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Abstract 
In this paper, a Gaussian mixture model (GMM) based classifier is described 
to tell whether precipitation events will happen on a certain day at a certain 
time from historical meteorological data. The classifier deals with a two-class 
classification problem where one class represents precipitation events and the 
other represents non-precipitation events. The concept of ambiguity is intro-
duced to represent cases where weather conditions between the two classes 
like drizzles, intermittent or overcast are more likely to happen. Six groups of 
experiments are carried out to evaluate the performance of the classifier using 
different configurations based on the observation data released by Shanghai 
Baoshan weather station. Specifically, a typical classification performance of 
about 75% accuracy, 30% precision and 80% recall is achieved for prediction 
tasks with a time span of 12 hours. 
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1. Introduction 

Predicting precipitation events, as a part of weather prediction, is often done by 
numerical weather prediction. Numerical weather prediction predicts future 
weather conditions with the help of partial differential equations. Various at-
tempts to apply machine learning methods to weather prediction have been 
made but often with other methods than Gaussian mixture model. The earliest 
attempts to apply machine learning to precipitation prediction were made using 
perceptrons. More recent researches are often based on artificial neural network 
[1] and support vector machine [2]. A detailed review is available in [2]. Gaus-
sian mixture model is a simple but effective model for classification and cluster-
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ing compared with other classification models. It has many successful applica-
tions in various areas such as computer vision, digital signal processing, etc. For 
example, some recent researches use Gaussian mixture model for object tracking 
and segmentation [3] [4]. In this paper, we attempt to predict precipitation 
events using Gaussian mixture model (GMM). Six groups of experiments are 
carried out to evaluate the performance of the classifier based on the observation 
data. Furthermore, instead of predicting accurate precipitation, we only consi-
dered a single class of precipitation events regardless of how much precipitation 
is observed. These are the main points how this paper differs from other re-
searches. The rest of this paper is organized as follows. In Section 2, we briefly 
describe Gaussian mixture model, expectation-maximization (EM) algorithm 
and our classifier. In Section 3, details of implementing the model are discussed. 
In the last section, the experimental results are given and an analysis of the re-
sults is also presented. 

2. Model Description  
2.1. Gaussian Mixture Model 

Given an n-dimensional vector x , a Gaussian mixture probability density 
function can be written as follows, 
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where m represents the number of mixture components, and mixture weights wi 
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is the probability density function of a Gaussian distribution parameterized by a 
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Given the value of m, the value of 3m parameters, iw , iµ  and Σi , 
1,2, ,i m=  , can then be determined. EM algorithm is used to estimate these 

parameters. For a classifier with K classes, a GMM is trained for each class. 
These models are denoted by , 1, 2, ,k k Kλ =  . kλ  can also be used to denote 
its parameters, that is { }, , , 1, 2, ,k k k

k i i iw i mλ µ= Σ =  . 

2.2. EM Algorithm  

In this paper, the parameters of GMMs are estimated using Expectation Max-
imization algorithm (EM), an algorithm to find the maximum likelihood esti-
mate of unknown parameters. For a data set with g  feature vectors { }1, , gx x , 
the likelihood function of GMM can be written as follows 

( )
1 1

g m

i i j
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A detailed description of EM algorithm can be found in [5]. 
Since EM typically converges to a local optimum and involves random initiali-

zation, the estimated parameters may sometimes result in poor model perfor-
mance. To solve this problem, a workaround is proposed as described later.  

2.3. Precipitation Events Classifier 

For a classifier with K classes , 1, 2, ,k k Kλ =  , a feature vector x  is assigned 
to the class with the greatest posteriori probability. That is, assign x  to class 

jλ  if 

( ) ( ) , 1, 2, ,j kp p k Kλ λ≥ =x x                    (4) 

Using Bayes’ theorem, this can also be written as 

( )
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where ( )kp λ  stands for the priori probability of class kλ .  

1λ  is used to denote the class of precipitation events, and 2λ  is used to de-
note the class of non-precipitation events. The precipitation events classifier 
deals with a two-class classification problem. In this paper, we let ( ) ( )1 2p pλ λ= , 
thus a vector x  is assigned to the class with the greatest Gaussian mixture 
density value. That is, the classifier reports precipitation events if 

( ) ( )1 2p pλ λ>x x                         (6) 

and reports non-precipitation events otherwise. In practice, these values are 
computed and compared in their log form, thus the above inequality is evaluated 
as follows 

( ) ( )1 2log | log | .p pλ λ>x x                      (7) 

For the precipitation events prediction problem, feature vectors of different 
classes can appear very close to each other in terms of distance. In such cases, the 
prediction results are often inaccurate. For this reason, the prediction results are 
flagged as ambiguous if 

( ) ( ){ }1 2log log log 2abs p pλ λ− <x x                 (8) 

which is the same as 
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When classified as ambiguous, the prediction results are considered close to 
the cases where weather conditions are between the two classes like drizzles, in-
termittent or overcast. However, the authenticity of the above claim is not tested 
since doing so will make a multiclass classification problem. In the case of eva-
luating the classification performance, data points flagged as ambiguous are not 
involved in the evaluation process. From our experimental results, we found that 
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in most cases, about 10% of all data are flagged as ambiguous. 

3. Implementation 
3.1. Data Acquisition and Feature Extraction 

In this paper, the meteorological data of Shanghai, China is used for experi-
ments. The data are obtained from Shanghai Baoshan weather station, station id 
58,362 (Historical data obtained from http://www.meteomanz.com/). The sta-
tion issues observation data 8 times each day, with a fixed interval of 3 hours. 

We have chosen temperature, relative humidity, sea level pressure, wind di-
rection, wind speed, total cloud cover and precipitation as features. Thus, a set of 
7 1×  feature vectors can be obtained after feature extraction. Some fields of the 
observation data are omitted, this is done to avoid the need to cope with too 
many missing data. Specifically, when wind speed is equal to 0, we let wind di-
rection be 0. When converting original data to feature vectors, a normalization 
process is applied to ensure all components of the feature vectors have a lower 
bound of 0 and an upper bound of 100. This is simply done by linear transfor-
mations. All the features used by our model are listed in Table 1. 

3.2. Preprocessing 

Since observation data are given in the SYNOP format (FM-12), all possible 
weather conditions in observation data are known  
(see http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html for de-
tail). These weather conditions are divided into the two classes and the corres-
ponding feature vectors are accordingly classified for training. Specifically, fog, 
mist, haze and overcast are considered non-precipitation events, intermittent, 
drizzle and snow are considered precipitation events. 

Even though features in observation data that contain too many missing data 
are omitted, there are still cases where data can be absent due to difficulty of ob-
servation etc. In such cases, these data rows are simply removed since removing 
these data have no effect on training or testing the classifier. This step can cause 
a data loss of about 60%. 

When training GMMs, diagonal covariance matrices are used instead of full  
 
Table 1. All features used in feature vectors. 

Feature Unit Value range 

Temperature ˚C [−30, 50] 

Relative humidity % [0, 100] 

Sea level pressure Hpa [950, 1050] 

Wind direction ˚ [0, 360] 

Wind speed Km/h [0, 50] 

Total cloud cover N/A [0, 1] 

Precipitation (averaged by hour) mm [0, 10] 
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covariance matrices. This is done because it has been found that doing so will 
not only make GMMs perform better in practice but will also significantly re-
duce the computation needed since inversion of matrices is computationally in-
tensive [6]. 

3.3. Performance Evaluation 

For our classification model, we refer to the class of precipitation events as posi-
tive class and non-precipitation events as negative class. Subsequently, we denote 
the number of actual positive data points being classified as positive by true po-
sitives (TP) or by false negatives (FN) if being classified as negative. Similar defi-
nitions can be given for true negatives (TN) and false positives (FP). To evaluate 
the performance of the classifier, the definition of classification accuracy is in-
troduced. Instead of defining classification accuracy as the ratio of correctly clas-
sified samples to all samples in the data set, we define classification accuracy as 
follows 

1 FN FPaccuracy 1
2 TP FN TN FP

  = − +  + +  
               (10) 

Classification accuracy is defined this way because precipitation events hap-
pen less often than non-precipitation events, precipitation events data typically 
take up only 10% of all data, which will cause FN and TP have little effect on 
classification accuracy. Precision and recall are also used as key factors to eva-
luate classification performance, defined as follows 

TPprecision
TP FP

=
+

                         (11) 

TPrecall
TP FN

=
+

                          (12) 

Since EM typically converges to a local optimum and involves random initia-
lization, a single test is not enough to assess model performance. Thus, the clas-
sification accuracy, precision and recall are averaged over 10 trials and the aver-
ages are used as metrics for performance evaluation. 

4. Experimental Results 

In this section, the experimental results obtained from six groups of experiments 
carried out to evaluate the performance of the model with different configura-
tions are described. To illustrate the effect of the amount of data, two sets of data 
are used, one of which contains 3 years of historical data and the other set con-
tains 11 years of historical data. 2015 and 2016 are chosen as the source of the 
3-year data set and year 2006 to 2016 as the source of the 11-year data set. Spe-
cifically, a subset of the whole data set is chosen as training set and the remaind-
er as test set, the number of data points is about 2:1 for training set and test set 
respectively. The 11-year data set is used for most of our experiments apart from 
experiment 2, where the model performances with different data sets are com-
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pared. 
Similarly, GMMs of different number of mixtures are used, namely 16, 32, 64, 

128. 64 mixtures are used except for experiment 1, where the effect of number of 
mixtures is assessed. A time span of 12 hours is used for predictions except for 
experiment 5.  

In the first experiment, we compared GMMs of different number of mixtures 
and found that these models have similar performance regardless of their num-
ber of mixtures from the results shown in Figure 1. This could mean that a 
number of mixtures as small as 16 may already be enough to represent the dis-
tribution of the feature vectors when there is enough training data.  

We can tell that GMM generalize to the observation data well from the fact 
that there is little performance loss for test data compared with training data.   

In the second experiment, the 3-year data set is used to train the GMMs and 
test their performance. A significant decrease in both accuracy and recall is ob-
served in the experimental results shown in Table 2.  

This could be a clue that 2 years of training data may not be enough as opposed  
 

 
Figure 1. Comparison of classification performance for different number of mixture 
components. 

 
Table 2. Experimental results for experiment 2, comparison of data sets. 

 
Training 
accuracy 

Training 
precision 

Training 
recall 

Test 
accuracy 

Test 
precision 

Test 
recall 

11-year 77.11% 32.22% 80.36% 73.95% 33.10% 73.08% 

3-year 80.40% 47.77% 85.39% 65.86% 32.85% 56.16% 
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to 7 years of training data and that a greater number of training data points can 
lead to better classification performance. Additionally, a slightly higher training 
performance but lower test performance is observed for the 3-year data set, this 
means that GMM is slightly overfitting the training data. Though not strictly 
tested 10 times, a test run using the 3-year data set and 128 mixture components 
have shown a training accuracy of over 90% and a test accuracy of about 65%, 
which is apparently a sign of overfitting.  

We tried training GMMs with separated daytime and nighttime data and se-
parated season data in experiment 3 and experiment 4 respectively as shown in 
Table 3. Concretely, a set of GMMs is trained solely for daytime observation da-
ta and another set of GMMs for all nighttime observation data in experiment 3. 
In experiment 4, a set of GMMs is trained solely for spring observation data and 
another set of GMMs for summer observation data. In either case, the model 
performance is tested against their corresponding test data. The test results sug-
gest that separating training data has no obvious effect on model performance. 

In experiment 5, we measured how fast the predicting power of the model de-
crease with increasing prediction time span. The results are illustrated in Figure 
2. Little prediction power is observed particularly for the 48-hour time span 
model, with an extremely low precision and a classification accuracy of about 
50%. This suggests that the GMM based classifier may have little application 
value beyond the point of 24 hours. 

In the last experiment, we tried adding more information to the original fea-
ture vector by appending a feature vector of observation data 12 hours before the 
prediction is being made. Doing so forms a new 14 1×  feature vector that is 
virtually two combined 7 1×  feature vector. The test results indicate a slightly 
negative effect on classification performance as compared with the first experi-
ment, which is shown in Table 4. The increase in the complexity of feature vec-
tors may have made it harder for GMM to model the relationship between fea-
tures and classes. 

In this paper, the same priori probabilities are chosen for both classes and log2 
as the threshold for determining ambiguity. This is done because, for one thing, 
we want to ensure the availability of enough training data since model generalize 
poorly with insufficient training data. For another, the purpose of this paper is  
 
Table 3. Experimental results for experiment 3 and 4, separating day/night spring/summer 
data. 

 
Training 
accuracy 

Training 
precision 

Training 
recall 

Test 
accuracy 

Test 
precision 

Test 
recall 

Full 77.11% 32.22% 80.36% 73.95% 33.10% 73.08% 

Day 79.35% 35.86% 83.40% 73.72% 35.18% 72.33% 

Night 79.34% 32.47% 83.35% 72.28% 29.97% 67.13% 

Spring 79.14% 39.40% 87.74% 72.78% 35.68% 65.29% 

Summer 78.92% 33.50% 84.97% 68.80% 36.73% 65.78% 
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Figure 2. Comparison of classification performance for different time span. 
 
Table 4. Experimental results for experiment 6, comparison of different features. 

 
Training 
accuracy 

Training 
precision 

Training 
recall 

Test 
accuracy 

Test 
precision 

Test 
recall 

7-dimensional 77.11% 32.22% 80.36% 73.95% 33.10% 73.08% 

14-dimensional 74.27% 29.54% 75.94% 68.30% 25.44% 63.67% 

 
not focused on determining the best performance the classifier can achieve but 
to find out how a GMM based classifier behaves to the precipitation events pre-
diction task. To determine the optimal value for the above parameters, cross va-
lidation sets should be introduced which will cause training sets and test sets 
have access to less data. 

5. Conclusion  

From the above experimental results, the conclusion can be drawn that GMM is 
an effective model for predicting precipitation events. In this paper, the classifier 
built is one with high recall and low precision, such a classifier may be desirable 
when failure to prepare for precipitation events would bring about serious con-
sequences. By altering the value of priori probabilities, a classifier with higher 
precision and lower recall can be obtained, since lowering the priori probability 
of precipitation events will make the classifier report precipitation events only 
when the classifier is very confident about the result. In this sense, the classifier 
may also be useful in cases where false alarm should be avoided. In our experi-
ments, it is estimated that one of the most important factors affecting classifica-

https://doi.org/10.4236/jdaip.2017.54010


H. T. Ling, K. P. Zhu 
 

 

DOI: 10.4236/jdaip.2017.54010 139 Journal of Data Analysis and Information Processing 
 

tion performance may be the availability of features. Cases where an unambi-
guous feature vector belonging to 1λ  is classified to 2λ  are observed and vice 
versa. This may mean that the 7-dimensional feature vector does not contain 
sufficient information to almost uniquely determine future weather conditions 
even for a time span of 12 hours. The claim can also be verified from the training 
accuracy shown in Figure 1. Thus, predicting precipitation events using other 
classification models like SVM (Support vector machine) may bring no im-
provements. The observation data are restricted to ground observation in this 
paper, utilizing other types of data such as satellite observation may be an effec-
tive way to improve the performance of classification. 
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