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Abstract 
The analytical solution of the convection diffusion equation is considered by 
two-dimensional Fourier transform and the inverse Fourier transform. To get 
the numerical solution, the Crank-Nicolson finite difference method is con-
structed, which is second-order accurate in time and space. Numerical simu-
lation shows excellent agreement with the analytical solution. The dynamic 
visualization of the simulating results is realized on ArcGIS platform. This 
work provides a quick and intuitive decision-making basis for water resources 
protection, especially in dealing with water pollution emergencies. 
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1. Introduction 

Numerical simulations of groundwater pollution problems have been given 
increased emphasis in recent years. Groundwater is often contaminated by, for 
example, the sewage out of factories or mines and the chemical fertilizer and 
pesticide in agriculture, in particular, nitrate pollution of groundwater in rivers 
basins and agricultural watersheds are going from bad to worse all over the 
world [1]. Groundwater protection is an issue with both social and economic 
significant (e.g., Chen et al. [2]), so to simulate the movement of the contaminated 
groundwater, lots of mathematical models have been applied extensively and the 
use of numerical simulations seems to be inevitable. 

Generally, analytical solutions can not be derived for most classical models, 
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consequently, the development of numerical solutions is required. S. Hasnain 
and M. Saqib originate results with finite difference schemes to approximate the 
solution of the classical Fisher Kolmogorov Petrovsky Piscounov (KPP) equation 
from population dynamics, their results show that Crank-Nicolson is very 
efficient and reliably numerical scheme for solving one-dimension fishers KPP 
equation [3]. During the last three decades, numerous transport problems have 
been solved numerical [4], theoretical numerical models are necessary tools were 
presented [5], the technique of intimating the movement of groundwater flow is 
improved greatly, see [6] [7] [8] and the references therein. Dillon gave many 
mathematical models and numerical methods for solving the groundwater 
problems [6]. Li and Jiao derived the analytical solutions of tidal groundwater 
flow in coastal two-aquifer system [7]. Sun applied a sort of numerical methods 
to simulate the movement of contaminants in groundwater [8]. 

At present, the researches on groundwater pollution problems are mainly 
divided into two categories at home and abroad [9] [10]. On one hand, people 
generally study various discrete numerical schemes of mathematical models (i.e. 
the corresponding partial differential equations) for groundwater pollution, by 
doing lots of related works, the numerical solution is obtained and the 
convergence is analyzed, Lin, L. et al. [9] derived a simplified numerical model 
of groundwater and solute transport. On the other hand, people develop the 
simulation software of groundwater numerical [11] [12] [13], particularly, 
numerical simulation software of groundwater system has been developed, 
which is widely used because of its modularity, visualization, interaction and 
diversification, such as, the popular GIS, which is used to provide the visualization 
methods and approaches of groundwater pollution diffusion simulation. Qin, R. 
et al. [11] presented a GIS-based software for forecasting pollutant drift on 
coastal water surfaces using fractional Brownian motion, it can be used to study 
on red tide drift. Valocchi, A. J. et al. [12] developed a series of interactive web 
simulation models to help students understand the coupled physical, chemical, 
and microbiological processes that affect the transport and fate of pollutants in 
groundwater. Li, J. et al. [13] mentioned that HYDRUS-1D software can 
simulate different concentrations of pollutants reaching the shallow aquifer 
under some vadose zone conditions, he presented a method for quantitative 
groundwater pollution assessment based on grey relational analysis (GRA). 

A lot of research literatures about the former have been represented in China. 
In recent years, with the wide application of new technology and new method, 
many scholars have made innovations in theory and methodology, by means of 
the combination of theory and research direction of numerical model theory, 
they combine the theory of numerical model with the related acknowledges, so 
as to improve the reliability of simulation results [10]. However, most of the 
previous literatures only simulate the surface water. By studying the literature 
[11] [12] [13], we found that the visual simulation of the actual problems of 
groundwater pollution is rare. If the above two were combined, it will not only 
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in theory and application of important values, but also innovative, advanced and 
applied. 

In book [14], Kovarik, K. sets his sights on reviewing the whole group of 
numerical methods from the oldest (the finite differences method), and discusses 
the basic equations of a groundwater flow and of the transport of pollutants in a 
porous medium. Therefore, we would like to use the finite difference method to 
study the numerical simulation methods about mathematical models with seepage 
of groundwater pollution. In order to improve the accuracy in the temporal 
direction, we propose a second-order scheme which based on centered Crank- 
Nicolson finite difference scheme [15]-[20]. And we simulate the water pollution 
problems in a certain area and verify the validity and practicability of the model 
and its algorithm. Meanwhile, the dynamic visualization of simulation results is 
realized on ArcGIS platform. We hope that our work can provide an important 
basis for water pollution accident emergency response and decision-making, and 
can be used for environmental protection personnel to deal with water pollution 
emergencies. 

The paper is organized as follows. In Section 2, we give the analytical solution 
of the Equations (1)-(5) by two-dimensional Fourier transform and the inverse 
Fourier transform. In Section 3, we introduce some notations, present the 
Crank-Nicolson finite difference discretization of the governing equation and derive 
the truncation error. Numerical experiment is given, exact solution comparisons 
with numerical solution are also discussed in Section 4. Visualization of simulation 
results based on GIS (ArcGIS figures) is presented in Section 5. Finally, 
conclusions and suggestions are drawn in Section 6. 

2. Analytical Solution 

In this paper, we consider the following physical problem. The leakage of the 
sewage pool in a paper mill causes the seepage of sewage, and the concentration 
of some substance in any point in the underground water is a function of space 
coordinate and time, i.e. ( ), ,C x y t . We take an micro-body in the underground 
water, the concentration change of it is caused by two aspects: One is diffusion, 
including molecular diffusion and osmotic dispersion, another is the mass flux 
caused by the average liquid motion. In this problem, we assume that the 
seepage area is an infinite plane, and the groundwater flow is a one-dimensional 
one, the diffusion of pollutants is a two-dimensional dispersion, and the medium 
is a porous medium. 

We take O as the coordinate origin (pollution source), take the infinite plane 
as the plane O-xy, the flow direction and the x axis direction are consistent. 
Then, our problem can be illustrated by the following two-dimensional parabolic 
equation with convection term  

( )
2 2

2 2 , 0 , 0 ,x y
C C C CD D v x t
t xx y

∂ ∂ ∂ ∂
= + − < < +∞ >

∂ ∂∂ ∂          
(1) 

( ) ( ) ( ), ,0 0, , 0,0 ,C x y x y= ≠                   (2) 

https://doi.org/10.4236/ajcm.2017.73025


L. Y. Li, Z. Yin 
 

 

DOI: 10.4236/ajcm.2017.73025 353 American Journal of Computational Mathematics 
 

d d ,nC x y m
+∞ +∞

−∞ −∞
=∫ ∫                       

(3) 

( ) ( )lim , , 0, 0 ,
x

C x y t t
→±∞

= >
                   

(4) 

( ) ( )lim , , 0, 0 .
y

C x y t t
→±∞

= >
                   

(5) 

Problem (1)-(5) arises in the mathematical modeling of transport processes 
that exhibit diffusion, in which, the unknown C stands for the concentration of a 
solute, x and y are the horizontal coordinates, t is the time, xD  and yD  are the 
longitudinal and transversal dispersion coefficients respectively (namely, xD  
and yD  are the aquifer transmissivity, subscripts x and y indicate the respective 
directions). m is the instantaneous injected solute mass per unit length of porous 
medium, v is the mean pore velocity, and n indicates the effective porosity. At 
the initial stage, we suppose, there is no contaminant in the river, and when 

0t ≥  the concentration at 0x =  remains at 0C C= . 
There are different approaches to solve two-dimensional parabolic equation, a 

series of analytical solutions derived from the basic physical principles have been 
presented which are mostly suitable under special boundary conditions [21]. In 
this part, we give the analytical solution of the Equations (1)-(5) by using 
two-dimensional Fourier transform and the inverse Fourier transform. 

First of all, we give the definition of the two-dimensional Fourier transform 
and the inverse Fourier transform and some properties to be used in the 
following. The Fourier transform of ( ),f x y  is written to  

( ) ( ) ( )( )21 2 1 2
ˆ , , exp 2π d d ,

R
f f x y i x y x yξ ξ ξ ξ= ⋅ − +∫∫           

(6) 

the definition of the inverse Fourier transform for ( ),f x y  as follows  

( ) ( ) ( )( )2 1 2 1 2 1 2
ˆ, , exp 2π d d ,

R
f x y f i x yξ ξ ξ ξ ξ ξ= ⋅ +∫∫           

(7) 

and the derivative properties of the Fourier transform are  




1 2
ˆ ˆ2π , 2π ,f fi f i f

x y
ξ ξ

 ∂ ∂  = =  ∂ ∂   
 



( )


( )
2 2

2 22 2
1 22 2

ˆ ˆ2π , 2π .f fi f i f
x y

ξ ξ
   ∂ ∂

= =   
∂ ∂   

 

We do Fourier transformation of x and y (this transformation has no effect on 
the independent variables, so there is no Fourier transformation for t, so it has 
nothing to do with the t to the Equation (1) firstly.  

2 2 2 2 2
1 2 1

ˆ ˆ ˆ ˆ4π 4π 2π ,x y
C D C D C iv C
t

ξ ξ ξ
∂

= − − −
∂               

(8) 

deal with the conditional Eqution (3), we have  

d d .mC x y
n

+∞ +∞

−∞ −∞
=∫ ∫

                       
(9) 

Then, we do the Fourier transformation to the initial condition Eqution (2), 
by Eqution (9), we have  
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( ) ( ) ( )( )21 2 1 2
ˆ , ,0 , exp 2π d d ,

R

mC x y i x y x y
n

ξ ξ δ ξ ξ= ⋅ − +∫∫
       

(10) 

in which  

( ) ( ) ( ) ( )
, , 0,0

, , , d d 1,
0, other points

x y
x y x y x yδ δ

+∞ +∞

−∞ −∞

∞ == =


∫ ∫
         

(11) 

it is called the Dirac function, also called the generalized function. We denote  

( ) ( ) ( )( )1 2, , exp 2π ,g x y x y i x yδ ξ ξ= ⋅ − +              
(12) 

it can be easily to proved  

( )0,0 .m mg
n n
⋅ =

                       
(13) 

Notice Eqution (8) is a separable equation, so we have  

( )( )2 2 2 2
1 2 1

ˆd 4π 4π 2π d ,ˆ x y
C D D iv t

C
ξ ξ ξ= − + −

            
(14) 

integrate the both sides of the Eqution (14) about variable t, we have  

( )( )2 2 2 2
1 2 1 0

ˆln 4π 4π 2π .x yC D D iv t Cξ ξ ξ= − + − +
           

(15) 

where 0C  is a constant and it has nothing with other variables (the same 
below). 

So, we get the general solution of Eqution (8)  

( )( )( )2 2 2 2
0 1 2 1

ˆ exp 4π 4π 2π ,x yC C D D iv tξ ξ ξ= ⋅ − + −
          

(16) 

substitute 0 for t in formula (16), using Eqution (10), we obtain  

( ) ( )1 2 0 0
ˆ , ,0 exp 0 , ,m mC C C

n n
ξ ξ = ⋅ = =

             
(17) 

in fact, by Equtions ((16) and (17)) we have the solution of Eqution (8)  

( )( )( )2 2 2 2
1 2 1

ˆ exp 4π 4π 2π .x y
mC D D iv t
n

ξ ξ ξ= ⋅ − + −
          

(18) 

Next, for Eqution (16), we do the inverse Fourier transform  

( ) ( ) ( )( )

( )( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )

2

2

2

2

1 2 1 2 1 2

2 2 2
1 2 1 1 2 1 2

2 2 2
1 2 1 1 2 1 2

2 2 2 2
1 2 1 2 1 2

ˆ, , , , exp 2π d d

exp 4π 2π exp 2π d d

exp 4π 2π 2π d d

exp 4π 4π 2π 2π d d

R

x yR

x yR

x xR

R

C x y t C t i x y

m D D iv t i x y
n
m D D iv t i x y
n
m D t D t i x vt iy
n
m
n

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= ⋅ +

= − + − ⋅ +

= − + − + +

= − − + − +

=

∫∫

∫∫

∫∫

∫∫

( ) ( ) ( )

( ) ( )

2

2

2 2

1 2 1 2 1 2

22 2 2

1 2 1 2

exp 2π 2π 2π 2π d d

exp 2π 2π d d
4 42 2

x y

x yR
x yx y

D t D t i x vt iy

i x vt x vtm iy yD t D t
n D t D tD t D t

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

 − − + − + 
 
   − −  = − − − − − −          

∫∫

∫∫
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( ) ( )
22 2

1 1

2

2 2

exp exp 2π d
4 4 2

exp 2π d .
2

x
x y x

y
y

x vt i x vtm y D t
n D t D t D t

iyD t
D t

ξ ξ

ξ ξ

+∞

−∞

+∞

−∞

    − −  = ⋅ − − ⋅ − −         
    ⋅ − −     

∫

∫

   (19) 

And because ( )2exp t−  is an even function, it is obviously to get  

( ) ( )2 2
0

exp d 2 exp d π,t t t t
+∞ +∞

−∞
− = − =∫ ∫              

(20) 

therefore, take Equation (19) into account, we have  

( )

( ) ( )

( ) ( )

2

1 1

2

1 1

2

1 1

exp 2π d
2

1 exp 2π d 2π
2π 2

1 exp 2π d 2π ,
2π 2 2

x
x

x x
x x

x x
x x x

i x vt
D t

D t

i x vt
D t D t

D t D t

i x vt i x vt
D t D t

D t D t D t

ξ ξ

ξ ξ

ξ ξ

+∞

−∞

+∞

−∞

+∞

−∞

  − − −     
  − = − −     
    − − = − − −           

∫

∫

∫
 

(21) 

where ( )
2π x

i x vt
D t
−

 is a constant, using Equaiton (20), then Equaiton (21) can be 

written to  

( )
2

1 1
π 1exp 2π d ,

2 2π 2 πx
x x x

i x vt
D t

D t D t D t
ξ ξ

+∞

−∞

  − − − = =     
∫

    

(22) 

similarly, we have  
2

2 2
1exp 2π d .

2 2 πy
y y

iyD t
D t D t

ξ ξ
+∞

−∞

    − − =     
∫

        

(23) 

If we plug Equation (19) and Equation (22) back into Equation (23), we obtain  

( ) ( )

( )

2 2

2 2

1 1, , exp
4 42 π 2 π

1 exp ,
4 44π

x yx y

x yx y

x vtm yC x y t
n D t D tD t D t

x vtm y
n D t D tt D D

 −
 = ⋅ ⋅ ⋅ − −
 
 

 −
 = ⋅ ⋅ − −
 
      

(24) 

it follows from the above equations that  

( ) ( )2 2

, , exp .
4 44π x yx y

m
x vt ynC x y t

D t D tt D D

 −
 = ⋅ − −
 
            

(25) 

As mentioned above, for Equation (19), taking two-dimensional Fourier 
transform and the inverse Fourier transform of both sides, its analytical solution  
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( ) ( )2 2

, , exp .
4 44π x yx y

m
x vt ynC x y t

D t D tt D D

 −
 = ⋅ − −
 
            

(26) 

is obtained. 
Using MATLAB software to program, under the condition of 0 : 30x yL L= = , 

1T =  or 5T = , 5m
n
= , 0.1v = , we give the figures of analytical solution  

when the diffusion coefficient is 1x yD D= =  or 2x yD D= = , respectively. The 
the height value represents the size of concentration in Figure 1 and Figure 2.  

 

 
Figure 1. Figures show results of the analytic solution with different diffusion coefficient 
( 1x yD D= =  and 2x yD D= = ) when groundwater has been polluted 1 h (i.e. 1T = ), 

by fixing the parameters 0 : 30x yL L= = , 5m
n
= , 0.1v = . 

 

 

Figure 2. Figures show results of the analytic solution with diffusion coefficient 
( 1x yD D= = ) when groundwater has been polluted 1 h and 5 h (i.e. 1T =  and 2T = ), 

by fixing the parameters 0 : 30x yL L= = , 5m
n
= , 0.1v = . 

https://doi.org/10.4236/ajcm.2017.73025


L. Y. Li, Z. Yin 
 

 

DOI: 10.4236/ajcm.2017.73025 357 American Journal of Computational Mathematics 
 

As shown in Figure 1, we can see that the concentration becomes smaller 
when the diffusion coefficient becomes larger at the same time. From the Figure 
2, we can see that when the diffusion coefficient is constant, the concentration 
decreases as time increases. The results as what we have anticipated. 

3. Numerical Methods 

In this section, we study the structures and the properties of the numerical 
methods. As stated in the Section 1 and 2, Equation (1) is employed widely in 
the problem of contaminant in groundwater flow, or the water flow with any 
chemical solute. In general, the analytical solution for the above problem is not 
available, so many numerical methods can be used to solve Equation (1), this is 
one of the most significant problem. Numerical modeling of the groundwater 
flow in an aquifer is adopted from the detailed study of Prickett and Lonnquist 
[22], similarly, we develop finite difference equations for the advective- 
dispersive contaminant transport. Here to simulate the law of movement about 
pollutant in the medium, we present a second-order scheme to discretize the 
governing equation, which is based on centered Crank-Nicolson finite difference 
scheme [15]-[20], moveover, the discretization of the physical domain for 
contaminant transport and the groundwater flow is given in figures [23]. 

For the presentation of our finite difference method, we first introduce some 
notations which will be used later. Let region of interest be [ ]0, 0,x yL L Ω = ×    
and the boundary of Ω  be ∂Ω , we denote temporal increment by tau. For the 
spatial approximation, take two positive integers 1M  and 2M , and take the 
step sizes 1 1xh L M= , 2 2yh L M= , respectively. In this way, the spatial nodes 
can be denoted by ( ),i ix y , ( )1 1 0ix ih i M= ≤ ≤ , ( )2 2 0jy jh j M= ≤ ≤ . In 
addition, we define ( ){ }1 2, 0 ,0h i jx y i M j MΩ = ≤ ≤ ≤ ≤ , h hΩ =Ω ∩Ω , 

h hΓ = Ω ∩∂Ω . 

3.1. Derivation of the Difference Scheme 

In this part, we mainly consider the difference scheme and give preliminary 
results for the numerical approximation of the following equations  

( )
2 2

2 2 , , , 0,x y
C C C CD D v x y t
t xx y

∂ ∂ ∂ ∂
= + − ∈Ω >

∂ ∂∂ ∂          
(27) 

( ) ( ), ,0 0, , ,C x y x y= ∈Ω                    (28) 

( ) ( ) ( ), , , , , , .C x y t x y t x yφ= ∈∂Ω                (29) 

where ( ) ( )0, 0,x yL LΩ = × . We assume that ( ), ,x y tφ  is known smooth 
functions, and the diffusion coefficients ,x yD D  and convection coefficient v 
are constant. For simplicity, introduce  

( ) ( ){ } ( ) ( ){ }, , , , , , .i j h i j hi j x y i j x yω γ ω ω γ= ∈Ω = ∈Γ = ∪  

Define ( ){ }{ }, .h iju u u i j ω= = ∈  For any , hu v∈ , introduce the 
following notations of difference quotients  
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( ) ( )1 1, 1 1,, ,
1 12 2

1 1, ,x i j ij x ij i ji j i j
u u u u u u

h h
δ δ+ −

+ −
= − = −  

( ) ( )2
1, 1, 1, 1,2

1 1

1 1, 2 ,
2x ij i j i j x ij i j ij i ju u u u u u u

h h
δ+ − − +∆ = − = − +  

and similarly for the y direction 2
1 1, ,
2 2

, , ,y y y ij y iji j i j
u u u uδ δ δ

− +

 
∆  

 
. It is easy to 

observe that  

2
1 1 1 1, , , ,

12 2 2 2

1 1, ,
2x ij x x x ij x xi j i j i j i j

u u u u u u
h

δ δ δ δ δ
+ − + −

   
∆ = + = −      

   
 

2
1 1 1 1, , , ,

22 2 2 2

1 1, .
2y ij y y y ij y yi j i j i j i j

u u u u u u
h

δ δ δ δ δ
+ − + −

   
∆ = + = −      

   
 

The aim of the present part is to improve the accuracy in the temporal 
direction, so for the advection term of (27), we employ the average of the time 
level of 1n +  and n , which guarantees that the discrete scheme for (27) is 
unconditionally stable and second-order accurate in space and time. 

For the time approximation, we take a positive integer N, let T Nτ = , 
partition the interval [ ]0,T  into N equal parts of width τ . Also we assume 

nt nτ= , 0,1, ,n N=  , where τ  is the time grid stepsize. Let  

( ) { }1 1
2

2, 0 ,n n nn
t t t t n Nτ+
+

= + Ω = ≤ ≤  

( ){ }0 1, , , ,Nw w w w wτ = =   

for any w τ∈ , introduce some notations as follows  

( ) ( )
1 1

1 12 21 1, .
2

n nn n n n
tw w w w w wδ

τ
+ ++ += + = −  

We define grid functions on h τΩ ×Ω   

( ) ( ), , , , , 0 ,n
ij i j nC u x y t i j n Nω= ∈ ≤ ≤  

considering (27) at the point 1
2

, ,i j n
x y t

+

 
  
 

, it holds that  

2 2

1 1 12 2
2 2 2

1
2

, , , , , ,

, , .

i j x i j y i jn n n

i j n

C C Cx y t D x y t D x y t
t x y

Cv x y t
x

+ + +

+

     ∂ ∂ ∂
= +          ∂ ∂ ∂     

 ∂
−   ∂        

(30) 

where ( ), , 0 1i j n Nω∈ ≤ ≤ − . 
Thus, we obtain the discretized form of Equaiton (27). 

3.2. Local Truncation Error 

A numerical method used in the derivation of the finite difference equations, for 
groundwater contaminant transport, can be described as a flux conserving 
scheme which also proved that the equations don't contain spatial error with 
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respect to the model it mentioned [24]. However truncation errors exist, due to 
the approximations used to describe the flow of groundwater contaminant. 
Truncation errors might cause significant solution inaccuracies for the numerical 
models, especially for the advective dispersive contaminant transport case. We 
know the fact that when advective terms in the advection-dispersion equation 
become dominant, the equation behaves more like a hyperbolic than a parabolic 
[25]. But in our paper, the advective terms in our model is very small and not 
dominant, so it can be seem as a classic two-dimensional parabolic equation. 

We denote n
ijC  as the solutions of (27), and take Taylor formula in to account, 

applying the Taylor expansion for (30), it generates  
1 1 1 1 1

2 22 2 2 2 2 ,
n n n n n

t ij x x ij y y ij x ij ijC D C D C v C Rδ δ δ
+ + + + +

= + − ∆ +           (31) 

where ( ), , 0 1i j n Nω∈ ≤ ≤ − . 
1
2

n

ijR
+

 is truncation errors, and it is easy to obtain  

( ) ( )
1

2 2 22
1 2 , , ,  0 1.

n

ijR O h h i j n Nτ ω
+

= + + ∈ ≤ ≤ −
         

(32) 

which show that this scheme is second order accurate in time and space.  

3.3. Crank-Nicolson Scheme  

From the initial and boundary condition Equations (27)-(29), we have  

( )0 0, , ,ijC i j ω= ∈                       (33) 

( ) ( ), , , , , 0 ,n
ij i j nC x y t i j n Nφ γ= ∈ ≤ ≤              

(34) 

Ignoring the higher order terms 
1
2

n

ijR
+

 in (31), and denote n
ijC  as numerical  

solutions of (27). Replacing n
ijC  with its approximation n

ijc , we construct, for 
Equations (27)-(29), a Crank-Nicolson finite difference scheme  

( )
1 1 1 1

2 22 2 2 2 , , , 0 1,
n n n n

t ij x x ij y y ij x ijc D c D c v c i j n Nδ δ δ ω
+ + + +

= + − ∆ ∈ ≤ ≤ −     (35) 

( )0 0, , ,ijc i j ω= ∈                       (36) 

( ) ( ), , , , , 0 ,n
ij i j nc x y t i j n Nφ γ= ∈ ≤ ≤

             
(37) 

we take the preceding sign into Equation (31), we have  
1 1 1 1

1, 1, 1, 1,
2 2

1 1

1 1 1
, 1 , 1 , 1 , 1

2 2
2 2

1 1
1, 1, 1, 1,

1 1

2 21
2

2 21
2

1
4

n n n n n n n n
ij ij i j ij i j i j ij i j

x

n n n n n n
i j ij i j i j ij i j

y

n n n n
i j i j i j i j

c c c c c c c c
D

h h

c c c c c c
D

h h

c c c c
v

h h

τ

+ + + +
+ − + −

+ + +
+ − + −

+ +
+ − + −

 − − + − +
= + 

  
 − + − +

+ + 
  

 − −
− + 

         

(38) 

Based on the formulation (38) we can get the concentration distribution of 
pollutants and obtain the important data of velocity, pressure and so on. In 
order to solve the above Crank-Nicolson difference equation, we introduce  
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2
12
x

x
DS
h

τ
= , 2

22
y

y

D
S

h
τ

= , 
14v

vS
h
τ

= , Equaiton (38) can be written as  

( ) ( )
( ) ( )
( ) ( )

1 1 1 1
1, 1, 1, 1,

1 1 1
, 1 , 1 , 1 , 1

1 1
1, 1, 1, 1,

2 2

2 2

,

n n n n n n n n
ij ij x i j ij i j i j ij i j

n n n n n n
y i j ij i j i j ij i j

n n n n
v i j i j i j i j

c c S c c c c c c

S c c c c c c

S c c c c

+ + + +
+ − + −

+ + +
+ − + −

+ +
+ − + −

 − = − + + − + 
 + − + + − + 
 − − + −        

(39) 

Extracting the coefficient of 1n
ijc + , 1

1,
n
i jc +
+ , 1

1,
n
i jc +
− , 1

, 1
n
i jc +

+ , 1
, 1
n
i jc +

− , n
ijc , 1,

n
i jc + , 

1,
n
i jc − , , 1

n
i jc + , , 1

n
i jc −  from both sides of the above Equation (39), collection the 

like terms, we get  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1
1, 1, , 1 , 1

1, 1, , 1 , 1

1 2

1 2 .

n n n n n
x y ij v x i j x v i j y i j i j

n n n n n
x y ij x v i j x v i j y i j i j

S S c S S c S S c S c c

S S c S S c S S c S c c

+ + + + +
+ − + −

+ − + −

 + + + − − + − + 
 = − + + − + + + +   

(40) 

As shown in Figure 3, Equaiton (40) involves unknown concentrations of five 
grid nodes center around ( ),i j  at the moment 1nt +  and nt , we may easily 
give Equaiton (40) according to all of the the interior grids. Using the known 
initial conditions and boundary conditions, we get a five diagonal equations, and 
for each advancing time step, a set of such equations must be solved. 

We assumption that the pollutants follow the flow faithfully, we can get 0
ijc  

from the exact solution, at the start of each time step, predictions for the 
principal unknowns, which are based on the response of the model at previous 
time steps, are performed. Combined with boundary condition Equation (4), 

n
ijc  can be obtained by layer by layer. However, when the n layer is calculated by 

the 1n +  layer, it is necessary to solve the system of linear algebraic equations 
(because the coefficient matrix is strictly diagonally dominant, the equations can 
be uniquely solved), the distribution of the network as shown in Figure 4. 

 

 
Figure 3. The grid points which two dimensional difference schemes connected. 

 

 
Figure 4. Dot distribution of finite difference scheme with six point symmetric (Crank- 
Nicolson) scheme. 

https://doi.org/10.4236/ajcm.2017.73025


L. Y. Li, Z. Yin 
 

 

DOI: 10.4236/ajcm.2017.73025 361 American Journal of Computational Mathematics 
 

With a simple calculation, we rewrite the Crank-Nicolson scheme (40) into 
the following matrix form  

1 *.n nA B+ = +c c c                        (41) 

where  

2

T1 1 1 1 1 1 1 1 1 1
11 21 1 12 22 2 1 2 1

, , , , , , , , , , , ,n n n n n n n n n n
M M M M MM M

c c c c c c c c c+ + + + + + + + + +

×
 =  c    

 

2

T

11 21 1 12 22 2 1 2 1
, , , , , , , , , , , ,n n n n n n n n n n

M M M M MM M
c c c c c c c c c

×
 =  c    

 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

2

* 1 1 1 1 1
01 10 02 0 1, 1

1 1 1 1 1
20 2, 1 1,1 0 1,2

T1 1
1, , 1 1

01 10 02

, , , ,

,0, , , , , ,

,

, , ,

n n n n n
x v y x v x v M y M

n n n n n
y y M x v M y M x v M

n n
x v M M y M M M

n n n
x v y x v x v

S S c S c S S c S S c S c

S c S c S S c S c S S c

S S c S c

S S c S c S S c S S

+ + + + +
+

+ + + + +
+ + +

+ +
+ + ×

= + + + + +

− + −

− + 

+ + + + +



 





c

( ) ( )

( ) 2

0 1, 1

20 2, 1 1,1 0 1,2

T

1, , 1 1

,

,0, , , , , ,

,

n n
M y M

n n n n n
y y M x v M y M x v M

n n
x v M M y M M M

c S c

S c S c S S c S c S S c

S S c S c

+

+ + +

+ + ×

 +

− + −

− + 

 



 

the M2-by-M2 matrix A  is expressed as  

1 1

1 1 1

1 1

1

0 0
0

0 0

0 0 0

P Q
Q P Q

A Q Q

P

 
 
 
 =
 
 
 
 







    



 

the M2-by- M2 matrix B  is given by  

2 2

2 2 2

2 2

2

0 0
0

0 0

0 0 0

P Q
Q P Q

B Q Q

P

 
 
 
 =
 
 
 
 







    



 

For simplicity of presentation, the entries of matrix A  and matrix B  are 
given by matrix 1P , matrix 1Q , matrix 2P  and matrix 2Q . 
the M-by-M matrix 1P  is  

( )
( ) ( )

( ) ( )

( )

1

1 2 0 0

1 2 0

0 1 2 0

0 0 0 1 2

x y v x

x v x y v x

x v x y

x y

S S S S

S S S S S S

P S S S S

S S

 + + −
 
 − + + + − 
 

= − + + + 
 
 
 
 + + 







    



 

the M-by-M matrix 1Q  is  
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1

y

y

y

y

S
S

Q
S

S

− 
 − 
 =
 

− 
 − 

  

the M-by-M matrix 2P  is  

( )
( )

( )

( )

2

1 2 0 0

1 2 0

0 1 2 0

0 0 0 1 2

x y x v

x v x y x v

x v x y

x y

S S S S

S S S S S S

P S S S S

S S

 − + −
 
 + − + −
 
 = + − +
 
 
 
 − + 







    



 

the M-by-M matrix 2Q  is  

2 .

y

y

y

y

S
S

Q
S

S

 
 
 
 =
 
 
 
 

  

4. Numerical Simulation 

In this part, we will give an experiments to test our Crank-Nicolson difference 
scheme (40). The numerical results will be presented to illustrate the efficiency 
and order of accuracy of the algorithm.In the following numerical experiments, 
we use the same number of uniform subintervals in both x and y directions. 

Before conducting numerical experiments, we first make three hypotheses. 
Firstly, the main direction of the dispersion of the material in the groundwater is 
in the same direction as the coordinate axis. Secondly, the main seepage direction 
of groundwater is also consistent with the coordinate axis. Thirdly, the diffusion 
coefficient and permeability coefficient are constant in the axis direction. 

So, we can choose the following parameters in the numerical experiment  

1 220, 10, 20 or 40,x yL L T M M= = = = =  

100, 1, 1, 0.1.x yN D D m n v= = = = = =  

Example: The equations to be solved are  

( ) ( ) ( ) ( ]
2 2

2 2 , , 0, 0, , 0, ,x y x y
C C C CD D v x y L L t T
t xx y

∂ ∂ ∂ ∂
= + − ∈ × ∈

∂ ∂∂ ∂    
(42) 

( ) ( ), ,0 0, , ,C x y x y= ∈Ω                   (43) 

( ) ( ) ( ), , , , , , ,C x y t x y t x yφ= ∈Γ                 (44) 

where ( ) ( )0, 0,x yL LΩ = × , Γ = ∂Ω . Let the exact solution is  
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( ) ( )2 2

, , exp .
4 44π x yx y

m
x vt ynC x y t

D t D tt D D

 −
 = ⋅ − −
 
           

(45) 

Using MATLAB software, we can get the function figures of the numerical 
solution and analytical solution, as indicated in Figure 5 and Figure 6. It proves 
that the degree of numerical solutions is approximating the exact solutions in 
different grid points.  

Numerical experiments are performed to show the efficiency of the Crank- 
Nicolson schemes, which is reliably for solving two-dimensional parabolic  

 

 
Figure 5. Figures show comparison results of numerical solution and analytic solution 
with Crank-Nicolson difference scheme when groundwater has been polluted 10 h, by 
fixing the parameters 1 220, 10, 20, 100, 1, 0.1.x y x yL L T M M N D D v= = = = = = = = =  

 

 

Figure 6. Figures show comparison results of numerical solution and analytic solution 
with Crank-Nicolson difference scheme when groundwater has been polluted 10 h, by 
fixing the parameters 1 220, 10, 40, 100, 1, 0.1.x y x yL L T M M N D D v= = = = = = = = =  
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equation with convection term, it is apparent from the Figure 5 and Figure 6 
that the exact solution and numerical solution are better fitted with mesh 
generation encrypting, it turns out that the difference scheme we used can be a 
good approximate to analytical solution. 

5. Visualization of Simulation Results Based on GIS  
(ArcGIS Figures) 

The result of water pollution simulation is a large amount of data stored in the 
form of documents. It is the basic purpose of water pollution diffusion simulation 
to analyze and study these data, so as to master the law of water quality change, 
using the traditional method to deal with the simulation results, although the 
method is feasible, but it is extremely time-consuming. We are going to use 
programs to carry out numerical simulation of groundwater pollution problems 
and realize the time and concentration prediction of pollutants transport. 

In this section, a new system concluding the design of the visual area and the 
dispersion of simulation interval has been developed within the framework of 
ArcGIS based on two dimensional groundwater pollution simulations, it also 
provides a perfect interface which allows construction of user defined criteria, 
such as running computations and visualization of the results. At the same time, 
we can make a conclude that the use of GIS feature layer demonstrate that the 
GIS-based two dimensional groundwater pollution simulations system can 
provide the user better decision making aid. 

5.1. The Design of the Visual Area and the Dispersion of the 
Simulation Interval 

Geographic information system (GIS) has the ability to express strong geographic 
data, is a powerful tool for water pollution simulation results visualization. In the 
simulation of groundwater pollution, there are various barrier and recharge 
boundaries, a river, and a contaminant source. The aquifer domain is uniformly 
discretized with a grid interval of certain a feet we defined according our needed. 
The initial heads in both the aquifer and groundwater contamination are set to 
zero, so we view port to rectangle region, x axis to plane, y axis to formation 
height, point ( )0,0  to source of pollution, we can get the simulation of the 
discrete interval, as shown in Figure 7.  

 

 
Figure 7. Discrete of simulation interval. 
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5.2. ArcGIS Visualization of Density Images at Different Time 

The calculation results of MATLAB along the river equidistant distribution grid, 
each grid point according to the time sequence of stored information of the 
coordinates of the concentration of pollutants. According to our information 
and grid coordinate information, create the space layer, and into the ArcMap. 
To the data at every moment in the MATLAB, constantly modify the value of t, 
we import the concentration matrix of each time t into the EXCEL file every 20 
time points. From the time point corresponding to the EXCEL file derived 
concentration coordinates table, the concentrations of each column were ,x y . 
Import the final five EXCEL tables into ArcMap, the concentration image at 
each moment can be obtained. 

Because the distribution of pollutant concentration is a continuous field of 
three-dimensional space, and the calculation results for the spatial discretization 
of the grid point distribution, in order to achieve the pollutant concentration 
diffusion field visualization continuous two-dimensional representation, with a 
certain height h as the observation height, the leakage of space in parallel to the 
O-xy plane in the direction of cutting, with a height of h δ+  and h δ−  (δ  is 
error tolerance) for planes in space, between the two cut point set as h height of 
the data source, extract t (diffusion time) in highly h data source point deduction 
collection time. Taking Galerkin spatial interpolation, the reduced leakage of 
discrete space the expression for a continuous space, we can get h height, 
pollutant concentration distribution of the t moment. 

Based on the numerical experiments in Section 4, we import the pollution 
concentration spatiotemporal distribution data (1 - 5 hours) into the ArcMap 
platform to realize two-dimensional visualization of pollution diffusion. The 
figures of ArcMap display intuitively the concentration distribution and dynamic 
changes of pollutants at different times and locations. Figures 8-12 indicate 
diffusion changes after pollution flows into the river 1 h, 2 h, 3 h, 4 h and 5 h, 
respectively. In Figures, the pollutant concentration is divided into grade 1 - 
grade 5 according to the degree of risk from high to low, pollutant concentration 
range were >900, 601 - 900, 301 - 600, 101 - 300 and <100 mg/m3, we render the 
different areas in red, orange, yellow, green and blue, respectively. 

We set the level of concentration range in terms of the needed, and divide the 
contours into different regions, such as lethal areas, dangerous areas, warning 
area and safety area etc. We define different color values in different regions, 
which can represent the spatial distribution of pollutant concentration at each 
moment, thus we achieve two-dimensional visualization of the simulation results 
of river water pollution. 

The present study shows risk and uncertainty analysis based on two- 
dimensional numerical simulation results, GIS can significantly improve the 
accuracy of groundwater pollution hazard assessment. This approach efficiently 
assists in evaluation and ranking of groundwater pollution control management 
strategies, and future design of groundwater pollution proofing works. The  
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Figure 8. Figure shows the simulations results when groundwater has been polluted 1 h. 
 

 
Figure 9. Figure shows the simulations results when groundwater has been polluted 2 h. 
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Figure 10. Figure shows the simulations results when groundwater has been polluted 3 h. 
 

 

Figure 11. Figure shows the simulations results when groundwater has been polluted 4 h. 
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Figure 12. Figure shows the simulations results when groundwater has been polluted 5 h. 
 

accuracy of predictions can probably be improved by taking into account other 
detailed information provided by two-dimensional groundwater pollution 
modeling, such as groundwater pollution velocity and duration. Further research 
is needed to develop such improved damage relationships. 

6. Conclusion and Suggestions 

Numerical simulation of water quality is a powerful tool to study groundwater 
pollution. In this paper, we give analytical solution of the Equations (1)-(5) by 
two-dimensional Fourier transform and the inverse Fourier transform firstly. 
Next, we design an efficient second-order finite difference scheme for solving a 
class of groundwater problem and simulate the migration of pollutants and get 
the concentration distribution of pollutants, theoretically analysis shows that the 
proposed scheme is second-order accurate in time and space. Then, exact 
solution comparisons with numerical solution are also discussed, it observes that 
the computed results show excellent agreement with the analytical solution, and 
the MATLAB software is used to simulate the numerical simulation of groundwater 
flow problem, which can be used to predict the time and concentration of 
contaminant transport. Finally, we present the development process and technical 
methods of visual expression of water pollution simulation based on GIS 
technology, we visualize the simulation results (ArcGIS figures) to study the 
temporal and spatial variation of water pollution problems. The simulation 

https://doi.org/10.4236/ajcm.2017.73025


L. Y. Li, Z. Yin 
 

 

DOI: 10.4236/ajcm.2017.73025 369 American Journal of Computational Mathematics 
 

system is stable, fast, no jumping, and the results are intuitive and reasonable. It 
provides technical support and guarantee for the comprehensive management 
and management of water environment. 
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