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Abstract 
In this paper, we obtain certain properties of an operator defined by the con-
volution between Ruscheweyh and Salagean differential operator; coefficient 
inequality, extreme point growth and distortion among other properties are 
investigated. 
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1. Introduction and Definitions 

Let   denote the class of analytic functions of the form  

( )
2

k
k

k
f z z a z

∞

=

= +∑
                       

(1) 

which are analytic in the open unit disk { }: 1E z z= <  and normalized by 
( ) ( )0 0 1 0f f ′= − = . Let S be the subclass of   consisting of analytic univalent 

function of the form (1.1). 
The study of normalised analytic univalent functions is enhanced by the used 

of operators, mostly, differential and integral operators. In this study, we have 
implored the used of convulation of well known differential operators to defined 
our class. For more works on operators see[1] [2] [3]. 

Definition 1 
Let T denotes the subclass of S consisting of functions of the form  
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Further we define the class ( ), ,nT µ β γζ  by  

( ) ( ), , , , ,n
nT B Tλµ β γζ µ β γ ζ= ∩                  (3) 

Definition 2 ([4]) 
For f ∈  and f  of the form (1.1) 0λ ≥  and n∈ , the operator nDλ  

is defined by  

:nDλ →   

( ) ( )0D f z f zλ =  
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Definition 2 [3] Let f ∈  n N∈ , the operator nR  is defined by  

:nR →   

( ) ( )0R f z f z=  

( ) ( )R f z zf z′ ′=  
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Thus it is obvious to see from above that  
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where  
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Thus by convolution as earlier defined by [5] we have  
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We now defined a class ( ), , ,nBλ µ β γ ζ , which consist of functions f S∈  
such that the following inequality is satisfy  
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( )( )

1
, 0 1, 0 1, 0 1
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Motivated here by the works of [1] [6], we characterize our class using well 
know existing geometric properties. 
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2. Properties of the Class ( )nB , , ,λ µ β ζ γ  

2.1. Coefficient Inequality 

Theorem 2.1. 
let f S∈ . Then ( ), ,nf Bλ µ β ζ∈  if and only if  
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Proof: 
Supposed the inequality (7) holds true and 1z = , then we have  
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But by maximun modullus principle, ( ), , ,nf Bλ µ β ζ γ∈  establishing our 
desired result. 

Conversely,  
Let ( ), , ,nf Bλ µ β ζ γ∈ , then  
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Then 
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Recall that ( ) ( )f z f zℜ ≤ , thus we have  
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Choose z on the real axis and let 1z −→ . Then we have  
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This yields;  
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This establishes our proof. 
Corollary 2.1. 
If ( ), ,nf Bλ µ β ζ∈  then  
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equality is attained for  
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We shall state the growth and distortion theorems for the class ( ), , ,nBλ ϑ ς γ ι  
The results of which follow easily on applying Theorem 2.1, therefore, we deem 
it necessary to omit the trivial proofs. 

2.2. Growth and Distortion Theorems 

Theorem 2.2. 
Let the function ( ) ( ), , ,nf z Bλ µ β ζ γ∈  then for z r=  
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Theorem 2.3. 
Let the function ( ) ( ), ,nf z Bλ µ β ζ∈  then for z r=  
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we obtain a sharp result. 

2.3. Radii of Close-to-Convexity, Starlikeness and Convexity 

Theorem 2.4. 
Let the function ( ) ( ), , ,nf z Bλ µ β ζ γ∈ , then f  is close-to-convex of order 

δ  in 1z Rτ<  
where  
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The result obtained is sharp. 
Proof. 
It is sufficient to show that ( ) 1 1f z δ′ − ≤ −  for z Rτ<  Thus we can write  
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But we have from theorem 2.1. that  
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Relating (14) and (15) we have our desired result. 
Theorem.2.5. 

Let the function ( ) ( ), ,nf z Bλ µ β ζ∈ , then f  is starlike of order δ , 
0 1δ≤ <  in 2z Rτ<  
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The result obtain here is sharp.  
Proof. 

We must show that ( )
( )

1 1
zf z
f z

δ
′

− ≤ −  for 2z Rτ< . Equivalently, we have  

( ) 1

2
1

1

k
k

k

k a zδ

δ

−∞

=

−
≤

−∑
                     

(16) 

But we have from theorem 2.1. that  
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Relating (16) and (17) will have our desired result.  
Theorem 2.6. 

Let the function ( ) ( ), , ,nf z Bλ ϑ ς γ ι∈ , then f  is convex of order δ ,  
0 1δ≤ <  in 3z Rτ<  
where  
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The result obtain here is sharp.  
Proof. 

By using the technique of theorem 2.5 we easily show that ( )
( )

1
zf z
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δ
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this holds for 3z Rτ< . The analogous details of theorem 2.5 are thus omitted, 
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hence the proof. 

3. Integral Operator 

Theorem 3.1. 
Let the function ( )f z  defined by (2) be in the class ( ), ,nT µ β γζ  and let c  

be a real number such that 1c > − . Then the function defined by  
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−+
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also belong to the class ( ), , ,nT µ β γ ζ  
Proof. 
From the representation and definition of ( )F z  we have that  
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since ( ) ( ), , ,nf z T µ β γ ζ∈ . By theorem 1.1 ( ) ( ), , ,nF z T µ β γ ζ∈ . This establishes 
our proof. 
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