3.9) simplifies
to

Iyé(x,y)dy ZZ [ J[ow ] (3.10)

which reduces to:

[yG(x.y)d ZZ ( j (3.11)

Following the same procedure, the denominator can be obtained as follows:
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> b e el

o

Using change of variable technique as in Equation (3.7), Equation (3.12) can

(3.12)

be re-written as follows:

. 1 & (X=X, 1
y)dy =—— K 4 K (w)bd 3.13
_[g(xy)y mnb;;( b ]b () W (3.13)
which yields
1 n m X—X..
G(x,y)dy=—— K 4 3.14
O ey 619

Since f K (w)bdw is a pdf and therefore integrates to 1.

It follows from Equations ((3.11) and (3.14)) that the estimator m(iij) is as
given in Equation (3.3). Thus the estimator of m(xij) is a linear smoother
since it is a linear function of the observations, Y; . Given a sample and a spe-

cified kernel function, then for a given auxiliary value X;, the corresponding

IJ ’
y-estimate is obtained by the estimator outlined in Equation (3.3), which can be

written as:

y me( ) ZENIJ( u) (3.15)

where my, ()?ij) is the Nadaraya-Watson estimator for estimating the un-
known function m(.), for details see [7] [8].
This provides a way of estimating for instance the non-response values of the

survey variable Y;

i » given the auxiliary values X;, for a specified kernel func-

ij >
tion.

4. Asymptotic Bias of the Mean Estimator Y

Equation (2.16) may be written as

(J {ZZY” ZN: i'“Nw(f/u )} (4.1)

i=1 j=1 i=n+lj=m+1

Replacing X by X; and re-writing Equation (3.15) using the property of

symmetry associated with Nadaraya-Watson estimator, then

Xi =X
Ziesz jESK (JbJjYIJ
X — X
Ziesz jESK ( : b XIJ J

Sl s (5] )

Myw ()“( ) =

i d=12,-nj=12---m (4.2)
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where 0 ( ) is the estimated marginal density of auxiliary variables X

i -
But for a finite population mean, the expected value of the estimator is given
in Equation (4.1). The bias is given by

o) of 7

(4.4)
(7] {MN{E,E;YU Ehew]
4.5
Which reduces to
ool E i E R e
- L {ZZ (%)- i%j%m(xu)} @)

Re-writing the regression model given by Y; = m( X ) +e; as
Yy =m(xij)+[m(xij)—m(xij)]+eij (4.8)

So that from Equation (4.3) the first term in Equation (4.7) before taking the
expectation is given as:

ij Xij
1 mnb ZI ﬂ+le =m+1 ( b j

ij
MN

§(x)
MlN{g( ){,;“;f( ] (%) (4.9)

mnbl%ljgm;qK[x — ][ (Xij)_m(xij):|

b S|

Simplifying Equation (4.9) the following is thus obtained

1 1 N M X.. —X.
L K ij ily.
MN {mnb@(xij)i—%lj—z:rml [ b ) U}

:i{zi’q—nﬂz?ﬂ_m[ﬁ(xu)m<Xi,-)+rﬁl(xij)+m2 (%, )]} (4.10)

mnbg (xij)

where

()= 3 5[ Z () -m(x,)]
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%)= 3 3 k(e

i=n+lj=m+1
Taking conditional expectation of Equation (4.10) we get

E Zi’im—lz ';A:m+1M ()zij )

X;

CREs R R

To obtain the relationship between the conditional mean and the selected

(4.11)

bandwidth, the following theorem due to [6] is applied;
Theorem: (Dorfman, 1992)
Let k(w) be a symmetric density function with jWk (w)dw=0 and

n
IW k(w)dw=k,. Assume n and N increase together such that W—Hz with

0 <z <1. Besides, assume the sampled and non-sampled values of x are in the

interval [c,d] and are generated by densities d, and d respectively both

p-s
bounded away from zero on [c, d] and assumed to have continuous second de-
rivatives. If for any variable Z, E(Z/U =u)=A(u)+O(B) and
Var(Z/U = u) = O(C), then Z = A(u)+Op B +C2J .

Applying this theorem, we have

MSE i _ 1 2 (MN—mn)ZJ‘k(Wz)dW
Xij (MN) mnbg(xij)
+%b4kf(k){m”(xu)+%] (412)

of)ro| M-l 1]

This theorem is stated without proof. To prove it, we partition it into the bias
and variance terms and separately prove them as follows:

From Equation (3.0) it follows that E(eij / Xii ) =0. Therefore, E [mz (Xij )J =0.
Thus E[ ( i )J can be obtained as follows:

E Z i [rﬁl(xu )]

i=n+1j=m+1

a5 ) -mi | o
MN mnb i=n+1j=m+1 ! !
Using substitution and change of variable technique below
w=" ;X“ s0 that V = x; +bw and dV = bdw (4.14)

Equation (4.13) can simplify to:
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£> > [ (x)]

i=n+lj=m+1

MN —mn (4.15)
MN{ mnb .(k [ (Xj+bW)—m(Xij)Mg(xu+bw)bdw}
L {MNm—n 0 fic () [ m(x, +bw) -m(x;) o (x, +bw)dw} (4.16)

Using the Taylor’s series expansion about the point X;, the X" order kernel

can be derived as follows:
9 (x; +bw)=g(x;)+ g’(xij)bw+%g”(xij)bzwz +-..+%9k (% )ow*+0(b?) (417)
Similarly,
m(x; +bw) =m(x; ) + m’(xij)bw+%m”(xij Jo*w? +'"+%mk (x;)b*w* +0(b*) (4.18)
Expanding up to the 3" order kernels, Equation (4.18) becomes
[m(xij +bw) - m(x, ] =m'(x; )bW+%m”(Xij )b*w? +%m’”(xij Jo*w’  (419)

In a similar manner, the expansion of Equation (4.16) up to order O(bz) is
given by:

£> > [ (x)]

i=n+1j=m+1
1 [MN- , 1, ) '
:W{ mnmn jk(w)(m (xij)bw+5m (% )oPw j(g(xij)+g (xii)bw)dw}
Simplifying Equation (4.20) gives;
S [ 1 [(MN-
EY Y [ml(xij)]zw{[ mnmnjg(xﬁ)m’(xij)bj'wk(w)dw

i=n+lj=m+1
+(MNm_nmnj9'(xu)m'(xu)bszzk(w)dw (4.21)

+(MNm_nmnj%g(X.,) (% )b? [wk (w dW+O(b2)}

Using the conditions stated in Equation (3.1), the derivation in (4.21) can

(4.20)

further be simplified to obtain:

E i i [ml(xij )J

i=n+lj=m+1
1 J(MN-mn} , 1 " 2 2
- MN {( mn )[g (3% )m (Xij)+§g(xii)m (Xi,-)}b d, +0(b )}
Hence the expected value of the second term in Equation (4.11) then becomes:

S 3 [ (x)]

_Il\%{mﬁwh‘mnmn){%m"(xu )+%]bzdk +O(b2)} 2
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{ —]bzdkC(x)+O(b2)} (4.25)

1 " -1 ’ ’
C(x):Em (xij)+[g(xij)] g’(%;)m' (%) (4.26)
and d, isas stated in Equation (3.1)
Using equation of the bias given in (4.4) and the conditional expectation in

Equation (4.11), we obtain the following equation for the bias of the estimator:

e 7 =i (Mo of)|

L MIN (4.27)
—mn
- W{(ijzdkc (x)+ O(bz)}
5. Asymptotic Variance of the Estimator, Y
From Equations ((4.9) and (4.11)),
1 n m X.. —X.
S X )=—— Kl —/—2 e 5.0
m2 (XIJ ) mnb é; [ b \Jeu ( )
Hence
Vari i [, (x,)]= ! Z(MN _m“jziiVar(Dx) (5.1)
i=n+1lj=m+1 (MN ) mnb i=1 j=1

where

Xi = %
Dx = K (TJ eij

Expressing Equation (5.1) in terms of expectation we obtain:

Varii[mz(xu)]: ! {(MN_mn)z}{E[Dx]z—[E(DX)T} (5.2)

i=n+1j=m+1 (MN )2 mﬂb2

Using the fact that the conditional expectation
E (eij /X ) =0, the second term in Equation (4.13) reduces to zero. Therefore,

Vari i [rﬁz(xu” ! {(MN —mn) }J&j) (5.3)

i=n+1j=m+1 - (MN )2 mnb2

where
E(e,/X,) =of,,

Let X =X;,and X=X;,and making the following substitutions
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X =X
b
X —x=bw
dX =bdw

vary Z[ (%) ]= (MN — mn) jK(X_ija(inj)g(x)dx (5.5)

i=n-+1j=m+1 mnbz(MN)

(5.4)

(MN —mn)?
mnbz(MN)ZJK() T8 (X +DW)DIW  (56)

which can be simplified to get:

Vari i [mz(xij)J:(MN —mn)

i=n+1j=m+1 mnb(MN )2

[K(w) g(x) (Xu)dw+o( L ) (5.7)

mnb

Vari i [nﬁl(xij )J

i=n+lj=m+1

g 3 LS5 2 [ (1))

(M ) i=n+1j=m+l mnb i=1 j=1

Vari i [rﬁl(xij)]:MVarK[X”;X”J[M(Xi,-)—m(xij)] (5.9)

i=n+1j=m+1 mnb2 (MN )
Hence
NOoMo
Var_zl_zl[ml(xij )J
i=n+1j=m-+:
(5.10)
(MN —mn)? [X—x)2 2
=—— > FE| K M (X)—m(x g(X)dX
where X =bw+ X sothat dX =bdw.
Changing variables and applying Taylor’s series expansion then
N M
Varlzl-zl[ml(xij)]
i=n+1 j=m+
(5.11)
(MN — mn)2 2 2
=——|K(w) | m(x+bw)-m(x X+ bw)dw
o K O [ g o)
:MIK(W)Z[m(x)+m'(x)bw+---—m(x)T(g(x)+g’(x)bw)dw (5.12)
mnb? (MN )? '
which simplifies to
NoMo (MN —mn)*b?
verd 2 )]:O{m—nbl 13

For large samples, as n—>N, m—>M and for b—0, then mnb— .
Hence the variance in Equation (5.12) asymptotically tends to zero, that is,

Var ZN: i [nﬁl(xij )J -0

i=n+lj=m+1
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mnb(MN )2 i=n-+1j=m-+1 @ (Xij )

A 2 ' "
Var (\7} = M i i Var[m(xij ) +M} (5.14)
On simplification,

Var(\%j: (MN —mn)2 )T Var{%, i |:rﬁ2<xij )J} (5.15)

mnb ( MN )2 I:g (Xij i=n+1j=m+1

Substituting Equations ((5.7) into (5.15)) yields the following:

Var(Yéj‘ 1 |(MN )’ K (w) G(ZXij>dW+o (MN-mn) 1
B (MN)Z mnb(g(xij)) mnb mnb |
1 (MN —mn)* H (W)o(zxij) o (MN —mn)’ ! (5.17)
(MN)* mnb(g xij)) mnb mnb

where, H (W)= JK (W)2 dw

It is notable that the variance term still depends on the marginal density func-
tion, ¢ (Xij) of the auxiliary variables Xj. It can also be observed that the va-
riance is inversely related to the smoothing parameter 4. This implies that an in-
crease in b results in a smaller variance. However, increasing the bandwidth
would give a larger bias. Therefore there is a trade-off between the bias and va-
riance of the estimated population mean. A bandwidth that provides a compro-

mise between the two measures would therefore be desirable.

6. Mean Squared Error (MSE) of the Finite Population Mean
Estimator Y

The MSE of Y combines the bias and the variance terms of this estimator that

2 ~ _\?
MSE [Yj: E(\?—\?j (6.0)

| .MSE[YQJE[Y&EWE[ﬂﬁ (6.1)
el )-(7-<[7]] +<(<[7 -7
ol 7]

= Var(Y ] + Bias? +0 (6.3)

is,

(6.2)

Combining the bias in Equation (4.27) and the variance in Equation (5.17)

and conditioning on the auxiliary values X; of the auxiliary variables X then
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MSE (\%/x” :xijj

1 (MN —mn)*H (w)o; %(x) 1 [(MN-mn)® 1
:(MN)Z mnb(g(xu)) O MN mnb  mnb ©4
+M—ﬁ\l{(WJbzdkC(x)+O(bz)}
MSE(\%/XU- - xijj
1 (MN—mn)zH(w)o(zxij)
(MN)2 mnb(g xij))
(6.5)

(MN—mn)* | ’(Xu)m'( u)
amnany %| )+ T alx)

+0(b*)+ MlN [O {( M’:lnr:bmn mnb}ﬂ}

where H(W)=_[K(W)2 dw, dy = [w?K (w)dw
)

LQ

C(x) :%m"(xij +[g (xij )]_1 g’(xij)m'(xij) as used earlier in the rest of the de-

rivations.

7. Conclusion

If the sample size is large enough, thatisas n—>N and m—> M the MSE of

(Y_j in Equation (6.5) due to the kernel tends to zero for sufficiently a small

bandwidth 5. The estimator (\Tj is therefore asymptotically consistent since
its MSE converges to zero.
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