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Abstract

This paper presents an algorithm for solving Bi-criteria Minimum Cost Dynamic Flow (BiCMCDF) problem
with continuous flow variables. The approach is to transform a bi-criteria problem into a parametric one by
building a single parametric linear cost out of the two initial cost functions. The algorithm consecutively
finds efficient extreme points in the decision space by solving a series of minimum parametric cost flow
problems with different objective functions. On each of the iterations, the flow is augmented along a cheap-
est path from the source node to the sink node in the time-space network avoiding the explicit time expan-
sion of the network.
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1. Introduction

Classical (static) network flow models have been well
known as valuable tools for many applications [1] and
therefore efficient algorithms have been developed.
However, they fail to capture the dynamic property of
many real-life problems, such as traffic planning, pro-
duction and distribution systems, communication sys-
tems, and evacuation planning. Dynamic flows are
widely used to model different network-structured, deci-
sion-making problems over time (see for example [2]
and [3]), but because of their complexity, dynamic flow
models have not been investigated as well as classical
flow models. The time is an essential component, either
because the flows take time to pass from one location to
another, or because the structure of the network changes
over time.

On the other hand, in many combinatorial optimiza-
tion problems, the selection of the optimum solution
takes into account more than one criterion. For example,
in transportation problems or in network flows problems,
the criteria that can be considered are the minimization
of the cost for selected routes, the minimization of arrival
time at the destinations, the minimization of the deterio-
ration of goods, the minimization of the load capacity
that would not be used in the selected vehicles, the
maximization of safety, reliability, etc. Often, these cri-
teria are in conflict and for this reason, a multi-objective
network flow formulation of the problem is necessary.
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In this paper, the case of bi-criteria minimum cost dy-
namic flow problem is considered. The proposed method
consists in iteratively generating efficient extreme points
in the decision space by solving a series of minimum
parametric cost flow problems with different objective
functions. On each of the iterations, the flow is aug-
mented along a cheapest path from the source node to the
sink node in the time-space network avoiding the explicit
time expansion of the network.

Further on, in Section 2 some basic dynamic network
flow terminology is presented together with some results
used in the rest of the paper. More specialized terminol-
ogy is developed in later sections. Section 3 deals with
the bi-criteria minimum cost dynamic flow problem and
with the parametric approach for solving it. In Section 4
the development of the proposed algorithm is presented
while in Section 5, is given an example that helps under-
standing the steps performed by the former algorithm in
a discrete dynamic network. In the presentation to follow,
some familiarity with flow algorithms is assumed and
many details are omitted, since they are straightforward
modifications of known results.

2. Terminology and Notations
2.1. Dynamic Network Flows

Many dynamic network flow problems are considered as
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extensions of static network flow problems. These in-
clude maximum dynamic flow and minimum cost dy-
namic flow problems. The maximum dynamic flow
problem seeks a dynamic flow which sends as many as
possible a commodity from a single source to a single
sink of the network within the time horizon 7. The
minimum cost dynamic flow problem seeks a dynamic
flow that minimizes the total shipment cost of a com-
modity in order to satisfy demands at certain nodes
within T.

2.2. Discrete-Time Dynamic Network Flows

A discrete dynamic network G =(N,4,T) is a directed
graph where N ={---,i,---} is a set of nodes i with
|N| =n,A={-,a,---}is asetof arcs a with |A| =m,
and T is a finite time horizon discretized into the set
H :{0,1,---,T} . An arc a from node i to node j is usu-
ally also denoted by (i, ;). The following functions are
associated with each arc a=(i,j)e 4: the time-de-
pendent capacity (upper bound) function u(i, j;0),
u:Ax {0,1,---,T } — R" which represents the maximum
amount of flow that can enter the arc (i, /) attime 6,
the time-dependent transit time function h(i, j;0),
h:A4x{0,1,---,T} >N, and the time-dependent cost
function c(i,j;@) , c:Ax{O,l,-~~,T} — R which
represents the cost for sending one unit of flow through
the arc (i,/) at time 6. Time is measured in discrete
steps, so that if one unit of flow leaves node i at time &
on arc a :(i,j) , one unit of flow arrives at node j at
time 6+h(i,;;0), where h(i,j;0) is the transit time
on arc a. The time horizon T is the time until which the
flow can travel in the network. The demand-supply func-
tion v(i;0), v:Nx{0,1---,T} — R represents the de-
mand of node i € N at the time-moment € e {0,1,~~-,T} s
if v(;6) <0 or the supply of node i at the time-moment
A= {O,l,~--,T} , 1f v(i;ﬁ) >0 . The network has two
special nodes: a source node s with v(s;0)>0 for
0 e{0,1,---,T} and there exists at least one moment of
time 6, €{0,1,---,T} such that v(s;6,)>0; and a sink
node ¢ with v(t;H)SO for 96{0,1,---,T} and there
exists at least one moment of time 6, € {0,1,- -, T } such
that v(#;6,)<0. The condition required for the flow to
exist it that z Zv(z’;@)zo
0e{0,1,-+-, T} ieN

Definition 1: [4] A feasible dynamic flow f(i,j;@)
(feasible flow over time) on G=(N,A,u,h,c,T) with
time horizon T is a function f:Ax{0,1,---, T} —R"
that satisfies the following constraints:

> f0)= ¥ f(hi0-h().:0))=v(i:0),

Jl(i.s)e4 il(.i)e4
0—h(j,i;0)=0
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VieN; V6 e{0,1,---,T} (1.a)
0< f(i,j:0)<u(i,j;0),v0e{0,1,--,T},V (i, )€ 4;

(1.b)
f(i,j:0)=0,V(i,j)e 4,0 eT—h(i,j;0)+1, T (1.c)

where [ (i, j;0) determines the rate of flow (per time
unit) entering arc (i,j) at time 6.

Capacity constraints (1.b) mean that in a feasible dy-
namic flow, at most u(i,j;6) units of flow can enter
the arc (i,;) at the time-moment 6. It is easy to ob-
serve that the flow does not enter arc (i, /) at time 6
if it has to leave the arc after time T; this is ensured by
condition (1.c). The total cost of the dynamic flow
f(i,/;0) in a discrete-time dynamic network is defined
as:

()= 2 2 fi.;:0)¢i:0) @

96{0,1,--4,7’} (i,j)eA
2.3. Time-Space Network

In the discrete time model, a useful tool for studying the
minimum cost flow over time problem is the time-space
network. The time-space network is a static network
constructed by expanding the original network in the
time dimension by considering a separate copy of every
node ie N atevery discrete time step in the time hori-
zon T, 6e{0,1,---,T}.

A node-time pair (NTP) (i, ) refers to a particular
node i € N at a particular time step 6 €{0,1,---,T}, i.e.,
(i, 19) € Nx{O,l,---,T} .

The NTP (i,6) is said to be linked to the NTP
(j,6,) ifeither

i) (i,j)ed and 6,=6+h(i, };6,),or

i) (j,i)ed and 6,=6,+h(j,i;6,).

Definition 2: [5] The time-space network G’ of the
original dynamic network G is defined as follows:

N ={(i,0)||ie N.0 {01+, T}}; (3.a)

A" ={a, = ((.0). (.0 +h(i.:0)))

(3.b)
|O£¢9£T—h(i,j;t9)}, (i,j) e 4

u' (ay)=u(a;0) for a,ed’; (3.0

" (ay)=c(a;0) for a,ed. (3.d)

For every arc (i, j) € A with traversal time h(i, j;6),
capacity u(i,j;0) and cost c(i,;6), the time-space
network G7 contains arcs ((i, 9), (j, 9+h(i,j;t9)))
for 6=0,1,---,T-h(i,j;0) with capacities u(i,;;6)
and costs ¢(i, j;0).

0JDM



118 M. PARPALEA

For the flow f(a;0) in the dynamic network G, the
function f7 (a,) that represents the corresponding flow
in the time-space network G’ is defined as:

fT(ag):f(a;H),VageAT. (@)

A (discrete-time) dynamic path is defined as a se-
quence of distinct, consecutively linked NTPs:

P(iviy): (i1.6) = (i, )- (1061, ).+ (ikq,e,{q)
=(,,6,).

)

2.4. Time-Dependent Residual Network

The time-dependent residual network corresponding to a
feasible flow f can be viewed as the static residual net-
work of the time-space network corresponding to the
dynamic network.

For f(i,j;0) being the flow entering arc (i, ;) at
time 6, an additional flow u(i,/;0)—f(i,/;6) de-
parting from node i at time € to node j along the arc
(i,j) canbe sent. Also, f(i,;;6) units of flow can be
sent from node j departing at time @+h(i,;0) and
consequently arriving at node i at time & over the arc
(i,/), which amounts to cancelling the existing flow on
the arc. Here, an arc with negative travel time (i.e. de-
parting at @+h(i,j;0) and arriving at €) is consid-
ered. Whereas sending a unit of flow from i at time 0
to j along (i,) increases the flow cost by c(i,;0)
units, sending a unit of flow in reverse direction from j
departing at time 6+ h(i,j;6) to i on the same arc de-
creases the flow cost by ¢(i,j;0) units.

Considering the above mentioned ideas, the residual
network with respect to a current dynamic flow f'is de-
fined as follows.

Definition 3: [5] The residual dynamic network with
respect to a given feasible dynamic flow f is defined as
G(f)=(N.4(f).T) with A(f)=4"(f)U4 (f)

where

A°(f)=1{(i.)
with u(i,j;@)—f(i,j;ﬁ) >0
A (f)={()|(j-i) e 4, 30 <T—h(j.i;0)}
with  f(/,i;0)>0
While the direct arcs (i,j)e A*(f) have the same
transit times /% (i, j;0) and costs c(i,/;6) as in the
original dynamic network G, the artificial reverse arcs

(i,j)e A(f) in the residual dynamic network G(f)
are provided with the following attributes:

h(i,j: 0+h(j.i;0))=—h(}.i;0), (7)

(i.j)e 4, 30<T-h(i, j:0)| 6

(6.b)

Copyright © 2011 SciRes.

c(i, j; 0+h(/,i;0))=—c(j.i;0), (®)

with (j,i)e 4,0<6+h(},i;0)<T, f(/,i;6)>0.
The residual capacities of the arcs (i, /) in the resid-
ual dynamic network G( /) are defined as follows:

r(i,j;0)=u(i, j;0)- [ (i.;0),
(i,/)€A,0<0+h(i,j;0)<T
r (i, j; 0+h(j.i:0)) = £ (/.i56),
(j.i)eA,0<0+h(j,i;0)<T

(9.a)

(9.b)

Definition 4: [6] 4 dynamic path
P(s=ip iy, i, =i)
from node s to node i is said to be a dynamic augmenting
path if r(i,,i,,;6,)>0 for (ip,i,,)eA(f) and k=
L-,g—1.
Definition 5: [6] Given a dynamic flow f, the residual
capacity of a dynamic augmenting path
P(s =iy iy, =)
is defined by:
r(P):= min r(i,i.;6,), (10)

1<k<g-1

for (i,ip,,)eA(f), k=1-,q-1.
Definition 6: [6] The cost of a dynamic augmenting
path P(s:i,,iz,---,iq :i) is defined by:

C(P) Z C(ik’ikﬁ;ek) fO}" k:L”"q_l
(ik sigs1 ) A(S)

A dynamic augmenting path P(s =l by, ey i, = i) is
referred to as a dynamic shortest augmenting path (DSAP)
from node s=4 tonode i =i if C(P)<C(P') for
all dynamic augmenting paths P' from node s to node i.

A dynamic path P(il,iq):(il,Hl),(iz,ﬁz),---,(i o ) is

q°7q
called a dynamic cycle if i, =i, and 6, =6,. A nega-
tive cycle is defined as a dynamic cycle whose total cost
is negative and whose capacity is greater than zero.

3. Bi-Criteria Minimum Cost Dynamic Flow
Problem

The bi-criteria minimum cost dynamic flow problem is
to determine how a given amount of flow that simulta-
neously minimizes two total costs should be sent from a
source node to a sink node within the time horizon 7,
subject to the capacity limits on the arcs of the network.
The successive shortest path approach adapted to the
dynamic residual network is based on solving a series of
successive shortest path problems, where each is solved
in a residual time-space network. An amount of flow
equal to the capacity of each minimum cost path ob-
tained is augmented, until the entire flow has been sent
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from the source to the sink. The main difference among
the algorithms consists in solving the shortest path prob-
lem in the dynamic residual network.

3.1. The Problem Formulation

Let G=(N,4,T) be a dynamic network with a node
set N, an arc set 4 and a finite time horizon T discretized
into the set {0,1,---,T } Without loss of generality, we
consider that no arcs are entering in the source node or
leaving the sink node. Considering the time-dependent
capacity (upper bound) function u (i,j;@), u:Ax

{0,1,---,T} > R", the time-dependent fransit time func-
tion h(i,j;0), h:Ax{0,1,---,T} - N, and the time-de-
pendent cost functions ¢, (i, j;0), ¢, : Ax{0,1--- T} >R",
representing the cost associated with the k-th objective
function, &k =1,2, for sending one unit of flow through
the arc (i,) attime &, the BICMCDF problem can be
stated as finding the flow function f: Ax{0,1,---, T} —>R"
that satisfies the following constraints:

T

minimize y, (f)=D. D, ¢ (i,/:0)- £ (i, /;0)

6=0 (i.j)eA ’ (11.a)
k=12
subject to:
T
f(i,t;S):v (11.b)
6=0 (it)ed 8|9+h(i1;9)=0
2 fei0)- > > f(i9)=0,
i\ii)eA (5.i)e4 8]8+h(;.i:9)=0 (11.¢)
Vie N—{S,t}
0< f(i,/;0)<uli,j;,0),v6ei0,1,---, T},
r(ag0)sui o). v0 oty

V(i,j)e A

The value of the dynamic flow for a time horizon 7 is
denoted by v. Any vector f that satisfies the constraint
(11.b), the flow conservation constraint (11.c) at the dif-
ferent node-time pairs and the bound constraint (11.d) is
called a feasible solution of the bi-criteria minimum cost
dynamic flow (BiCMCDF) problem.

The set of feasible solutions or decision space is de-
noted by F and its image through

Y(F)={(n(£)s 2 (1) |f < F)

is called objective space.

In general, there is no feasible solution of the (Bi-
CMCDF) problem that simultaneously minimizes both
objectives. In other words, an optimum global solution
does not exist. For this reason, the solutions of these
problems are searched for among the set of efficient
points.

Copyright © 2011 SciRes.

Definition 7: [7] A feasible solution f € F of the
bi-criteria minimum cost flow problem is called efficient
if, and only if, there does not exist another feasible solu-
tion f'eF so that y, (f’) <y (f) for all k values
and y, (f‘) < (f) for at least one k.

Definition 8: [7] Y(f) is a non-dominated criterion
vector if [ is an efficient solution. Otherwise Y ( f )
is a dominated criterion vector.

The set of efficient solutions of F will be denoted by
E[F] while, by extension, E [Y (F )] is called the set
of non-dominated solutions of Y (F). It is well known
that to characterize E [Y (F )] for the bi-criteria con-
tinuous minimum cost flow problem, it is only necessary
to identify the extreme efficient points of Y (F). The set
of efficient extreme points of F will be denoted by and
by E, [F] and the corresponding points of Y (F) will
be denoted by E, [Y(F)].

3.2. The Parametric Approach

For the bi-criteria linear programming (BCLP) problems,
Gass and Saaty [8] provide an algorithm using the para-
metric programming technique. Geoffrion [9] discusses
the availability of parametric programming for a broader
class of bi-criteria problems. The functions y, (/) and
¥, (f) are assumed to be convex and the feasible re-
gion F is a compact convex set. The parametric pro-
gramming problem is defined as:

minimize y(f)=}\'y1(f)+(l_}‘)'yz (f)

(12)
subjectto feF, for 0<A<L1

He’s procedure is not radically different from that of
Gass and Saaty [8].

Lemma 1: [9] If f, is efficient, then there exists a
scalar N\, in the unit interval such that f, is an opti-
mal solution of the parametric programming problem.

Theorem 1: [9] The set of all efficient extreme points
of the bi-criteria minimum cost flow problem can be
found by solving (12) for each \ in the unit interval.

Lemma 2: [9] For each fixed value of N satisfying
0<A<1, the optimal solution of (12) is a compact line
segment in the objective space. If y(f,) and y(fz)
are the endpoints of the line segment, then

vt fi+(-0)- o) =t-2(£)+(1-1)-2(1).

forall t, 0<t<1.

Aneja and Nair [10] developed a simple algorithm for
bi-criteria transportation problems. Their procedure gen-
erates efficient extreme points on the objective space
Y(F) rather than on the decision space. A series of
single objective problems are solved with different ob-
jective functions and each problems leads to either a new
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efficient extreme point or changes the direction of search
in the objective space. Although the procedure is con-
ceptually simple, it doesn’t provide the A -regions for
each efficient point. Lee and Pulat [7] used the paramet-
ric programming procedure for the bi-criteria minimum
cost flow problem by modifying the out-of-kilter algo-
rithm.

The approach that was proposed in this paper finds the
efficient points in the decision space using a successive
dynamic shortest augmenting path algorithm based on a
linear parametric label setting procedure.

Instead of the two costs functions ¢ (i,/;0) and
¢,(i,j;0), a single parametric cost function of A\,
c(i, j;0;\) can be defined as follows:

c(i, js0:8) =(1=0) ¢, (i, j:0) + X+ ¢, (i, j:0),

Ne[o.1] =

As it can easily be seen, for A, =0 the value of the
parametric cost equals the cost associated with the first
objective function, while for A =1 the cost associated
with the second objective function is obtained.

The algorithm starts with A\; =0 and, in any of its
labeling steps, lexicographically finds the minimum cost
associated with the first objective function and the
minimum cost associated with the second objective func-
tion, i.e. min(c,,c,).

In the more general case, relating to a given value A,
of the parameter, the parametric linear cost function
c(i, j;0;\) can be rewritten as:

c(i, j;0:N) = a, (i, j;0)+(N-\,)- B(i, j;0),
Nel[A]]

with e, (i, /:0) =¢ (i, j;0)+ N, -(c, (i, j;0) = ¢, (i, /:0))
being the value of the parametric cost function
c(i,j;0;\) for A=A\, and
B(i.j:0) =, (- j;0) =<\ (i, );0)

being the slope of the parametric cost function for
A=A, .

Similarly, the parametric cost function of a dynamic
augmenting path P(g) from the start node s to node ¢
can be written as:

c(P(q),}\):nk (g.0)+(N-N\,)-7(q.9),
NelN1]

with m,(¢,0)= Y. @a,(i,j;60) being the value of
(i./)=P(q)
the parametric cost function ¢(P(g),\) for A=},
and 7(q,0)= > p(i,j;0) being the slope of the
(i.7)eP(q)
parametric cost function for A, <A<\, .
Moreover, in every labeling step, the value A, of

(14)

(15)
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the parameter by which one of the two linear parametric
cost functions of A which are compared remains
minimum can be computed as:

N =N +(“k (j’e)_ﬁk (i,@))/(r(i,&)—r(jﬁ))(16)

Lemma 3: The set of all efficient extreme points of the
bi-criteria minimum cost flow problem can be found by
solving a classical minimum cost flow problem with the
parametric cost function

c(z’,j;€;7\):(l—}\)~c1 (i,j;0)+7\-02 (i,j;ﬁ)
for successive N\, values in the unit interval.

Proof: The proof of the lemma results directly from
theorem 1 by simply making the replacement 7:=1—\
in lemma 2.[]

4. Development of the Algorithm
4.1. Parametric Shortest Dynamic Paths

Solution approaches for bi-criteria shortest path prob-
lems are divided into two classes: label-setting and label-
correcting [11]. Label setting algorithms can only be
applied on acyclic networks and networks with nonnega-
tive. The time-dependent residual network is composed
of two sub-networks: a forward network consisting of the
set of forward arcs, denoted by 4" (f), having positive
travel times and travel costs; and a reverse network con-
sisting of the set of reverse arcs, denoted by 4™ (f)
and having negative travel times and travel costs. Each
of the two sub-networks, alone, is acyclic. In exploring
the time-dependent residual network, the forward and
reverse arcs are explored simultaneously.

Property 1: [12] If a time-space network contains no
negative cycle, then the time-dependent residual network
generated based on a dynamic shortest augmenting path
contains no negative cycle.

The basic idea of the label setting algorithm is to start
from NTP (s,6,) and to label the NTPs which are
reachable from (s,6,), according to their cost from
(s,6,). The algorithm maintains a parametric cost label
with each NTP (i,6) memorized in the set I1(i,0):=
{n(i,@),r(i,@)}. For every NTP (i,8), the distance
label n(i,&) is either oo, indicating that it was not yet
discovered any augmenting path from (s,6,) to (i,0),
or it is the length (cost) of the shortest augmenting path
to (i,0).

At any point in the algorithm, the distance labels are
divided in two groups: permanent and temporary. The
label m(i,8) is permanent once it denotes the length of
shortest augmenting path from (s,6,) to (i,0), other-
wise it is temporary. A set L of candidate nodes with
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temporary labels is maintained, which initially includes
only the source node. The set L holds, in increasing order
of their temporary labels, all node-time pairs which have
been reached so far by the algorithm and which are to be
visited. At any iteration, the algorithm selects a node-
time pair (i,6) with minimum temporary label, makes
its distance label permanent, checks optimality condi-
tions and updates labels accordingly.

Optimality Conditions
For a given value A, of the parameter, the distance
labels 7(i,0) represent the length of shortest augment-
ing paths from NTP (s5,6,) to NTP (,0) if they sat-
isfy the following:
a) V(i,j)ed, f(i,j:9)<u(i,j;9) and
0=9+h(i, j;9) if cither
i) n(j,0)<n(i,9)+a,(i,j;9),or
i) n(7,0)=n(i,9)+a,(i,;9)
and 7(/,0)<7(i,9)+B(i, j;9)
b) V(j.i)ed, f(/,i;0)>0 ifeither
i) n(j,9)<n(i,9+h(j,i;9))—ak(j,i;H),or
ii) n(/,0)=n(i,0+h(},i;0))-a,().i;0)
and 7(j,0)<7(i,0+h(}.i:0))-B(j.i;0)
The minimum cost labels w(i,6) of all node-time
pairs are initialised to infinity with the exception of the
minimum cost labels of the source node which are ini-
tialised to zero, n(s,0):=0, V#e{0,1,---,T}. For
every node-time pair (i,0) selected from L, the arcs
with positive residual capacity connecting (i,6) to
(/. 9) are explored, where 0<9=6+h(i,;;0)<T if
the arc connecting (i,0) to (j,9) is a forward arc
and 0<3=0-h(j,i;9)<T ifitis areverse arc. Then
the minimum cost labels are updated and the node-time
pair (/,9) is added to the candidate set if it is not al-
ready in L. The process is repeated until there are no
more candidate nodes in L.
The travel cost of the minimum cost path, computed
based on predecessor vector p, is given by
7(t)=, min {n(1.0)}
with
T (t) = He{g?llﬂf} {z’(l,ﬁ) | n(t,@) = n(t)} .

The Parametric Shortest Dynamic Path (PSDP) pro-
cedure is presented in Table 1.

Procedure next_lambda (=, (), ()., (i),7, (i)) pre-
sented in Table 2, returns the value of the parameter up
to which one of the two linear parametric cost functions
of A remains minimum. The two linear parametric
functions to be compared, regarding the arguments of the
function, are =, (i)+(A—X\,)-7,(i) and

T (1) +(A=A0) -7 (i)

Copyright © 2011 SciRes.

Theorem 2: The complexity of Dynamic Parametric
Shortest Path (DPSP) procedure is O(an 2) .

Proof: The algorithm performs O(nT) iterations
(selections) and in each of the iterations O(mT) arcs
are explored (which corresponds to the number of arcs in
the time-space network). Hence, the total complexity of
the (DPSP) procedure is O(an 2) .0

4.2. Successive Parametric Shortest Path
Algorithm

Each step of the successive shortest path algorithm for
the bi-criteria minimum cost dynamic flow problem will
repeatedly perform the following operations:

i) Compute a parametric shortest dynamic path P from
the source node to the sink node;

ii) Find the residual capacity r(P) of the minimum
cost path;

iii) Augment the flow along the parametric shortest
dynamic path and update the residual network.

For a given value A, of the parameter, the algorithm
computes the values of the parametric costs o (i, j;H)
=¢, (i, j;0)+ N, (¢, (. j:0) — ¢, (i, j;0))  for  A=N\,
and the slopes of the parametric cost functions

B(i, j:0)=c, (i, j;0)—¢ (i, j:0)

for all arcs in the time-dependent residual network. Then
the algorithm successively finds parametric shortest dy-
namic paths and increases the flow until the value of the
dynamic flow for the time horizon T equals the total
deficit of all sink node-time pairs, v. In each of the it-
erations, the value of the parameter by which the para-
metric shortest dynamic path remains minimal is com-
puted and then the algorithm reiterates with this new
value of the parameter. The algorithm will terminate
when the value of the parameter becomes equal to 1. The
Successive Parametric Shortest Path (SPSP) algorithm is
presented in Table 3.

Theorem 3: The Successive Parametric Shortest Path
(SPSP) algorithm computes correctly a bi-criteria mini-
mum cost dynamic flow for a given time horizon T.

Proof: The consecutive A, values are computed as
the closest values of the parameter for which the order of
the parametric linear cost functions do not reverse, i.e. do
not have crossing points within the interval (X,,\,,,).
Since fora A, value, the flow is augmented along suc-
cessive shortest paths, the correctness of the algorithm
results from the classical (non-parametric) algorithm. For
consecutive A, values of the parameter, the proof re-
sults directly from Lemma 3.[]

A series of single objective problems are solved with
different objective functions, corresponding to different
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Table 1. Dynamic Parametric Shortest Path (DPSP) procedure.

(1) procedure PSDP(p,A,,A,,,,B);
(2) begin
(3) for all 6€{0,1,...,T} do
(4) begin
(5) w(s,0):=0; 1(s5,6):=0;
(6) for all ieN-{s} do
(7) begin
(8) (i, 0)=00; T(i,0):=0;
(9) end;
(10) end;
(11) m(t)y=o0; T(t):i=o; L:={s,06)6=0,1,...,T};
(12) while (L#¢) do
(13) begin
(14) select (1,6,) with minimum #(i,6,) from L; L=L-{1,6,)};
(15) for all jeA™(i) with r(i,5;6,)>0 do
(16) if (6, +h(i,7;6,)<T) then
(17) begin
(18) 6, =6, +h(i, ; 6,) ;
(19) A, =next_lambda(x(7j,6.), n(1,6,)+o (1,7:6,),1(5,6,),1(1,6,)+B(, J;6,), N, ;)
it ((=x(i,0,)+a(i,7;0,)<m(F0,)) or
(20)
((r(1,0,)+a(d, §;0,)=n(F0,) and ( J)+BE,7:6,)<1(3,6,)))) then
(21) begin
(22) n(§,6,)=m(1,6,)+ad,7;6,); 1(§,0,):=1(,6,)+Bd, J06,);
(23) p(3,0;):=(,0;);
(24) if ((7,6,)2L) then L=LU{(G06,)};
(25) end;
(26) end;
(27) for all jeA (i) do
(28) for all O, such that 6, =6,+h(j,1;0,) and r(j,1;6,)<uj,1;6;) do
(29) begin
(30) A, = next_lambda(x(76,), n(i,6,)-a(j,1;6)), 1(7,6,), 1(1,6,)-B(F,1:6,) X ,)
if (@(i,6,)-o(],1;6,)<7n(46,) or
(31)
( (n(ilei)_O( (jli;ej):”(jlej» and (T(i,@i)—,@(j,i,‘ej)<T(j,9j)) ))then
(32) begin
(33) m(5,6,)=mi,6,) -« (J,1;6,) ; 1(J,0,):=11,6,)—BF,1;6,);
(34) p3,6,):=(1,6,);
(35) if ((JIQJ)EL) then L::LU{(jlej)};
(36) end;
(37) end;
(38) end;
(39) ()= mln {ﬂ(t O)}; TH)= min {r(t O)|m(t,0)=T7(t) };
6€0,1,. 6e{0,1,.
(40) if (ﬁ(t)zoo) then B:=0
(41) else for all 6€¢{0,1,...,T} do
(42) A, == next_lambda (z (t),z(t, 0), T (), 1(t,0), N.1)
(43) end;

Copyright © 2011 SciRes. 0JDM



M. PARPALEA 123
Table 2. Procedure next_lambda.
(1) procedure next_lambda (m (1), 7,(1),7,(d), T,(1), A ,0y) 7
(2) begin
(3) AM=A,
(1) if (1,(1)-7,4))#0 then
(5) begin
(6) A=A, +H(m (@) -7, (3) ) / () -1,3) ) 5
(7) if (A >A,) and (A <X,,)) then A™=A";
(8) end;
(9) return(i") ;
(10) end;
Table 3. Successive Parametric Shortest Path (SPSP) algorithm.
(1) SPSP(G,vVv);
(2) begin
(3) k:=0; A, =0;
(4) for all 6¢{0,1,...,T} do
(5) for all (4,7)eA do B(i, 56):=c,(d, §;0)-c,(d,7;0);
(6) while (A, <1) do
(7) begin
(8) )\ku =1; v'i=v;
(9) for all 6€{0,1,...,T} do
(10) for all (i,7)eA do
(11) begin
(12) £.,5:0)=0; o (i, 7:6)=c i, i0)+n, -(c,(i,5:6)—c,(i,7:6));
(13) end;
(14) while (v'>0) do
(15) begin
(16) B:=1;
(17) for all1 6€{0,1,...,T} do
(18) begin
(19) pls,0):=0;
(20) for all 1eN-{s} do p(i,0):=-1;
(21) end;
(22) PSDP(p, A, A,y B) 5
(23) if (B=0)then STOP (no path can be found)
(24) else
(25) begin
(26) build path P based on p;
27) r(P);{lzjjl)'gg{r(i,j;Q)}; S=min{v', r(P}; v'=v'DS;
(28) for all arcs (I,j)eP do
(29) begin
(30) if (0,>0,) then r(i,50,)=r(i,7;6,)-6
(31) else r(j,i;ej)::r(j,i;ej)+5;
(32) compute £ (i,7;0,);
(33) end;
(34) end;
(35) end;
(36) Y i={ (v (£) » ¥o(£) ) }i
(37) k=k+1;
(38) end;
(39) end;
Copyright © 2011 SciRes. 0JDM
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A\, values, and each problem leads (for the non-degen-
erate case) to a new efficient solution. The algorithm
terminates when the value of the parameter reaches to the
maximum value of the unit interval. Starting with A, =0
for k=0 and ending when A, =1 for k=K, the
algorithm performs K steps corresponding to the K
linear segments between two consecutive efficient ex-
treme points.

Theorem 4: The complexity of the Successive Para-
metric Shortest Path (SPSP) algorithm for computing the
set of efficient extreme points in the decision space is
O(K -nmT? v)

Proof: For the labelling operation and computing pa-
rametric costs, all arcs at all times have to be examined,
so the running time is O(mT). Updating the residual
networks after augmenting the flow also requires a run-
ning time of O(mT). Since at most v augmentations
are done by the algorithm, procedure DPSP is called v
times for every A, value of the parameter. Hence an
efficient extreme point is computed in O(mT) +
O(mT)+U-O(an2) ,ie. -0 anz). Consequently,
for the K steps corresponding to the K linear segments be-
tween two consecutive efficient extreme points, the total

1 a

()
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complexity of the SPSP algorithm is O(K -nmT Zu) O
5. Example

In the discrete-time dynamic network presented in Fig-
ure 1(a), the problem is to send v =3 units of flow at
minimum bi-criteria cost from the source node s (node 1)
to the sink node ¢ (node 5) within a time horizon which is
set to 7= 4. The upper bounds (capacity) of all arcs are
set to u(i,j;é’) =2, V(i,j)e A, V 06{0,1,2,3,4}
and the transit times and costs are presented in Table 4.

In the initialisation step, the slope (i, j;6) =c, (i, j;6)
- (i, j;H) of the parametric costs functions are com-
puted (as presented in Table 4) and, for k=0 and the
corresponding initial value of the parameter A, =0,
a, (i, j;0)=c¢ (i, j;0) are set. The predecessor vector
is initialised at all time values to p(i,0):=-1 for all
nodes except for the source node, for which p(s,8) is
set to zero, and procedure PSDP is called.

Iteration 1: The distance labels are initialised to
n(1,0):=0 for VOe{0,1,---,T} and the set L of can-
didate nodes is set to L= {(1,0),(1,1),(1,2),(1,3),(1,4)} )
The selected node-time pair, (1,0) is removed from the

y2
34
32
30
28
26
24
22

24,34

25,29

27,25

20 30,20
1
18 31,19 y
23 25 27 29 31

®

Figure 1. (@) The dynamic network G considered for exemplifying how the Successive Parametric Shortest Path (SPSP) algorithm
works; (b) The set of all non-dominated points which lie on the efficient boundary in the objective space for the bi-criteria
minimum cost dynamic flow problem in network G .

Table 4. Transit times and costs on arcs for the dynamic network in Figure 1.

(i) (1,2) (1,3) 2.4 (2,5 (3.:4) (3,5 4.5
i 2,0€0<1  [L0<8<2  [3,0<6<2 2,0€0<2  [L,0<8<2
(@0 3,021 2,022 1,022 ,0>2 3,022
0<0<2
ci(iy;0) 2 2 7 9 P 7 1
0<0<
exi;6) 3 4 2 2 Dso 5 5
0<60<2
B(ij:0) 1 2 -5 7 4 052 2 4
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Table 5. The steps performed by Successive Parametric Shortest Path (SPSP) algorithm on the dynamic network in Figure 1.

g lk r g Yy At
P= ((1, 0),(3,1),(4,3), (5,4)) 2

0 0 Yy =(24.34) H =16
P= ((1,1),(3,2),(4,3),(3,1),(5,2)) 1
P= ((1,1),(3,2),(4,3), (5,4)) 2

v 1= (25,29) PR
P= ((1, 0),(3,1),(5, 2)) 1
P= ((1,1),(3,2),(4,3),(5,4)) 2

S ry=(27.29) PRV
P= ((1,0),(2,2),(5,3)) 1
Pi=((1.0).(2.2).(5.3)) )

38 Y= (30,20) PRT:
P= ((l,1),(3,2),(4,3),(5,4)) 1

4 /2 P2=((1,0),(2,2),(5,3)) 2 r,=(3119) As =1

set L and, for the forward arcs (1,2) and (1,3) at time
0 =0, node-time pairs (2,2) and (3,1) are added to the
set L, labelled as: n(2,2):=2, 7(2,2)=1, n(3,1)==2,
7(3,1):=2 and p(2,2)=(1,0), p@3,1):=(1,0) are set.
Then the next node-time pair, (1,1) is removed from the
set L and, for the forward arc (1,3) at time € =1, the
node-time pair (3,2) is are added to the set L, labelled
as: n(3,2)==2, 7(3,2)==2 and p(3,2):=(1,1). Since
for the arc (1,2) at time €& =1, the transit time
6,+h(1,2;6,)=1+3=4 there will be no path which
connects the node-time pair (2,4) to the sink node within
the time horizon 7 = 4. The same thing will happen for
the source node at all the other time values: € =2,3,4.
Since the set of candidate node-time pairs, in increasing
ordered of their corresponding distance labels, is now
L= {(2, 2),(3,1), (3,2)} , the first one is removed and, for
the forward arcs (2,4) and (2,5) at time 6=2,
node-time pairs (4,3) and (5,3) are added to the set L
and labelled as: n(4,3):=9, 7(4,3)=-4, =n(5,3):=11
and 7(5,3)=—6 . The predecessor nodes are set to
p(4,3):=(2,2) and p(5,3):=(2,2). Starting from node
3 at time @ =1, i.e. from the node-time pair (3,1), the
node-time pair (5,2) is labelled as =(5,2):=9 ,
7(5,3):=0 and p(5,2):=(3,1). As for the node-time
pair (4,3), since n(3,1)+¢,(3,4;,1)=6 and n(4,3)=9,
the new label is set to n(4,3)=6, 7(4,3):=4 and the
predecessor node is p(4,3):=(3,1) instead of the pre-
viously stated value p(4,3):=(2,2). Procedure next_
lambda, invoked for relabeling node-time pair (4,3),
computes the value N':=0+(6-9)/—4—4)=3/8 which
proves to be greater than A, =0 and smaller than
A, =1 so that the next value of the parameter is set to
N =\ =3/8.

Similarly, starting from node 3 at time #=2, ie
from the node-time pair (3,2), since n(3,2)+,(3,4;2)

Copyright © 2011 SciRes.

=7 and =n(4,3) =6, the node-time pair (4,3) keeps its
previously stated label but procedure next_lambda, still
computes the value \':=0+(6—7)/(-2—4)=1/6 which
is greater than N\, =0 and smaller than A, =3/8 so
that the next value of the parameter is set to \:=1/6.
Finally, for the forward arc (4,5) at time &=3, the
node-time pair (5,4) is labelled as =n(5,2)=7 ,
7(5,3):=8 and p(5,4):=(4,3) is set.

Since the set L is empty, the minimum label of the
sink node at all time values is computed as:

7(5) = min {(5,0), 7(5,1), 2(5,2), 2(5,3),7(5,4)} , ..

7(5) = min{0,0,9,11,7} =7 and 7(5):=8.
Procedure next_lambda, consecutively will compute the
values A':=1/4 and \':=3/14, both being greater
than the previously computed value of A, :=1/6.

Based on the predecessor vector, the shortest path
P= ((1,0),(3,1),(4, 3),(5,4)) is built and its residual
capacity r(P) =2 1is computed. The flow is augmented
with & :=min{v',r(P)}zmin{3,2}=2 units along this
path, the residual network is correspondingly updated
and the updated excess value v' issetto v''=3-2=1.

Since v'>0, the algorithm reiterates in the updated
residual network finding the shortest path

P:=((1,1),(3,2),(4,3),(3,1),(5,2))

with r(P):=2, §:=min{l,2} =1 and v':=0, which
makes the algorithm to stop. The first efficient solution
J, in the decision space sends two units of flow along
the path P:=((1,0),(3,1),(4,3),(5,4)) and one unit of
flow along the path P:=((1,1),(3,2),(4,3),(3,1),(5,2)).
The corresponding non-dominated extreme point in the
objective space is Y, = (24, 34).

Iteration 2: With k=1, the algorithm computes the
new parametric costs for A, :=1/6 and correspondingly
finds the second efficient solution £, sending two units
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of flow along the path P :=((1,1),(3,2),(4,3),(5,4)) and [5]
one unit of flow along the path P:=((1,0),(3,1),(5,2)),
with the extreme point in the objective space Y =
(25,29),and A, :=1/3.

The steps performed by the algorithm are described in (6]
Table 5 and the objective space with the non-dominated
extreme points is presented in Figure 1(b).
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