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Abstract 
The P19CL6 mouse embryonic carcinoma cells efficiently differentiate into 
cardiac muscle cells in the presence of DMSO. A reporter plasmid for cardiac 
muscle differentiation was constructed by connecting the CMV enhancer and 
a 250 bp MLC-2v promoter in front of the GFP gene to further evaluate the 
role of the CMV enhancer. This plasmid (pCBVenh/MLC-2vpro/EGFP) was 
stably introduced into P19CL6 cells, and the transfectant differentiated into 
cardiomyocytes with DMSO. Upon DMSO addition, GFP was immediately 
transcribed (within 2 days) and the amount of the transcript increased with 
cultivation. Concomitantly, GFP fluorescence was detected in the cells under a 
microscope. However, native MLC-2v was transcribed later on day 4. This 
expression time course is different from that of GFP. Clearly the CMV en-
hancer responded immediately to DMSO. Since GATA DNA-binding pro-
teins play crucial roles in the initiation of cardiomyocyte differentiation, such 
a response could be ascribed to the presence of multiple GATA motifs in the 
enhancer sequence but not in the native MLC-2v promoter. Thus the CMV 
enhancer may be not only useful for gene therapy and monitoring cell diffe-
rentiation but also the study of the role of GATA transcription factors ex-
pressed in P19CL6 cells. 
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1. Introduction 

P19CL6 cells derived from P19 embryonic carcinoma cells can efficiently diffe-
rentiate into cardiac muscle cells in the presence of 1% dimethyl sulfoxide 
(DMSO) [1]. Such a property is a good tool for the study of cardiac myocyte dif-
ferentiation in vitro. Before transcriptional activation of the genes for cardiac 
contractile proteins during the differentiation of P19CL6 cells, the gene for the 
GATA-4 transcription factor becomes activated [2]. We have also been reported 
that the GATA-4 gene is immediately transcribed upon addition of DMSO 
through binding of GATA-6 to the upstream enhancer GATA motif, which is 
conserved in mammals [3]. Not only the GATA-4 but also the MEF2C and Tbx5 
transcription factors play crucial roles in cardiac myocyte differentiation [4]. 
Furthermore, genetic analysis suggested that NKX2.5 and GATA-6 together with 
these three transcription factors are essential for cardiac development [5] [6]. 

As for contractile proteins, transcripts of myosin heavy chains (α-MHC and 
β-MHC) were detected in parallel in P19CL6 cells at a late stage after the start of 
cardiac differentiation [1]. Similar to these cardiac MHC isoforms, cardiac myo-
sin light chain 2 (MLC-2v) is also transcribed during the course of differentia-
tion [7]. When the 250 base pair (bp) promoter for the rat cardiac MLC-2v gene 
was connected upstream of the gene for green fluorescent protein (GFP) togeth-
er with the enhancer portion of the cytomegalovirus (CMV) immediate early 
promoter, and the resulting reporter plasmid was stably introduced into P19CL6 
cells, expression of GFP was limited to developing cardiac myocytes [8]. Al-
though this system could be advantageous to quantify cardiac differentiation, it 
has not been addressed as to why the virus enhancer responds to such a differen-
tiation signal. Actually, it has been demonstrated that the SV40 enhancer acted 
on both heart muscle and non-muscle cells [9]. 

In this study, we analyzed the MLC-2v promoter driven by the CMV enhancer 
in more details. Although the enhancer-promoter construct responded to the 
DMSO signal, the response was immediately before the start of transcription of 
native MLC-2v. We will discuss the role(s) of GATA motifs in the CMV en-
hancer sequence from the viewpoint of GATA-4 transcription in P19CL6 cells 
[3]. 

2. Materials and Methods 
2.1. Construction of an Expression Plasmid for GFP under the 

Control of the MLC-2v Promoter. 

pEGFP-N1 (Clonetech) was EcoRI-digested, and then its CMV enhancer moiety 
(nucleotide residue numbers 60 - 465, GenBank Accession No. U55762) was 
amplified by means of polymerase chain reaction (PCR) [10] with a primer pair, 
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CMVenh-F/CMVenh-R, and Pyrobest DNA polymerase (TaKaRa) [preheating 
(94˚C, 5min), followed by 30 cycles of denaturation (94˚C, 15 sec), annealing 
(55˚C, 30 sec), and extension (72˚C, 30 sec), and then post-heating (72˚C, 5 
min)]. The product was cloned into the SmaI site of pBluescript II SK(+) (Stra-
tagene). To amplify the MLC-2v promoter [11], rat liver genomic DNA [12] was 
digested with EcoRI and then subjected to PCR with a primer pair, MLC-2vpro- 
F/MLC-2vpro-R, and LA Taq DNA polymerase (TaKaRa) [preheating (94˚C, 5 
min), followed by 30 cycles of denaturation (94˚C, 15 sec), annealing (52˚C, 30 
sec), and extension (72˚C, 30 sec), and then post-heating (72˚C, 5 min)]. The 
product was treated with T4 DNA polymerase (Toyobo), and then cloned into 
the SmaI site of pBluescript II SK(+). The 406 bp AseI-HindIII fragment of the 
CMV enhancer and the 262 bp HindIII–BamHI fragment of the MLC-2v pro-
moter were inserted into a large fragment of pEGFP-N1 (4079 bp) digested with 
AseI and BamHI. The resulting plasmid was named pCMVenh/MLC-2vpro/GFP 
(4759 bp), and confirmed by the production of a 406 bp HindIII-AseI fragment, 
and a 1008 bp NotI and HindIII fragment (Figure 1). The entire nucleotide se-
quence of pCMVenh/MLC-2vpro/GFP was shown in Figure S1 (Supplementary). 

The cloned DNA was sequenced by the dideoxy chain-termination method 
[13] with a primer (M13 forward or M13 reverse) and a BigDye Terminator v3.1 
Cycle Sequencing Kit (Applied Biosystems). The oligonucleotides used for PCR 
and sequencing are listed in Table 1. The molecular biological techniques were 
performed by published methods [14]. 

2.2. Cell Culture 

P19CL6 cells [3] were cultured in α-Eagle’s minimal essential medium (GIBCO 
 

Table 1. Sequences of oligonucleotides used in this study. 

 
Restriction enzyme sites are underlined with bold letters. 

AseI

CMVenh-F 5’-TTA TTA ATG CGT TAC ATA ACT TAC GGT AAA-3’

HindIII

CMVenh-R 5’-TTA AGC TTC AAA ACA AAC TCC CAT TGA CG-3’

HindIII

MLC-2vpro-F 5’-TTA AGC TTG ACC CAG AGC ACA GAG CAT-3’ 

BamHI

MLC-2vpro-R 5’-TTG GAT CCA AGG AGC CTG CTG GCC GG-3’

MLC-2v-S 5’-GCC AAG AAG CGG ATA GAA GG-3’

MLC-2v-A 5’-CTG TGG TTC AGG GCT CAG TC-3’

GFP-F 5’-TGC AGT GCT TCA GCC GCT A-3’

GFP-R 5’-TTG TAC AGC TCG TCC ATG CC-3’

YSactin-S 5’-GCA GGA GAT GGC CAC TGC CGC-3’

YSactin-A 5’-TCT CCT TCT GCA TCC TGT CAG C-3’

---------------------------------------------------------------

Sequence Primer

M13-F 5'-CGC CAG GGT TTT CCC AGT CAC GAC-3'

M13-R 5'-GAG CGG ATA ACA ATT TCA CAC AGG-3'
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Figure 1. Construction of an expression plasmid for GFP with the CMV enhancer and 
MLC-2v promoter. The CMV enhancer moiety (CMVenh, 406 bp) derived from pEGFP- 
N1 and the MLC-2v promoter (MLC-2vpro, 262 bp) cloned from rat liver genomic DNA 
were inserted into the pEGFP-N1 vector from which the human cytomegalovirus (CMV) 
immediate early enhancer and promoter sequences [CMV(e + p)] corresponding to nuc-
leotide residue numbers 1 - 589 (GenBank Accession No. U55762) had been deleted. 
Typical restriction enzyme sites used in this study (AseI, BamHI, EcoRI, HindIII, NotI 
and SmaI) were indicated in the figure. MCS, multi-cloning site. 
 
BRL) supplemented with 10% (v/v) fetal bovine serum (GIBCO BRL) and anti-
biotics (100 μg/mL streptomycin sulfate and 100 u/mL benzyl-penicillin) (Wa-
ko). An expression plasmid was introduced into the cells (105 cells per 6 cm di-
ameter dish) by means of the calcium-phosphate method as described previously 
[15]. Cells were split into 10 cm diameter dishes after 48 hrs incubation, and 
then grown in the presence of 1 mg/mL G418 (Nacalai). Among six resistant co-
lonies, one (clone B4) that showed strong green fluorescence in the presence of 
1% (v/v) DMSO was analyzed. 

The B4 clone (104 cells) was seeded into a 6 cm diameter dish. Cells were 
grown in the medium plus 1% (v/v) DMSO. The medium was changed to fresh 
medium containing DMSO on the fourth day, and then every two days. The ex-
pression of GFP was monitored under a microscope (Olympus IX-70) equipped 
with an AQUACOSMOS U7501 (HAMAMATSU PHOTONICS). 

2.3. Determination of the Expression Levels of mRNAs 

Cells (104 cells) were seeded into a 6 cm diameter dish. Total RNA was extracted 
with Isogen (Nippon Gene), and an aliquot (5 μg) was reverse transcribed with 
M-MLV reverse transcriptase (TaKaRa) and an oligo (dT)15 primer. After RNa-
seH (TaKaRa) treatment, cDNA was subjected to semi-quantitative PCR with  
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Go Taq (Promega) and a primer pair, MLC-2v-S/MLC-2v-A, GFP-F/GFP-R or 
YSactin-S/YSactin-A (Table 1): the PCR conditions comprised preheating 
(94˚C, 3 min), followed by denaturation (94˚C, 0.5 min), annealing [(60˚C for 
MLC-2v and GFP, and 55˚C for β-actin), 0.5 min] and extension (72˚C, 0.5 min), 
and then post-incubation (72˚C, 5 min). The PCR products were size-separated 
on an agarose gel and DNA bands were visualized with ethidium bromide. Im-
ages were recorded with a FAS-III UV-imaging system (Toyobo). 

2.4. Chemicals 

Restriction enzymes were obtained from NEB and Toyobo. Agarose LO3 and a 
DNA ligation kit ver. 2.0 were purchased from TaKaRa. A GENECLEAN® III 
KIT and oligonucleotides were provided by MP Biomedicals and Gene Design 
Inc., respectively. All other chemicals used were of the highest grade commer-
cially available. 

3. Results 
3.1. Expression of GFP in the Stable Transfectant Cells 

We constructed an expression plasmid for GFP under the control of the CMV 
enhancer and MLC-2v promoter (Figure 1). This expression plasmid was stably 
introduced into P19CL6 cells and a G418-resistant clone carrying the reporter 
gene was isolated. The clone was cultured in the presence and absence of 1% 
DMSO, and green fluorescence derived from GFP was monitored under a mi-
croscope. As shown in Figure 2, weak fluorescence was detected on day 4 in the 
presence of DMSO. The fluorescence increased gradually and was much strong-
er on day 12 under the differentiation conditions. However, without DMSO only 
a background level of fluorescence was detected on day 12. Previous study also 
showed that very little but detectable amounts of GFP was expressed in undiffe-
rentiated cells [8]. 
 

 
Figure 2. Expression of GFP in the stable transfectant clone derived from P19CL6 cells. 
The expression plasmid (pCBVenh/MLC-2vpro/EGFP) constructed as in Figure 1 was 
stably introduced into P19CL6 cells. The G-418 resistant clone was cultured in the pres-
ence [DMSO (+)] or absence [DMSO (–)] of 1% (v/v) DMSO. Fluorescence images on the 
indicated days after the start of the experiment are shown. Bar, 200 μm. 

https://doi.org/10.4236/ajmb.2017.74015


T. Wakayama et al. 
 

 

DOI: 10.4236/ajmb.2017.74015 195 American Journal of Molecular Biology 
 

To determine the start of transcription of the GFP gene, total RNA was ex-
tracted and subjected to semi-quantitative RT-PCR. The results of the cDNA 
amplification indicated that the gene for GFP had already been transcribed on 
day 2 after the addition of DMSO, whereas it was not detected in the absence of 
DMSO (compare the results on days 2(+) and 4 (+) with those of day 4(-), Fig-
ure 3, upper panel). Furthermore, the amount of the transcript of GFP clearly 
increased up to day 12(+). Although we did not determine the GFP protein by 
means of Western blotting, the transcript of GFP was translated as shown in 
Figure 2. 

3.2. Comparison of the Expression of Native MLC-2v and GFP 

The expression pattern of GFP was compared with that of native MLC-2v. As 
shown in Figure 3 (middle panel), the start of transcription of the native 
MLC-2v was clearly retarded in contrast to the appearance of the transcript of 
GFP. The transcript of MLC-2v appeared abruptly on day 4, and its amount was 
maintained constantly. Since the rat and mouse MLC-2v prompter sequences are 
essentially the same (Figure 4(a)), it is suggested that the immediate transcrip-
tion of the GFP reporter gene could not be ascribed to the MLC-2v prompter 
moiety but rather to the CMV enhancer. 

3.3. Presence of GATA Motifs in the CMV Enhancer 

Since the CMV enhancer started to operate immediately after DMSO addition 
(Figure 3), it seems likely that the potential master regulator(s) that directs 
P19CL6 cells toward cardiomyocytes may instantaneously bind to and activate 
the enhancer in the presence of DMSO. Our previous study demonstrated that 
the binding of pre-existing GATA-6 to an upstream GATA motif is essential for 
the immediate activation of the GATA-4 gene upon DMSO addition to P19CL6 
 

 
Figure 3. Detection of transcripts of GFP and native MLC-2v. Total RNA was prepared 
on the indicated days after DMSO addition, and then subjected to RT-PCR to detect 
transcripts of GFP and native MLC-2v. β-actin mRNA was used as a positive control. 
Amplified fragments were analyzed by 2 % (w/v) agarose gel-electrophoresis. 
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(a) 

 
(b) 

Figure 4. GATA motifs in the CMV enhancer, and comparison of vertebrate MLC-2v promoter sequences. (a) The CMV enhanc-
er sequence (nucleotide residues 60 - 465) in pEGFP-N1 (GenBank Accession No. U55762) is shown. The positions of GAT(A/T) 
motifs are boxed. Similar sequences of the canonical NKX2.5 and Tbx5 binding sites [23] [24] (5'-TYAAGTG-3' and 5'-(A/G) 
GGTGT-3', respectively) are double- and single-underlined, respectively; (b) Upstream sequences of the genes for human, rat and 
mouse MLC-2v [NCBI Reference Sequences NG_007554 and NM_001035252, and GenBank Accession No. AF326769, respec-
tively], and chicken MLC2A [29] were aligned. The transcribed sequences are shown in italics. Initiation codons are indicated by 
capital letters. Vertical arrowheads indicate the transcriptional start sites. Residues conserved in all four vertebrates are denoted by 
asterisks. Two arrows indicate the sequence primers for amplifying the rat promoter sequence (262 bp) between nucleotide resi-
dues -250 and +12. Thick overlines labeled HF-1-HF-3 are conserved regions that were characterized previously [27]. A typical 
E-box sequence (CANNTG) [27] and closely related Tbx5 binding sites [5'-(A/G)GGTGT-3'] [24] are boxed. 

 
cells [3]. Consistent with this observation, the CMV enhancer has multiple 
GATA-6 binding motifs, 5'-GAT(A/T)-3' [16]; two GATA and one GATT se-
quence are present in the downstream half of the 406 bp enhancer sequence 
(Figure 4(a)). However, such a motif could not be found in the 262 bp MLC-2v 
promoter sequence (Figure 4(b)). Since GATA-6 could activate reporter genes 
through GAT(A/T) sequences [17] [18], GATA-6 may bind to the CMV en-
hance in response to a cardiac differentiation signal. 
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4. Discussion 

P19CL6 cells are used as a model of differentiation of cardiac myoblasts into 
myocytes [1] [8]. In this study, we found that the MLC-2v promoter harboring 
the CMV enhancer responded immediately in P19CL6 cells upon the addition of 
DMSO, which is an induction reagent for cardiac differentiation [1]. However, 
the intrinsic MLC-2v promoter was activated rather later during the differentia-
tion (Figure 3). Thus, the transcription of GFP under the control of the CMV 
enhancer is not a result of cardiac myocyte differentiation, but rather parallel to 
activation of the start of differentiation. It should be noted that such comparison 
between native and hybrid MLC-2v promoters focused on the CMV enhancer 
has not been carried out previously [8]. 

As for GATA-4 gene expression, binding of GATA-6 to the distal enhancer 
GATA motif was obligatory for transcriptional activation under the differentia-
tion conditions for P19CL6 cells [3]. Since GATA-4 and GATA-6 function in 
transcription through a GAT(A/T) motif [17] [18], it seems likely that the CMV 
enhancer with GATA motifs (Figure 4(b)) immediately responds to pre-existing 
GATA-6 in P19CL6 cells on DMSO treatment. Actually, the CMV enhancer in-
duces efficient cell-type specific expression of genes such as those of atrial natri-
uretic factor and MLC-2v in cardiomyocyte cell line HL-1 [19], which expresses 
GATA-4 and GATA-6 [20]. Consistent with this finding, the SV40 enhancer 
composed of the 72 bp tandem repeat [21] without GATA motifs (NCBI Refer-
ence Sequence NC_001669) abolished the cardiac specificity [9]. 

The gradual increases in the amounts of GFP transcripts shown in Figure 3 could 
be explained by the participation of the pre-existing GATA-6, and increased 
amounts of GATA-4 and GATA-5 arising through transcription and translation 
[3]. It is also suggested that factors like GATA-4 that potentiate transcription 
during development are inherently capable of initiating chromatin opening 
through binding to an enhancer [22]. Thus, the CMV enhancer with GATA mo-
tifs may become open and activated in an environment in which GATA factors 
are expressed although modulation and/or a trigger such as DNA methylation 
and protein modification could be needed by DMSO. 

In the CMV enhancer (Figure 4(a)), there are sequence motifs similar to the 
canonical binding sites for NKX2.5 and Tbx5, 5’-TYAAGTG-3’ and 5'-(A/G) 
GGTGT-3', respectively [23] [24]. Since these transcription factors also partici-
pate in cardiac development [25] and interact with GATA-4 specifically [5] [26], 
they may facilitate the role of GATA-4 in cardiac differentiation. Although three 
cis-elements (HF-1-HF-3) located in the MLC-2v promoter were analyzed 
(Figure 4(b)) [27], the first intronic region further participates in the 
up-regulation of the MLC-2v gene in cardiac hypertrophy [28]. Such an addi-
tional regulatory element may explain the different responses of native and hy-
brid MLC-2v promoters to DMSO (Figure 3). 

Although roles of GATA factors expressed in P19CL6 cells and GATA motifs 
in the CMV enhancer should be further examined in detail, the specific and in-
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ducible gene expression by means of the CMV enhancer in the cardiac environ-
ment may be useful for gene therapy as well as the tracing of differentiated cells 
[19]. 
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Supplementary 
Figure S1. Nucleotide sequence of pCBVenh/MLC-2vpro/EGFP.  
Nucleotide sequence of pCBVenh/MLC-2vpro/EGFP (4759 bp) was shown. Orange, blue, green and black 
letters indicate the sequences for CMV enhancer, MLC-2v promoter, a coding region of GFP and 
pEGFP-N1, respectively. Restriction enzyme sites for AseI, HindIII, BamHI and NotI were shown in red 
bold letters (ordered from 5' side).  
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