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Abstract 
The phase portrait of the functions obtained by Hamilton-Jacobi equations is 
substantiated, and the classification of singular points is found, and the bifur-
cation diagram for the problem is studied. The numerical calculation by using 
Poincaré surface section is used to get the invariant tori for our problem. 
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1. Introduction 

The problem of the motion of a rigid body with the fixed point in the field of 
constant gravity is one of the oldest in mechanics [1]. The system of the motion 
contains three degrees of freedom (Euler’s angles). The system possesses three 
first integrals, and according to Jacobi’s last multiplier, the system can be inte-
grated if there are other first integrals. Kovalevskaya [2] proved that the only 
one-valued first integral can be found in three cases: first, in Euler’s case, where 
the fixed point is located at the center of mass and rotation occurs freely without 
the influence of torque; second, in the Lagrange’s case when the rigid body is a 
symmetric top with the center of mass on the axis of symmetry; thirdly, in Ko-
valevskaya’s case in which the ellipsoid of inertia about a fixed is symmetric, and 
the moments of inertia at the supporting point are equal, and each one of them 
is twice as much as the third one and the center of the mass in the plane of equal 
moments of inertia. Kovalevskaya [3] showed that other integral cannot be sin-
gle valued over the whole t-complex plane and Hussen [4] found that, when el-
lipsoid of inertia is not symmetric, a new algebraic integral cannot exist, for ar-
bitrary initial conditions, except in the three cases mentioned above. 
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In the case of Kovalevskaya, the problem reduced to quadrature and the 
integral was obtained through a Remain θ-function of two variables [5]. These 
functions however are not single-valued, and on the other hand, the functions 
do not have branch point and hence they are root functions [6]. Consequently, 
the qualitative and quantitative investigations give us more understanding of the 
motion of the problem.  

2. The Equations of Motion 

The Euler-Poisson equations for the Kovalevskaya case where two moments of 
inertia are equal and the third is half of one of them and the center of mass in 
the equatorial of the ellipsoid of inertia has the form  
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where 1 2 3, , , , ,p q r γ γ γ  are the Euler-Poisson variables.  
The first integrals are taken the following form and for more details [7].  

( )2 2 2
1 12 2 3 ,p q r a lγ+ + + =

 

( )1 2 32 ,'p q r lγ γ γ+ + =  
2 2 2
1 2 3 1,γ γ γ+ + =  

( ) ( )
2 22 2 2

1 22 ,p q a pq a kγ γ− − + − =                (2) 

and the system (1) can be reduced to quadrature  
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d d d ,
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where the Kovalevskaya polynomial ( )sΦ  is defined as  

( ) ( ) ( )( )2 2 2
1 1 16 1 2 3 3 .s s s l k l s l k s l k  Φ = − + − − − − − +     

      (4) 

Kolossoff [8] introduced the potential  
2 2

2 2

1,x y kxV
x y

+ − +
=

+
                      (5) 

and with the new time τ  through the relation  
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and then system (1) can be converted to the plan motion of massless point de-
fined as  

d, ,
d

V Vx y '
x y τ

∂ ∂  ′′ ′′= = = ∂ ∂  
                 (7) 

and possess the energy integral  

( )2 21 ,
2

x y V h+ + =� �                        (8) 

under the condition that the constants of energy of both systems are equal  

13 ,l h=                            (9) 

Introducing the elliptic coordinates ,λ µ  such that  
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with Jacobian matrix M  defined as  
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one can give the momenta ,x yp p  as function of ,p pλ µ , such that  
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Then the canonical variables ( ), , ,p pλ µ λ µ  are given by  
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The system is a Liouville system, where the constants of integration are 
founded from  
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and the momenta pλ  and pµ  are given by  
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By using Hamilton-Jacob method, we obtain  
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and with time changing  

( )
d d ,

2
tτ

λ µ
=

+
                       (17) 

the Equation (16) are the same as the Kovalevskaya equations, where the poly-
nomial  

( ) ( ) ( )2 2 ,p u u k uφ= −                     (18) 

corresponds to the Kovalevskaya polynomial ( )sΦ .  
Accordingly the problem of the integration of Kovalevskaya top is equivalent 

to the problem of the plane motion of the massless point, and then we study the 
problem in Kolossoff’s variable ( ), , ,p pλ µ λ µ .  

3. Phase Portrait of the Separated Functions 

Consider the function  

( ) ( ) ( )3 2 2 2 2 2 21 1 .f q q k h q k p k q= + − + + − − −           (19) 

We construct the lines of constant f  on the plane ( ),p q , which is called 
the phase portrait of f . The phase portrait helps us to find the topological in-
terpretation of the trajectory as follows: if the roots of the function are distinct 
for given initial values of ( ),p q , then ( )1 2,P p p  and ( )1 2,Q q q  will change 
in a periodic manner, but if the function has multiple roots, then we have an in-
finity of motion, which gives an asymptotic solution of the canonical equations. 
Thus the study of lines of constant f  provides a complete picture of the bifur-
cations of our problem.  

We first study the singular points and it is distinguished by using Gaussian 
curvature of f . These points can be found from the equations  

( )2 2

2 2 2

0,

3 2 1 2 0,

f p k q
p
f q hq k p q
q

∂
= − − =

∂
∂

= + + − + =
∂

                (20) 

and hence we have the following: where 0p = ,we get  
2 23 2 1 0,q hq k+ + − =                      (21) 

and when q k= ± , we get the two equations  
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The discriminant of (21) is  
2 2

1 3 3f h k= + −                        (23) 

and from (22) the two functions are 2 3,f f   
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It is clear that the curve 1 0f =  is tangent to the branches of the curves 2f  

and 3f  at the points 1
2

k = ± . This can be found from the consideration that  

the equation 1 2f f=  gives the two roots ( )1 1,k h , ( )2 2,k h  such that 

1 2 0sign k sign k⋅ < . 
From 2 0f =  and 1 0f = , we get 

1
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h k
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= − −                          (25) 

2
2

14 2 0
4

k
k
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Now, we study the points in the domain iD  where 1,2, ,16i = � , Figure 1. 
 

 

Figure 1. The regions iD  of real motions on the ( ),k h  plane. 
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1) The Domain 1 1 2 3: 0, 0, 0D f f f< < >  
Equations ((21) and (22)) are not solved when 0p = , q k=  and then there 

are no singular points of f  on the line 0p =  and q k= , but when q k= − , 
there are two singular points with p  coordinates,  

1
2 22 2 1 .

2
k hkp

k
 − +

= ± 
 

                    (27) 

To get these types of points, put  
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2 2
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                   (28) 

in the function f , neglecting terms of degree greater than 2, then we have  
1

2 2 2
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1 4 2 2 14 ,
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k k hkf y k xy A

k k
 − − +

= + 
 

∓             (29) 

where 0A  contains the terms of zeros and first degree of ,x y . 
The singular points are hyperbolic points, where 

2 2
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x y

f f
x yx

f f
x y y = =

 ∂ ∂
 ∂ ∂∂  <
 ∂ ∂
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                    (30) 

and when 0p = , we have the two singular points: 
( )2 23 1

,0
3

h h k − ± + − 
  
 

. 

In the same manner we can get the type of points in the domains 
( )1, ,16iD i = � , they are shown in Figures 2-20, and summarize that in Table 1.  

4. The Integration of the Problem 

To complete the picture of our problem, we solve the kolossoff system numeri-
cally by using a surface section introducing by Poincaré [6].  

A surface of section is a way of presenting a trajectory in n-dimension phase 
space in an (n − 1) dimension space. By picking one phase element constant and 
plotting the value of the other element each time the selected element has the 
desired value, an intersection surface is obtained. Accordingally the solution of 
system (7) represents itself the trajectory in the phase space  ( ), , ,x x y y , and on 
the energy surface h = constant, the trajectory may be treated in the three di-
mensional invariant hypersurface  ( ), ,x x y . The successive points with  0y >  
in at which an orbit crosses the plane 0x =  in phase space represent a locus of 
two-dimensional area-preserving mapping on the  ( ),x x  plane, which is called 
Poincaré mapping. 
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Figure 2. The four-hyperbolic points in domain D1. 

 

 

Figure 3. The Three-hyperbolic points and one-elliptic point in domain D2. 
 

 

Figure 4. The two-hyperbolic points in domain D3. 
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Figure 5. The three-hyperbolic points and one elliptic point in domain D4. 
 

 

Figure 6. The two-elliptic points and two-hyperbolic points in domain D5. 
 

 

Figure 7. The three-hyperbolic points and one-elliptic point in domain D6. 

https://doi.org/10.4236/jamp.2017.59155


F. M. F. El-Sabaa et al. 
 

 

DOI: 10.4236/jamp.2017.59155 1845 Journal of Applied Mathematics and Physics 
 

 

Figure 8. The two-hyperbolic points and two-elliptic points in domain D7. 
 

 

Figure 9. The two-hyperbolic points and one-elliptic point in domain D8. 
 

 

Figure 10. The one-elliptic point in domain D8. 
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Figure 11. The two-hyperbolic points and two-elliptic points in domain D9. 
 

 

Figure 12. The one-hyperbolic point and one-elliptic point in domain D10. 
 

 

Figure 13. The two-elliptic points and two-hyperbolic points in domain D11. 
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Figure 14. The two-hyperbolic points in domain D12. 
 

 

Figure 15. The two-elliptic points in domain D12. 
 

 

Figure 16. The two-hyperbolic points in domain D13. 
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Figure 17. The one-hyperbolic point and one-elliptic point in domain D14. 
 

 

Figure 18. The two-hyperbolic points in domain D15. 
 

 

Figure 19. The one-hyperbolic point in domain D16. 
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Figure 20. The one-hyperbolic point in domain D16. 
 

If we put  0x y= =  in (8), then we have the equipotential lines  

( ), .V x y h=                          (31) 

Figure 21 shows the equipotential lines for different values of h and k. Putting 

 0x =  in integral energy equation, we have  

 ( )( )2 0,y h V y= −                      (32) 

where the curve of zero velocity is  

( )0, 0.h V y− =                        (33) 

Figure 22 shows the curve of zero velocity, its clear that the curves is inde-
pendent of Kovalevsky constant k.  

Now the initial values of 0τ τ=  is  ( )0 00, ,x x y y= =  and then we get the 
point  ( )1 1 1,p y y  at 1τ τ= . The point 0p  is the mapped into 1p , or 

0 1pT p→ , so if we plot the successive intersections of the motion with the sur-
face of section, they will in general occur anywhere within a bounded area of the 
plane and must lie on a unique curve.  

Hénon-Heiles H-H [9] are used the Poincar e′  section-surface to prove that 
they exist, the third integral of a non-linear motion of star around a galactic 
center with the motion restricted to plane, for some values of the constant of 
energy, the motion is ordered, and with increasing the energy, the ordered mo-
tion becomes stochastic. The H-H model [10] becomes a criterion for the exis-
tence of the integral of any conservative system. By using these criteria in our 
problem, we find that, the image points of the initial points, lie on invariant 
curve. Therefore, these orbits lie on invariant tori and the motion is ordered. 
Figures 23-28 show the invariant curves for different values of k and h and they 
are symmetric with respect to y and  y . 
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Table 1. The type of points in the domains iD . 

Domain The points Types of points Figures 

1 1 2 3: 0, 0, 0D f f f< < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Four-hyperbolic points Figure 2 

2 1 2 3: 0, 0, 0D f f f> < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Three-hyperbolic points and one elliptic 
point 

Figure 3 

3 1 2 3: 0, 0, 0D f f f> < <  
( )2 23 1

,0
3

h h k − ± + − 
 
   

Two-hyperbolic points Figure 4 

4 1 2 3: 0, 0, 0D f f f> < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Three-hyperbolic points and one elliptic 
point 

Figure 5 

5 1 2 3: 0, 0, 0D f f f< < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and Two-elliptic 
points 

Figure 6 

6 1 2 3: 0, 0, 0D f f f> < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Three-hyperbolic points and one elliptic 
point 

Figure 7 

7 1 2 3: 0, 0, 0D f f f> > <  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and two-elliptic 
points 

Figure 8 

8 1 2 3: 0, 0, 0D f f f> > <  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and two-elliptic 
points 

Figure 9,  
Figure 10 

9 1 2 3: 0, 0, 0D f f f< < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and two-elliptic 
points 

Figure 11 

10 1 2 3: 0, 0, 0D f f f< < >  
( )2 23 1

,0
3

h h k − ± + − 
 
   

One-hyperbolic point and one-elliptic 
point 

Figure 12 

11 1 2 3: 0, 0, 0D f f f> > <  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and two-elliptic 
points 

Figure 13 

12 1 2 3: 0, 0, 0D f f f> < >  
( )2 2 23 1 2 2 1,0 , ,

3 2

h h k k hkk
k

 − ± + −  − +  − ±        

Two-hyperbolic points and two-elliptic 
points 

Figure 14, 
Figure 15 

13 1 2 3: 0, 0, 0D f f f< < >  

22 2 1,
2

k hkk
k

 − − −
±  

   
Two-hyperbolic points Figure 16 

14 1 2 3: 0, 0, 0D f f f> < >  
( )2 23 1

,0
3

h h k − ± + − 
 
   

One-hyperbolic point and one elliptic point Figure 17 

15 1 2 3: 0, 0, 0D f f f> < <  
( )2 23 1

,0
3

h h k − ± + − 
 
   

Two-hyperbolic points Figure 18 

16 1 2 3: 0, 0, 0D f f f> < >  
( )2 23 1

,0
3

h h k − ± + − 
 
   

Two-hyperbolic points 
Figure 19, 
Figure 20 
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Figure 21. The equipotential line with a different value of h. 

 

 
Figure 22. The curve of zero velocity, where 2 2h− ≥ ≥ . 
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Figure 23. The invariant curves for 0h k= = . 
 

 

Figure 24. The invariant curves for 0h <  and 0k = . 
 

 

Figure 25. The invariant curves for 0 1h< �  and 0 1k< �  and 3h k= . 
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Figure 26. The invariant curves for 0 1h< �  and 0 1k< �  and 5000k h= . 
 

 

Figure 27. The invariant curves for 0 1h< �  and 0 1k< �  and 50h k= . 
 

 
Figure 28. The invariant curves for 0, 0h k <�  for small value of h and large value of k 
such that k = 100 times of h, the curves seem to be a closed curves. 
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5. Conclusions 

We conclude some results related to the behavior of the motion:  
1) The elliptic points in the figures are stable in the Lyapunov sense, because a 

small disturbance will result in a closed trajectory that surrounds it and along 
which the state of the system remains close to these points.  

2) The hyperbolic points are unstable because any small disturbance will result 
in a trajectory on which the state of the system deviates more and more from 
these points as t goes to infinity. 
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