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Abstract 
This note is mainly concerned with the creation of oppositely converging and 
alternatingly converging iterative methods that have the added advantage of 
providing ever tighter bounds on the targeted root. By a slight parametric 
perturbation of Newton’s method we create an oscillating super-linear me-
thod approaching the targeted root alternatingly from above and from below. 
Further extension of Newton’s method creates an oppositely converging qua-
dratic counterpart to it. This new method requires a second derivative, but for 
it, the average of the two opposite methods rises to become a cubic method. 
This note examines also the creation of high order iterative methods by a re-
peated specification of undetermined coefficients. 
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1. Introduction 

Iterative methods [1] [2] [3] for locating roots of nonlinear equations are of 
further appeal if converging oppositely [4] or alternatingly [5] [6] so as to 
establish bounds, or to bracket, the targeted root. 

In this note we are mainly concerned with the creation of oppositely and 
alternatingly converging iterative methods for ever tighter bounds on the 
targeted root. By a slight parametric perturbation of Newton’s method we create 
an alternating super-linear method approaching the targeted root in turns from 
above and from below. Further extension of Newton’s method [7] creates an 
oppositely converging quadratic counterpart to it. This New method requires a 
second derivative, but for it, the average of the two opposite methods rises to 
become a cubic method. 
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This note examines also the creation of high order iterative methods by a 
repeated evaluation of undetermined coefficients [7]. 

2. The Function 

At the heart of this note lies the seeking of simple root a of function ( )f x , 
( ) 0f a = , a function which we assume throughout the paper to have the 

expanded form  

( ) ( ) ( ) ( )
( ) ( )

2 3

4 5 , 0

f x A x a B x a C x a

D x a E x a A

= − + − + −

+ − + − + ≠

             (1) 

such that  

( ) ( ) ( ) ( )

( ) ( ) ( )5

1 10, , , ,
2! 3!

1 1,
4! 5!

f a A f a B f a C f a

'D f a E f a

′ ′′ ′′′= = = =

′′′= =
           (2) 

and so on. 
The condition ( ) 0A f a′= ≠  guarantees that root a of ( )f x  is simple, or, 

otherwise said, of multiplicity one. 
The one-step iterative method is of the general, and expanded, form  

( )

( ) ( )( ) ( )( )

( )( )

1 0

2
1 0 0

3
0

,
1
2!

1
3!

x F x

x F a F a x a F a x a

F a x a

=

′ ′′= + − + −

′′′+ − +
           

 (3) 

and, evidently, if ( )F a a= , namely, if a is a fixed-point of iteration function 
( )F x  in Equation (3), and if, further, ( ) 0F a′ = , then iterative method (3) 

converges quadratically to a. Higher order derivatives of ( )F x  being zero at 
point a moves iterative method (3) to still higher orders of convergence to fixed- 
point ( )a F a= . 

3. Newton’s Method 

With comprehensiveness in mind we actually derive this classical, mainstay 
iterative method of numerical analysis. We start by generally stating it as  

( ) ( )
( ) ( ) ( ) ( )

1 0 0 1 0, 0, ,

, 0,

x x Pf x P x F x

F x x Pf x f a F a a

= + ≠ =

= + = =
               (4) 

for any value of free parameter P. By the fact that ( ) 0f a = , point a is a fixed- 
point of iteration function ( )F x  of method (4), that is to say, ( )F a a= . 

Power series expansion of 1x  yields  

( )( ) ( ) ( )( )2 3
1 0 0 01 .x a AP x a BP x a O x a− = + − + − + −

        
 (5) 

Equation (5) suggests that the choice 1P A= −  should result in a quadratic 
method. However, since ( )A f a′= , and since a is unknown, we replace it by 
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the known approximation 0x , actually take ( )01P f x′= −  to have 

( )
( )

0
1 0 1 0 0

0

, or in short ,
f xfx x x x u u

f f x
= − = − =

′ ′
            (6) 

which happens to be still quadratic; convergence of Newton’s method to a 
simple, namely of multiplicity one ( ( ) 0f a′ ≠ ), root is verified to be of second 
order  

( ) ( ) ( )( )
2

2 3 4
1 0 0 022B AC Bx a x a x a O x a

A A
−

− = − + − + −         (7) 

where , ,A B C  are as in Equations ((1) and (2)). 
For example, for 210f x x= + , we generate by Equation (6), starting with 

0 1x = , the converging 1x  sequence  

{
}

1 1 2 2 3

4 7 12 23

1, 4.8 10 ,2.2 10 ,8.7 10 ,2.8 10 ,5.0 10 ,

2.2 10 ,5.0 10 ,2.5 10 ,6.4 10

− − − − −

− − − −

× × × × ×

× × × ×
         (8) 

4. Extrapolation to the Limit 

Let 0 1 0 0 2 1 1, , ,x x x u x x u u f f ′= − = − =  be already near root a, then, by 
Equation (7)  

( ) ( )2 2
1 0 2 1andB Bx a x a x a x a

A A
− = − − = −

            
 (9) 

nearly. Eliminating B A  from the two equations we are left with  

( ) ( ) ( )2 2 2 3 2
0 1 2 0 1 0 2 1 0 22 3 3 2 0x x x a x x x x a x x x− + − + − + + − =

     
 (10) 

which we solve for an approximate a, as  

( )
( )
( )

0
3 0 0 0

0

3 1 4
,

2 2
f x

x a x u u
f x

ρ
ρ

+ +
= = − =

′−              
 (11) 

where  

( ) ( )( )2
1 0 0 0 .Bu u x a O x a

A
ρ = = − + −               (12) 

The square root in Equation (11) may be approximated as  
2 3 4 5 61 4 1 2 2 4 10 28 84ρ ρ ρ ρ ρ ρ ρ+ = + − + − + − ±        (13) 

and  

( )
( ) ( )( )

2 2
5 6

3 0 04

2
.

B B AC
x a x a O x a

A

−
− = − + −           (14) 

For example, for ( ) 2 3f x x x x= + + , and starting with 0 0.2x = , we compute 

1 0.0368x = , 2 0.0135x = ; and then from Equation (11), 3 0.000112x = . 
Another such cycle starting with 0 3x x=  produces a next 20

3 1.36 10x −= − × . 

5. Estimating the Leading Term B/A 

From Equation (9) we have that, approximately  
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( )
2 3

2
1 3

x xB
A x x

−
=

−
                        (15) 

if 3x  is already close to a. 
We pick from the list in Equation (8) the values  

7 12 23
1 2 35.0 10 , 2.5 10 , 6.4 10x x x− − −= × = × = ×            (16) 

and have from Equation (15) that 10B A = . 

6. Hopping to the Other Side of the Root 

If instead of 1 0 0 0x x f f ′= −  of Equation (6) we vault over by the double step  

0
1 0

0

2
fx x
f

= −
′
                        (17) 

then we land at  

( ) ( )( )2 3
1 0 0 0

22 Bx a x x a O x a
A

= − + − + −              (18) 

implying that asymptotically, as 0x a→   

1 0 1 02 , or ifx a x x a x a= − = − = +                 (19) 

and this is good to know. 
For example, seeking a root of ( ) 210f x x x= +  we start with 0 0.2x = , 

which is above the root 0a = , and using 1 0 0 02x x f f ′= −  we obtain 

1 0.04x = −  which is, indeed, under the root 0a = . 

7. A Chord Method 

Each step of Newton’s method provides us with an f  and f ′  values, which 
can be used to polynomially extrapolate ( )f x  to zero. A linear extrapolation 
through the pair of points ( ) ( )0 0 1 1, , ,x f x f  results in the line  

( ) 0 1 1 0 0 1

0 1 0 1

f f f x f xf x x
x x x x
− −

= +
− −                  

 (20) 

We set ( ) 0f x =  and obtain the extrapolated value  

0 1 1 0
2

0 1

f x f xx
f f
−

=
−

                       (21) 

which may now be repeated to form a chord iterative method. 
For example, from the two values 7

0 5 10x −= × , 12
1 2.5 10x −= ×  taken from 

the list in Equation (8) for ( ) 210f x x x= + , we compute from Equation (21) 
17

2 1.25 10x −= × . 
Starting with 3

0 5 10x −= × , 4
1 2.2 10x −= ×  we repeatedly compute  

{ }3 4 5 8 12 19 29
2 5 10 ,2.2 10 ,1.0 10 ,2.3 10 ,2.4 10 ,5.5 10 ,1.3 10x − − − − − − −= × × × × × × ×  (22) 

with no need for any further derivative function evaluation. 
Theoretically, by power series expansion  
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( ) ( )( )
2

3 4
2 0 02 .Bx a x a O x a

A
− = − + −                (23) 

According to Equation (23) 0x a−  and 2x a−  are ultimately of the same 
sign. 

8. A Rational Higher Order Method 

To have this we start with  

0
1

0 0

1
1

fx x
f Qf

= −
′ +

                      (24) 

for open parameter Q. Power series expansion yields  

( )( ) ( )( )2 32
1 0 0

1 .x a B A Q x a O x a
A

− = + − + −            (25) 

To have a cubic method we take  

2

BQ
A

= −
                         

 (26) 

with A and B as in Equation (2), but evaluated at 0x  rather than at a, to have 
Halley’s method  

0
1 0 02

0 0 0

2
2

fx x f
f f f

′
= −

′ ′′−                    
 (27) 

which is cubic  

( ) ( )( )
2

3 4
1 0 02 .B ACx a x a O x a

A
−

− = − + −              (28) 

9. A Polynomial Higher Order Method 

Here we start with the quadratic in f   

( )0
1 0 0

0

1
fx x Qf
f

= − +
′                     

 (29) 

for undetermined parameter Q. Power series expansion of 1x  yields  

( )( ) ( )( )2 32
1 0 0

1 .x a B A Q x a O x a
A

− = − − + −            (30) 

To have a cubic method we take  

2

BQ
A

=
                          

 (31) 

with A and B evaluated at 0x  rather than at a as in Equation (2), and  

20
1 0 0 03

0 0

1 ,
2

fx x f f
f f

′′
= − −

′ ′
                    (32) 

which is verified to be still cubic  

( ) ( )( )
2

3 4
1 0 02

2 .B ACx a x a O x a
A
−

− = − + −              (33) 
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10. An Alternating Super-Linear Method 

We take Newton’s method of Equation (6) and parametrically perturb it into  

( )0
1 0

0

1
fx x
f

= − +
′


                     

 (34) 

for some parameter  , to have  

( ) ( ) ( ) ( )( )2 3
1 0 0 01 .Bx a x a x a O x a

A
− = − − + + − + −          (35) 

which is super-liner if 1 . Moreover, for a positive   convergence here is 
ultimately alternating: 0 0x a− >  and 1 0x a− <  are of opposite signs. 

For example, for ( ) 210f x x x= + , 0 0.2x = , 1 25= , we compute from 
Equation (34)  

{ }1 2 2 3 5 6 8
1 2 10 ,7.5 10 ,2.0 10 ,2.2 10 , 4.0 10 ,1.6 10 , 6.4 10x − − − − − − −= × × × × − × × − ×  (36) 

11. An Opposite Quadratic Method 

To create a method oppositely converging to Newton’s method of Equations ((6) 
and (7)) we start with the perturbed Newton’s method  

( )0
1 0 0

0

1
fx x Qf
f

= − +
′                     

 (37) 

or in power series form  

( )( ) ( )( ) ( )( )2 3 42 2
1 0 0 02

1 2 .x a B A Q x a AC B x a O x a
A A

− = − − + − − + −   (38) 

To have a quadratic method opposite to Newton’s we set, in view of Equation 
(7)  

( )2
2

1 2, orB BB A Q Q
A A A

− = − =                  (39) 

resulting in  

0 0
1 0 02

0 0

1
f fx x f
f f
 ′′

= − + ′ ′ 
                    (40) 

which is, indeed, opposite to Newton’s  

( ) ( )( ) ( )( )2 3 42
1 0 0 02

2 3 2 .Bx a x a B AC x a O x a
A A

− = − − + − − + −     (41) 

Compare Equation (41) with Equation (7). 

12. The Average of the Opposites Is a Cubic Method 

Method (40) requires f ′  and f ′′  above the mere f ′  of Newton’s method, 
but for this, the average of the two opposite methods rises to become the cubic 
method  

2
0 0 0 0 0 0

1 0 0 0 02 3
0 0 00 0

1 11
2 2 2

f f f f f fx x f x x
f f ff f

  ′′   ′′
= − + + − = − −     ′ ′ ′′ ′   

     (42) 
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of Equation (32). 

13. A Quartic Method 

Hereby we advance another undetermined coefficients strategy for constructing 
high order iterative methods [8] [9] [10] [11] [12] to locate root a of ( )f x , 
( ) 0f a = . 
We start with the polynomial iteration function  

2 3
1 0 0 0 0x x Pf Qf Rf= + + +                    (43) 

of undetermined coefficients , ,P Q R , and expand 1x  as  

( )( ) ( )( )

( )( ) ( )( )
22

1 0 0

3 43
0 0

1

2

x a AP x a BP A Q x a

CP ABQ A R x a O x a

− = + − + + −

+ + + − + −
       

 (44) 

The coefficients of ( )0x a−  up to ( )3
0x a−  are made zero with  

2

3 5

1 2, ,B AC BP Q R
A A A

−
= − = =                  (45) 

to have a quartic method. 
However, as root a is unavailable we replace it in , ,P Q R  by 0x  to have the 

variable  

0 0 0 0
3 5

0 0 0

31 , , .
2 6

f f f fP Q R
f f f

′′ ′ ′′′ ′′−
= − = =

′ ′ ′
               (46) 

But, with this replacement of a by 0x  method (43) falls back to a mere 
quadratic  

( ) ( )( )2 3
1 0 02 .Bx a x a O x a

A
− = − + −

              
 (47) 

To repair this retreat in the order of convergence we propose to further 
correct 1x  of Equations ((43) and (46)) into  

2 30
1 0 1 0 2 0

0

fx x Z Qf Z Rf
f

= − + +
′

                  (48) 

for new parameters 1 2,Z Z . Power series expansion reveals that method (48) is 
restored to fourth order with 1 21, 1Z Z= − = , to have  

2 30 0 0 0 0
1 0 0 0 3 5

0 0 0

3
, ,

2 6
f f f f fx x Qf Rf Q R
f f f

′′ ′ ′′′ ′′−
= − − + = =

′ ′ ′
         (49) 

for which  

( ) ( )( )
3 2

4 5
1 0 03

5 5 .B ABC A Dx a x a O x a
A

− +
− = − + −          (50) 

14. The Rational Method Revisited 

We start here with  

0
1 0

01
Pfx x

Qf
= +

+
                       (51) 
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and expand it into  

( )( ) ( )( ) ( )( )2 32
1 0 0 01 .x a AP x a P B A Q x a O x a− = + − + − − + −

   
 (52) 

To have a cubic method we set  

2

1 , BP Q
A A

= − =                        (53) 

or  

0
2

0 0

1 , .
2

fP Q
f f

′′
= − =

′ ′                     
 (54) 

Inserting these last P and Q values into Equation (51) we have the 
disappointing  

( ) ( )( )2 3
1 0 0

2 .Bx a x a O x a
A

− = − + −                (55) 

We retry for a cubic method by writing, still for P and Q of Equation (54)  

1 0
1 0

2 01
Z Pfx x

Z Qf
= +

+
                      (56) 

for which we get by power series expansion  

( )( ) ( )( ) ( )( )2 3
1 1 0 1 2 0 01 1 .Bx a Z x a Z Z x a O x a

A
− = − − + + − + −     (57) 

We take 1 21, 1Z Z= = − , and have the method  

0 0
1 0 2

0 0 0

1, ,
1 2

Pf fx x P Q
Qf f f

′′
= + = − = −

′ ′+              
 (58) 

which is now restored to third order of convergence  

( ) ( )( )
2

3 4
1 0 02 .B ACx a x a O x a

A
−

− = − + −              (59) 

15. Undetermined Variable Factors 

Here we start with  

( ) ( ) ( )1 0 0 0 , 0x x P x f x f a= + =                  (60) 

and expand 1x  to have  

( )( )

( ) ( )( )
1 0

2 3
0 0

1

1 1
2 2

x a Pf Pf P f x a

Pf P f P f x a O x a

′ ′− = + + + −

 ′′ ′ ′ ′′+ + + − + − 
 

       (61) 

in which ( ) ( ) ( ) ( ), , ,f f a P P a P P a P P a′ ′ ′′ ′′= = = = . To have a cubic method, 
and considering that ( ) 0f a =  we impose the two conditions:  

1
1 0
2

f f P
Pf f

′  −     =     ′′′ ′      

                    (62) 

and solve system (62) for P as  
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2

1
det

0 2
2

det 1
2

f
f fP

f f f ff

f f

− 
 ′ ′− = =

′ ′ ′′− 
 
 ′′ ′
 

                (63) 

Since root a is unknown we evaluate P instead at 0x  and have iterative 
method (60) in the form  

0
1 0 02

0 0 0

2
2

fx x f
f f f

′
= −

′ ′′−                    
 (64) 

which we recognize as being the cubic method of Halley  

( ) ( )( )
2

3 4
1 0 02 .B ACx a x a O x a

A
−

− = − + −              (65) 

16. Conclusions 

In Section 6, we have demonstrated that the double-step Newton’s method 
places the next point on the other side of the root. Passing a line through two 
such points we create a chord method as that of Section 7. 

A slight perturbation of Newton’s method, as in Equation (34) creates a 
super-linear method of alternating convergence as in Section 10. By a further 
modification of Newton’s method we have created a quadratic method opposite 
to Newton’s. The average of these two opposite methods is a cubic method, as 
shown in Section 12. 

In Section 13, a quartic method is successfully created by repeated undetermined 
coefficients. 
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