Computation of the Genetic Code: Full Version

N. N. Kozlov
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
Email: gencodkiam@mail.ru

How to cite this paper: Kozlov, N.N. (2017) Computation of the Genetic Code: Full Version. Journal of Computer and Communications, 5, 78-94.
https://doi.org/10.4236/jcc.2017.510008

Received: July 8, 2017
Accepted: August 27, 2017
Published: August 30, 2017

Copyright © 2017 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed—to [2]) is the problem of the calculation of the genetic code. Similar problem in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time a detailed description of the method of calculation of the genetic code was provided, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representation of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was reduced to two main stages of research, where at the first stage only sin-gle-valued domains were used in the calculations. The proposed approach made it possible to significantly reduce the amount of computation at each step in this complex discrete structure.

Keywords

Genetic Code, Overlapping Genes Uniform Overlap, Computation Code

1. Introduction

The idea of calculating the genetic code arose after many years of research on mathematical genetics. The basic idea was that the code, apparently, today-half a century after its discovery, can be calculated on the basis of experimental data already known to date. The approach proposed below is not the main, or comprehensive, and it can only be considered as one of the attempts to find an approach to the solution of the task. After all, it's about finding a solution in a
complex structure that describes the main characteristics for almost all existing living organisms.

Each new century put forward ever new tasks of both theoretical and applied mathematics. In this paper, we consider the newest problem of discrete mathematics, which could be put only in the 21 st century. This task belongs to the field of biomathematics, because biology and related tasks are key in the present century. In the world there is no such kind of publications on this topic; therefore this work can be considered as the world's first full version of the work on the calculation of the genetic code.

First of all, the question arose: What sets can be used in this case. Our approach was based on the search for all codes satisfying the set of amino acids that record overlapping genes. The author has studied the subject matter of the mathematical analysis of such genes for a number of years [2], and it was this analysis that led to the formulation of this problem. From the very beginning it was clear that the discussion would mainly focus on the iterative process. Since overlapping of genes contains two, three, etc., amino acids, right up to 6 , the first task was to find those overlaps where the same amino acid participates (in overlaps, it participates with different encodings, according to the genetic code). On this occasion, a special study was conducted.

2. Theorem for Homogeneous Overlaps

We consider unusual ways of recording genetic information-overlapping genes, when the same DNA portion corresponds to more than one protein. We investigated all 5 possible cases of overlapping of genes resolved by DNA structure, which were studied earlier [5]. This study was based on a mathematical analysis of all 5 possible overlap cases and relied on sets of so-called elementary genetic overlaps-e.o., or overlaps corresponding to a pair of single amino acids. In [6] a brief analysis of such sets is presented, and the final version in [2]. In Figure 1. A description of the structure of the sets W1-W5 is presented, and are presented by the 4th e.o. In each of these sets.

The principal position of this research is indicated in [2], where it was shown that the presented list of elementary overlaps can cost any (!) Allowed by the structure of the genetic code, overlapping not only 2 but also all admissible overlap from 3 to 6 Genes. The urgency of the problems is due to the current situation: overlapping genes common in viruses, mitochondria, bacteria and plasmids were found is in eukaryotic of large genomes, including humans, with the number of overlaps usually high, for the human genome it is about 1700 [7].

In the mathematical analysis of overlaps of more than two genes, we have investigated some problems. Of course, it would be possible to construct sets of all e.o. From 3 to 6 genes. It is not difficult to do this with the help of modern computer facilities. However, the main thing-what new conclusions-it can give. And that's why we are going the traditional way-from tasks. Let us first briefly discuss only some of them, solutions for which we have already published. The first of these concerns the analysis of ambiguities [8] [9] [10], this is when two

	Met	Met	Met	Arg
W_{1} (80)	Tyr	His	Asn	Ser
	TATG	CATG	AATG	TCGN
	1	2	3	80
$\mathrm{W}_{2}(80)$	Met	Met	Trp	Arg
	Trp	Cys	Gly	Gly
	ATGG	ATGY	TGGN	ZGGN
	1	2	3	80
W3(35)	Met	Met	Trp	Arg
	AtG	AtG	TGG	AGX
	GTA	MTA	YAC	NTC
	Met	Ile	His	Leu
	1	2	3	35
W_{4} (52)	Met	Trp	Phe	Arg
	ATG	TGG	TTT	CGC
	TAC	ACC	AAA	GCG
	His	Pro	Lys	Ala
	1	2	3	52
W_{5} (196)	Met	Met	Met	Arg
	ATG	ATG	ATG	AGG
	ACC	ACA	ACG	CCT
	Pro	Thr	Ala	Ser
	1	2	3	196

Figure 1. Description of the structure of sets W1-W5. There are 4 e . In each of the sets. The total number of e.o. In the corresponding set.
encodings correspond to the same pair of amino acids (see the example below). Another problem was connected with the construction and analysis of a set of elementary overlaps for 3 genes overlapping in the same DNA chain. It is established that there are only 307 such overlaps. On the basis of these overlaps, a new problem was posed, connected with the calculation of the genetic code by mathematical methods [11] [12]. The question of why exactly such a set was chosen to calculate the code was based on a theorem that was published relatively recently [4]. We are talking about the calculation and analysis of all homogeneous e.o.ochs. From 2 to 6 genes. Are e.o. which correspond to the same amino acid. Its solution is given by the following theorem.

We call an e.o.-elementary overlap for i amino acids, where, $\mathrm{i} \in(2,6)$. Thus, the e.o. introduced earlier in [2]. Will be referred to as e.o.-2. Figure 2 shows the general representation for e.o.-6.

For the amino acid Ama (isolated by hatching) encoded by the triplet n1n2n3, there are 5 alternative amino acids $\mathrm{Ama}_{1}-\mathrm{Ama}_{5}$, the encodings of which are formed by $-1,+1$ shifts in the same DNA chain (\rightarrow) and $-1,0,+1$ in the complementary DNA strand (\leftarrow). The designations $n_{i}, i \in(0,4)$ are the nucleotides from the set $A, T, C, G ; N \quad n_{i}^{\prime} i \in(0,4)$-complementary components: i.e. For $n_{i}^{\prime} i=$ $A ; n_{i}=T ; n_{i}=C, n_{i}^{\prime}=G$ for any $i \in(0,4)$ and vice versa. In order to sequentially isolate e.o.-2 for all 5 cases of pair overlaps from [2] [3], in Figure 3 one should

$$
\begin{aligned}
& \text { Ama }_{1} \\
& \text { Ama } \\
& \text { Ama } \\
& \rightarrow \quad n_{0} n_{1} n_{2} n_{3} n_{4} \\
& \leftarrow n_{0}^{\prime} n_{1} n_{2}^{\prime} n_{3}^{\prime} n_{4}^{\prime} \\
& \text { Ama }_{3} \\
& \text { Ama }_{4} \\
& \text { Ama }
\end{aligned}
$$

Figure 2. General presentation for e.o.-6. (See the text). -5 e.o.-2 for overlaps from one DNA chain.

Figure 3. (a) For amino acid Ama, encoded by the triplet n 1 n 2 n 3 , there are 2 alternative amino acids Amal and Ama2. Their encodings are formed by $-1,+1$ shifts in the same DNA (${ }^{\circ}$) chain. The codon n0n1n2 for Ama1 overlaps with codon n1n2n3 for Ama-the overlap contains two nucleotides n1n2; The codon n2n3n4 for Ama2 overlaps with codon n1n2n3 for Ama-the overlap contains two nucleotides n 2 n 3 . As a result, the triple overlap contains only one common position n2. (b) Elements of sets of combinations of amino acids, formed on the basis of elementary overlap from Figure 3(a). On the left there is one element of the set U 1 , in the center there are two elements of the set U 2 and to the right one element of the set U3.
consistently leave one of the 5 pairs of amino acids: (Ama, $A \mathrm{Ama}_{\mathrm{i}}$), $\mathrm{i} \in(1,5)$. In order to sequentially isolate all overlap cases for e.o.- 3 in Figure 3, it is necessary to leave Ama and a pair of amino acids out of 5 possible ones or we have 10 cases of triple overlap, etc. We turn to the search for a homogeneous subset for all possible e.o.-2-6, or subsets, in each e.o. Which is the same amino acid. We denote it by W_{2-6}. To represent homogeneous elementary overlaps, the following notation is used: Y: T, C; X: A, G; N: A, G, C, T.

Occurs

Theorem. The homogeneous subset e.o.-6 contains only 31 e.o. which belong only to the sets of e.o.-2-e.o.-3, of which:
-5 e.o.-2 for overlaps from one DNA chain:

Phe	Lys	Pro	Gly	Leu
Phe	Lys	Pro	Gly	Leu
TTTY	AAAX	CCCN	GGGN	CTTX
1	2	3	4	5

-19 e.o.-2 for overlaps from various DNA chains:

Pro	Thr	Ala	Gly	Ser	Ser	Leu	Arg	
CCG	ACG	GCG	GGC	TCG	AGC	YTA	CGC	
GCC	GCA	GCG	CGG	GCT	CGA	ATY	CGC	
Pro	Thr	Ala	Gly	Ser	Ser	Leu	Arg	
18	19	20	21	22.1	22.2	23	24	

-4 e.o.-3 for overlaps for overlaps from one DNA chain.

Phe	Lys	Pro	Gly
Phe	Lys	Pro	Gly
Phe	Lys	Pro	Gly
TTTTY	AAAAX	CCCCN	GGGGN

1	2	3	4

-3 e.o.-3 for overlaps from various DNA chain

Pro	Gly	Leu
Pro	Gly	Leu
CCCG	GGGC	CTTA
GGGCC	CCCGG	GAATY
Pro	Gly	Leu

We give a comment on the statement of the theorem. Cases 22.1 and 22.2 correspond to the same amino acid Ser-Ser; This is one of six ambiguities, which was established earlier [9]. It follows from the theorem that there are no homogeneous e.o.ic forms, more than the third order, or e.o.-4-e.o.-6. To prove this fact, we note that all the enumerated e. From (1)-(4) have one common property. It consists in that the amino acid encodings in each of these overlaps are present in the shifted phases-shifts by -1 or +1 nucleotide, and regardless of the DNA strand or not, there is not one e.o. where the pair of overlapping codons
would be in one and The same phase.
It follows from (2) that similar e. There are no overlaps from different DNA chains, so they are not possible in the structures of homogeneous e.o 4-e.o. 6

For amino acid Ama (highlighted by hatching), encoded by the triplet n1n2n3, there are 5 alternative a

Introduction of basic sets
As follows from the previous section, homogeneous elementary overlaps occur only for overlaps with participation of not more than three amino acids. To select working sets, consider all such overlaps.

First of all, it is necessary to exclude from consideration all homogeneous overlaps in which two strands of DNA participate. Consideration of these overlaps requires the introduction of a double strand of DNA-this is an additional condition in the problem. Eliminating such homogeneous overlaps, we proceed from the principle of constructing an algorithm with a minimum number of conditions. Therefore, in our examination there remain only homogeneous overlaps belonging to the same DNA chain: for pairs of amino acids (1), there are only 5 of them and similar overlaps for three amino acids (3)-th total of 4. Thus, we selected the main working sets E.o., namely, those in which these homogeneous overlaps are present. The final version of these sets is presented on pages 312-319 in [2].

Let us consider the question in more detail. On sets with these overlaps. Earlier [2] we introduced the notion of elementary overlap with respect only to overlapping pairs of genes. Let's generalize this conce.o.t for three genes belonging to the same DNA chain. By the term elementary overlap, we mean the overlap for the codons of single amino acids by the maximum number of positions. Figure 3(a) for the amino acid Ama encoded by the triplet n1n2n3 indicates the alternative amino acids Amal and Ama2, the encodings of which are n0n1n2 and n2n3n4, respectively, are formed by shifts of -1 and +1 nucleotides in the same DNA $\left({ }^{\circ}\right)$ chain. It is assumed that all the values of n0-n4 belong to the canonical set of four nucleotides. On the basis of Figure 3(a), it is possible to construct three types of combinations of amino acids, re.o.resented in Figure 3(b) and designated respectively $u 1, \mathrm{u} 2, \mathrm{u} 3$: one u 1 for overlapping one position, two $u 2$ for overlapping in two positions, and one u 3 for overlapping 3 Amino acids

In Figure 4 and Figure 5 only fragments of these sets are presented, and some of their characteristics are presented in Table 1.

Amino acids shown in Table 1. Elements are given in the view that is used in this task. Each of the elements consists of three lines: upper, middle and lower. The named amino acids Met and Arg are shown in the middle line.

Formulation of the problem. Introduction of a compressed set.
FORMULATION OF THE PROBLEM. Let's have a set of 4 letters: $\mathrm{N}: \mathrm{a}, \mathrm{b}, \mathrm{c}$, d, and also triplets-any triples of these letters, there are 64 in all. Moreover, each of the 20 canonical amino acids can be encoded by an arbitrary combination of such triplets. The task is to search for all the genetic codes that correspond to

Figure 4. A list of some elements of the set U2 is given. These are two sets of such elements corresponding to the first-Met and the last-Arg amino acids from the corresponding set, represented in the first column of Table 1. Each of the representation contains two lines: the first corresponds to a shift between codons equal to -1 , and the second corresponds to $a+1$. Under the name of the amino acid, the number of elements corresponding to these shifts is indicated, and the lower numbers correspond to the numbers in the full list of these elements.

Trp	Trp	Trp	Trp	Cys	Cys	Cys	Cys
Met							

Figure 5. The elements with numbers 1-8 and 279-307 from the set U3, corresponding to the first (Met) and last (Arg) amino acids from the list.
all the elements designated above the three sets $\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3$, corresponding to the genetic experiments.

Table 1. Some data of sets U2 and U1 for amino acids Amai, $\mathrm{i}(1,20)$.

i	$\mathrm{Ama}_{\mathrm{i}}$	U_{2}		U_{1}	
		m_{12}	m_{23}	m_{1-3}	m_{3-1}
1	Met	4 (Tyr, His, Asn, Asp)	2 (Trp, Cys)	3 (Lys, Pro, Gly)	1 (Gly)
2	Trp	3 (Met, Val, Leu)	1 (Gly)	3 (Phe, Pro, Gly)	1 (Gly)
3	Phe	4 (Phe, Ile, Val, Leu)	3 (Phe, Ser, Leu)	3 (Phe, Pro, Gly)	2 (Phe, Pro)
4	Tyr	3 (Ile, Val, Leu)	3 (Met, Ile, Thr)	3 (Phe, Pro, Gly)	2 (Phe, Pro)
5	His	4 (Pro, Thr, Ala, Ser)	3 (Met, Ile, Thr)	3 (Phe, Pro, Gly)	2 (Phe, Pro)
6	Asn	3 (Gln, Lys, Glu)	3 (Met, Ile, Thr)	3 (Lys, Pro, Gly)	2 (Phe, Pro)
7	Asp	2 (Gly, Arg)	3 (Met, Ile, Thr)	3 (Lys, Pro, Gly)	2 (Phe, Pro)
8	Cys	3 (Met, Val, Leu)	2 (Val, Ala)	3 (Phe, Pro, Gly)	2 (Phe, Pro)
9	Gln	4 (Pro, Thr, Ala, Ser)	4 (Asn, Lys, Ser, Arg)	3 (Phe, Pro, Gly)	2 (Lys, Gly)
10	Lys	3 (Gln, Lys, Glu)	4 (Asn, Lys, Ser, Arg)	3 (Lys, Pro, Gly)	2 (Lys, Gly)
11	Glu	2 (Gly, Arg)	4 (Asn, Lys, Ser, Arg)	3 (Lys, Pro, Gly)	2 (Lys, Gly)
12	Ile	4 (Tyr, His, Asn, Asp)	4 (Phe, Tyr, Ser, Leu)	3 (Lys, Pro, Gly)	3 (Phe, Lys, Pro)
13	Val	4 (Cys, Gly, Ser, Arg)	6 (Trp, Phe, Tyr, Cys, Ser, Leu)	3 (Lys, Pro, Gly)	4
14	Pro	4 (Pro, Thr, Ala, Ser)	5 (His, Gln, Pro, Leu, Arg)	3 (Phe, Pro, Gly)	4
15	Thr	4 (Tyr, His, Asn, Asp)	5 (His, Gln, Pro, Leu, Arg)	3 (Lys, Pro, Gly)	4
16	Ala	4 (Cys, Gly, Ser, Arg)	5 (His, Gln, Pro, Leu, Arg)	3 (Lys, Pro, Gly)	4
17	Gly	3 (Trp, Gly, Arg)	5 (Asp, Glu, Val, Ala, Gly)	3 (Lys, Pro, Gly)	4
18	Ser	7 (Phe, Gln, Lys, Glu, Ile, Val, Leu)	7 (His, Gln, Val, Pro, Ala, Leu, Arg)	4	4
19	Leu	8 (Phe, Ile, Val, Pro, Thr, Ala, Ser, Leu)	6 (Trp, Phe, Tyr, Cys, Ser, Leu)	3 (Phe, Pro, Gly)	4
20	Arg	7 (Gln, Lys, Glu, Pro, Thr, Ala, Ser)	5 (Asp, Glu, Val, Ala, Gly)	4	4

Notation. The first 4 columns indicate the number of overlaps, and in parentheses the list of amino acids for overlaps: 1 and 2. Bases (m12), on 2 and 3 bases (m23) on 1 base with the third base (m1-3), on 3 bases with the first base. (M3-1). Columns 3 and 4 refer only to overlaps with Lys, Phe, Pro, Gly, so this number can not be more than $4 ; .: \mathrm{X}: \mathrm{a}, \mathrm{d} ; \mathrm{Y}: \mathrm{b}, \mathrm{c} ; \mathrm{M}: \mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{N}: \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$.

For the future, we use standard three-letter abbreviations for each of the 20 amino acids.

In [11] we talked about ste.o.s to calculate this problem, but did not say how the required elements were selected at the ste.o. For such a selection, a special representation of the basic working set was introduced. This result is published in detail for the first time.

We introduce one concise representation for 307 elements of the principal set-U3. In Figure 6, for each Ama of this set (it is indicated in the corresponding cell), the amino acid Amal is plotted along the abscissa axis, and the ordinate is Ama2 (see Figure 3(a)). It turned out that the resulting representation is not homogeneous, but contains multiple ambiguities: these are cases when more than one Ama value corresponds to the same Ama1 and Ama2 values. It turned out that the number of ambiguities in the range from 2 to 4 . All these cases are shaded in Figure 6 and they are denoted by A1-A13, and their decoding is given in the caption to this figure.

It should be noted that these ambiguities correspond to the values of Ser, Leu,

	Met	Trp	Phe	Tyr	His	Asn	Asp	Cys	Gln	Lys	Glu	Ile	Val	Pro	Thr	Ala	Gly	Ser	Leu	Arg
Met													Cys			Cys	Trp			
Trp							Gly				Gly		Gly			Gly	Gly			
Phe		Leu	Phe	Leu	Ser			Leu	Ser					Ser				Phe	A9	Ser
Tyr		Met	Ile	Ile	Thr			Met	Thr					Thr				Ile	A6	Thr
His		Met	Ile	Ile	Thr			Met	Thr					Thr				Ile	A6	Thr
Asn		Met	Ile	Ile	Thr			Met	Thr					Thr				Ile	A6	Thr
Asp		Met	Ile	Ile	Thr			Met	Thr					Thr				Ile	A6	Thr
Cys		Val	Val	Val	Ala			Val	Ala					Ala				Val	A8	Ala
Gln	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg	Lys		Lys
Lys	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg	Lys		Lys
Glu	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg	Lys		Lys
Ile	Tyr	Leu	Phe	Leu	Ser			Leu	Ser			Tyr		Ser	Tyr			Phe	A9	Ser
Val	Tyr	Leu	Phe	Leu	Ser			Leu	Ser			Tyr	Cys	Ser	Tyr	Cys	Trp	Phe	A9	Ser
Pro	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg	A1	A11	A5
Thr	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg	A1	A11	A5
Ala	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg	A1	A11	A5
Gly	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly	A3	A8	A 4
Ser	His	A10	A10	A10	A7	Gln	Arg	A10	A7	Gln	Arg	His	Arg	A7	His	Arg	Arg	A2	A12	A13
Leu	Tyr	Leu	Phe	Leu	Ser			Leu	Ser			Tyr	Cys	Ser	Tyr	Cys	Trp	Phe	A9	Ser
Arg	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly	A3	A8	A 4

Figure 6. The compressed representation for 307 elements of the main set-U3: for each Ama of this set (it is indicated in the corresponding cell) is given the Ama1 amino acid along the abscissa axis, and on the ordinate axis-Ama2 (see Figure 1(a)). It turned out that the resulting representation is not homogeneous, but contains multiple ambiguities: these are the cases when more than one Ama value corresponds to the same Ama1 and Ama2 values-from 2 to 4 . These cases are shaded in this figure, they are denoted by A1-A13, i.e. there are only 13 of them, although the figure shows 34 hatchings. The fact is that in this figure A6, A9 and A10 are represented 4 times, A1, A5, A7, A8 and A11-three times, A3 and A4-2 times, and A2, A12 and A13-only by one time. We have A1 Gln, Leu; A2: Gln, Val, Leu; ...A13: Gln, Pro, Ala.

Arg, both along the abscissa axis and along the ordinate axis. However, the most significant area in Figure 6, which corresponds to the cases where on both axes there is none of the amino acids from the Ser, Leu, Arg. For our calculations, the last region is reduced, eliminating from it all cells containing Ser, Leu, Arg. In Figure 7, the shading corresponds to the three amino acids mentioned, and the non-zero elements of the unshaded region have the following property: each Ama value is unique for the corresponding pair Ama1 and Ama2.

The above property allowed us to refer to the first stage of the calculation, when the calculation of the encodings for all elements is made Ama value on the basis of the encodings for the corresponding pair Amal and Ama2. The results of the ste.o.-by-ste.o. solution of the problem are presented in Table 2, but the most important stage of the study was the question of finding the initial approximation.

The initial approximation
THE SOLUTION OF THE PROBLEM. We use the standard three-letter abbreviations for each of the 20 amino acids listed in the first column of Table 1. We have a set

$$
\begin{equation*}
\mathrm{A}^{0}: \mathrm{Ama}_{\mathrm{i}}, \mathrm{i} \in(1,20) \tag{5}
\end{equation*}
$$

We introduce the definition. Let us turn to the previously introduced homogeneous overlaps. As before, we call a combination of amino acids, constructed on the basis of an elementary genetic overlap, homogeneous if the same amino acid participates in it. For homogeneous elements of the set we have.

Property. Let the encodings Ama for homogeneous u3 have one of the fol-

	Met	Trp	Phe	Tyr	His	Asn	Asp	Cys	Gln	Lys	Glu	Ile	Val	Pro	Thr	Ala	Gly
Met													Cys			Cys	Trp
Trp							Gly				Gly		Gly			Gly	Gly
Phe		Leu	Phe	Leu	Ser			Leu	Ser					Ser			
Tyr		Met	Ile	Ile	Thr			Met	Thr					Thr			
His		Met	Ile	Ile	Thr			Met	Thr					Thr			
Asn		Met	Ile	Ile	Thr			Met	Thr					Thr			
Asp		Met	Ile	Ile	Thr			Met	Thr					Thr			
Cys		Val	Val	Val	Ala			Val	Ala					Ala			
Gln	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg
Lys	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg
Glu	Asn					Lys	Arg			Lys	Arg	Asn	Ser		Asn	Ser	Arg
Ile	Tyr	Leu	Phe	Leu	Ser			Leu	Ser			Tyr		Ser	Tyr		
Val	Tyr	Leu	Phe	Leu	Ser			Leu	Ser			Tyr	Cys	Ser	Tyr	Cys	Trp
Pro	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg
Thr	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg
Ala	His	Leu	Leu	Leu	Pro	Gln	Arg	Leu	Pro	Gln	Arg	His	Arg	Pro	His	Arg	Arg
Gly	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly

Figure 7. The reduced region of Figure 6: there are areas in which the code is calculated. All the shaded regions are cut off for the reasons indicated above, and the main area in the calculation is re.o.resented without shading.

Table 2. Steps 1-9 of the iterative process of calculating the genetic code. The last line indicates the number of calculated codons after this step. Notation: X: a,d; Y: b, c; M: a, b, c;N: a, b, c, d.

	1	2	3	4	5	6	7	8	9
Met							abd		
Trp				bdd					
Phe	bbb	bbY							
Tyr						baY			
His						caY			
Asn						aaY			
Asp						daY			
Cys				bdY					
Gln			caX						
Lys	aaa	aaX							
Glu			daX						
Ile							abM		
Val			dbN						
Pro	ccc	ccN							
Thr					acN				
Ala			dcN						
Gly	ddd	ddN							
Ser								bca bcc ddY	bcd bcb
								cbX	
Leu								$\begin{gathered} \mathrm{cbb} \\ \mathrm{bbX} \end{gathered}$	cbc
Arg								$\begin{aligned} & \operatorname{cdN} \\ & \operatorname{adX} \end{aligned}$	
Σ	4	12	24	27	31	35	43	58	61

lowing three representation:

$$
\begin{equation*}
\mathrm{n}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2}, \quad \mathrm{~N}_{3} \mathrm{n}_{2} \mathrm{~N}_{4}, \quad \mathrm{~N}_{5} \mathrm{~N}_{6} \mathrm{n}_{3}, \tag{6}
\end{equation*}
$$

Where small letters denote the unit components of the set N , and large-some subsets of this set, up to N. Then homogeneous u3 can exist only if at least one base triplet or triplet with three identical letters is used.

For the proof we successively substitute each of the representation (6) in u3:

Ama	Ama	Ama
Ama	Ama	Ama
Ama	Ama	Ama
$\mathrm{n}_{1} \mathrm{n}_{1} \mathrm{n}_{1} \mathrm{n}_{1}{ }_{1} \mathrm{n}_{2}^{\prime}$	$\mathrm{n}_{3}^{\prime} \mathrm{n}_{2} \mathrm{n}_{2} \mathrm{n}_{2} \mathrm{n}_{4}^{\prime}$	$\mathrm{n}_{5}^{\prime} \mathrm{n}^{\prime} \mathrm{n}_{3} \mathrm{n}_{3} \mathrm{n}_{3}$

where $n ' i$ is the single component of the set Ni , where $\mathrm{i} \in(1,6)$, and the string na.-nucleotide sequences that are formed after this substitution. In the first case, in (3), the base codon n1n1n1 was used for encoding amino acid Ama from the bottom position, in the second-n2n2n2-from the middle position, and in the third-n3n3n3-from the top position.

We turn to homogeneous u3 from the set U3, which turned out to be 4:

$$
\begin{array}{cccc}
\text { Lys } & \text { Phe } & \text { Pro } & \text { Gly } \\
\text { Lys } & \text { Phe } & \text { Pro } & \text { Gly } \tag{8}\\
\text { Lys } & \text { Phe } & \text { Pro } & \text { Gly }
\end{array}
$$

Within the framework of the assumption specified in the Property, the following ste.o.-by-ste.o. process of searching for a genetic code is proposed; See Table 2. Ste.o. 1. Amino acids from (8) will assign the corresponding base codons. This assignment is not unique. However, in our approach, the set of letters $\mathrm{N}: \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ is not correlated with the canonical set of 4 nucleotides; This will be discussed at the end of the paper. Therefore, we will continue to operate with only one of the representation for the amino acids from (4), which we assign respectively the following basic triplets:
Lys: aaa, Phe: bbb, Pro: ccc, Gly: ddd

For further calculations, we turn to some generalized data on the sets U 2 and U1, which are given in Table 1.

Step. 2. From Table 1 it follows that, as in column m12 (the number and the list of overlapping amino acids on 1 and 2 bases are indicated), and in column m23 (similar data for 2 and 3 bases) do not contain mutual overlap between amino acids from (8). Such overlaps take place only one position and belong to the set U 1 . We have:

Lys	Phe	Pro	Gly
Lys	Phe	Lys	Lys
(Gly)	(Pro)	(Pro)	(Phe)
		(Gly)	(Pro)
		(Phe)	(Gly)

Lys	Phe	Pro	Gly
Lys	Phe	Pro	Gly
(Pro)	(Pro)	(Phe)	(Lys)
(Gly)	(Gly)	(Gly)	(Pro)

where the first 4 elements of u 1 correspond to overlaps for 3 positions (in parentheses the alternative variants are indicated, see column m3-1 from Table 1), the next 4-overlaps for the first positions (see column m1-3). The formal substitution of the base codons from (9) into (10) leads the encodings of all 4 amino acids to the fact that they become ambiguous in the 1 st and 3 rd positions. For the sake of clarity, we present the derivation of just two amino acids from (9)Lys and associated with it according to the first overlap of (10)-Gly. According to the above, we have: Lys should be encoded by a set of triplets X1aX, and GlyX1dN, where X1: $a, d, c ; X$: a, d. Then there is an overlap of Lys with Gly in two positions, which is impossible according to Table 1. It also does not allow two other possibilities: Lys can not be encoded by a set of triplets X1aa if Gly is ddN, and also Lys can not be encoded by a set of triples aaX if Gly is X1dd. There are still two possibilities: both Lys and Gly are coded by ambiguous codons for the same positions. The case of Lys: X1aa, Gly: X1dd encoding is impossible, as the condition in Table 1 can not be satisfied: the number m 23 for Gly is 5 according to Table 1. (And for a similar encoding Gly there can be a maximum of -4). Therefore, there remains the only possible option for the encodings in question, when there are ambiguities in the third position. Similarly, you can set the encoding for the remaining Phe and Pro pairs. In the end, we get:
Lys: aaX, Phe: bbY, Pro: ccN, Gly: ddN,

From Table 1 it follows that the value of m12 does not exceed the number 4 for the amino acids from (5) with the numbers from 1 to 17 . The number 4 means that the first and second positions can be single-valued, which can not be said for m 12 for Ser, Leu, Arg, for which these values are 7.8.7, respectively. Therefore, in the next ste.o.s 3-7 only amino acids from (5) with numbers up to 17 will be considered. Note that the calculation of the encodings for all amino acids from (5) is carried out according to the method published in [3]

3. Step 3-by-Step 7 Calculation in the Uniqueness Domain

The solution search in step 3 is illustrated in Figure 8 (step. 3), where the reduced unambiguity region is presented. For each of the four amino acids from (9) we carry out two bands (gray hatching in Fig.) for Ama1 (horizontal strip, Figure 3 outside the figure indicates the step. number) and Ama2 (vertical strip). As a result, at the intersections of these bands we find only 4 amino acids: Gln, Glu, Val, Ala, and taking into account the accepted standard record and the codings from (9)

Lys	Lys	Phe	Pro
Gln	Glu	Val	Ala
Pro	Gly	Gly	Gly
ccaa	ddaa	ddbb	ddcc

where n.s. is the nucleotide sequence. From (12) we have single-valued encodings for 4 amino acids: Gln, Glu, Val, Ala, and with (9) we find:

(a)

3										$4{ }^{4} 3$				3			43	
		Met	Trp	Phe	Tyr	His	Asn	Asp	Cys	Gln	Lys	Glu	Ile	Val	Pro	Thr	Ala	Gly
	Met													Cys			Cys	Trp
	Trp							Gly				Gly		Gly			Gly	Gly
3	Phe			Phe														
	Tyr		Met	Ile	Ile	Thr			Met	Thr					Thr			
	His		Met	Ile	Ile	Thr			Met	Thr					Thr			
	Asn		Met	Ile	Ile	Thr			Met	Thr					Thr			
	Asp		Met	Ile	Ile	Thr			Met	Thr					Thr			
	Cys		Val	Val	Val	Ala			Val	Ala					Ala			
4	Gln	Asn					Lys				Lys		Asn			Asn		
3	Lys	Asn					Lys				Lys		Asn			Asn		
4	Glu	Asn					Lys				Lys		Asn			Asn		
	Ile	Tyr		Phe									Tyr			Tyr		
4	Val	Tyr		Phe									Tyr	Cys		Tyr	Cys	Trp
3	Pro	His				Pro	Gln			Pro	Gln		His		Pro	His		
	Thr	His				Pro	Gln			Pro	Gln		His		Pro	His		
4	Ala	His				Pro	Gln			Pro	Gln		His		Pro	His		
3	Gly	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly

(b)

(c)

	5								5		4			4	3	6	4	3
		Met	Trp	Phe	Tyr	His	Asn	Asp	Cys	Gln	Lys	Glu	Ile	Val	Pro	Thr	Ala	Gly
	Met													Cys			Cys	Trp
5	Trp							Gly				Gly		Gly			Gly	Gly
3	Phe			Phe											Ser			
	Tyr		Met	Ile	Ile	Thr			Met	Thr					Thr			
	His		Met	Ile	Ile	Thr			Met	Thr					Thr			
	Asn		Met	Ile	Ile	Thr			Met	Thr					Thr			
	Asp		Met	Ile	Ile	Thr			Met	Thr					Thr			
5	Cys		Val	Val	Val	Ala			Val	Ala					Ala			
4	Gln	Asn					Lys				Lys		Asn			Asn		
3	Lys	Asn					Lys				Lys		Asn			Asn		
4	Glu	Asn					Lys				Lys		Asn			Asn		
	Ile	Tyr		Phe									Tyr			Tyr		
4	Val	Tyr		Phe									Tyr	Cys		Tyr	Cys	Trp
3	Pro	His				Pro	Gln			Pro	Gln		His		Pro	His		
6	Thr	His				Pro	Gln			Pro	Gln		His		Pro	His		
4	Ala	His				Pro	Gln			Pro	Gln		His		Pro	His		
3	Gly	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly

(d)

	5			3	7	7	7	7	5	4	$3 \quad 4$			4	3	6	4	3
		Met	Trp	Phe	Tyr	His	Asn	Asp	Cys	Gln	Lys	Glu	Ile	Val	Pro	Thr	Ala	Gly
	Met													Cys			Cys	Trp
5	Trp							Gly				Gly		Gly			Gly	Gly
3	Phe			Phe														
7	Tyr		Met	Ile	Ile	Thr			Met	Thr					Thr			
7	His		Met	Ile	Ile	Thr			Met	Thr					Thr			
7	Asn		Met	Ile	Ile	Thr			Met	Thr					Thr			
7	Asp		Met	Ile	Ile	Thr			Met	Thr					Thr			
5	Cys		Val	Val	Val	Ala			Val	Ala					Ala			
4	Gln	Asn					Lys				Lys		Asn	Ser		Asn		
3	Lys	Asn					Lys				Lys		Asn	Ser		Asn		
4	Glu	Asn					Lys				Lys		Asn	Ser		Asn		
	Ile	Tyr		Phe									Tyr			Tyr		
4	Val	Tyr		Phe									Tyr	Cys		Tyr	Cys	Trp
3	Pro	His				Pro	Gln			Pro	Gln		His		Pro	His		
6	Thr	His				Pro	Gln			Pro	Gln		His		Pro	His		
4	Ala	His				Pro	Gln			Pro	Gln		His		Pro	His		
3	Gly	Asp	Val	Val	Val	Ala	Glu	Gly	Val	Ala	Glu	Gly	Asp	Gly	Ala	Asp	Gly	Gly

(e)

Figure 8. (a) Step 3, (b) Step 4, (c) Step 5, (d) Step 6, (e) Step 7.

Gln:caX, Glu:daX, Val:dbN, Ala:dcN,
Thus, it is shown that the use of the introduced reduced set leads to minimal costs in the ste.o., compared to a direct search for 307 elements of the main set-U3.

Step 4. The solution is explained in Figure 8 (step 4), where the Figure 4 outside the figure indicates the new bands corresponding to the solution from (13), namely the bands for Gln, Glu, Val, Ala. As a result, we have three overlaps:

Gly	Val	Ala
Trp	Cys	Cys
Val	Val	Val

On the basis of which we obtain
Trp: bdd, Cys: bdY
Step 5. In the set U3 there are no elements that have two amino acids from the
sets (11), (13), (15): all the bands for the Figure 5, which are indicated outside the figure, do not have any required intersection. In connection with this feature, we turned to the set U2 and consider one of the admissible possibilities. This possibility was not accidental: it had the maximum number of overlaps in comparison with other cases. As a result, on the basis of two elements $u 2$ we have:

Thr	Thr
Gln	Pro

We get two encodings for Thr: xca, xcc, where x - is not yet known. To find all the encodings for Thr, let's look at its values m1-3 and m3-1. From equality m1-3 $=3$ (Lys, Pro, Gly) it follows that x can take no more than two values: a, d, since in the listed set there is no Phe. However, the value of d is impossible, because Dca and dcc are Ala encodings. In addition, from the equality m3-1 $=4$ (this means that the first positions of the 4 amino acid encodings: Lys, Phe, Pro, Gly overlap with the encodings of the third Thr position), the third position in the Thr encoding is equal to N . Thus, we have:
Thr: acN.

Step 6. In Figure 8 (step. 6), after inserting the bands 6 corresponding to Thr along the vertical and horizontal lines, four amino acids were identified in bold: 3 times Asn, once Tyr, 3 times His and once Asp. These amino acids correspond to the overlap:

$$
\begin{array}{cccc}
\text { Thr } & \text { Thr } & \text { Thr } & \text { Thr } \\
\text { Tyr } & \text { Asn } & \text { His } & \text { Asp } \\
\text { Val } & \text { Gln } & \text { Pro } & \text { Gly } \tag{18}\\
& \text { (Lys) } & \text { (Thr) } \\
& \text { (Glu) } & & \text { (Ala) }
\end{array}
$$

On the basis of which we calculate four encodings for Tyr: bac, Asn: aac His: cac, Asp: dac. Taking into account the data from column m3-1, we finally find:
Tyr: baY, Asn: aaY, His: caY, Asp: daY

Step 7. For these amino acids we conduct 4 bands horizontally and vertically, respectively. At the same time, only two amino acids-Met and Ile-were found in 8 positions, see the bold font in Figure 8 (step 7).

Let us single out two overlaps,

$$
\begin{array}{cc}
\text { Trp } & \text { Phe } \\
\text { Met } & \text { Ile } \tag{20}\\
\text { Tyr } & \text { Tyr }
\end{array}
$$

Which were sufficient for calculation. Taking into account the data from column m3-1, we finally find:

> Met: abd, Ile: abM,
where $\mathrm{M}: \mathrm{a}, \mathrm{b}, \mathrm{c}$
Step 7 finishes the search for encodings for the entered uniqueness domainthey turned out to be 43 for the first 17 amino acids; they are given in Table 2. The further calculation was reduced to the search for solutions for Ser, Leu, Arg present in the compressed set of Fig.

4. Search for a Solution in the Field of Ambiguity

Step 8. Finding solutions in an area where the values of Ama1 and Ama2 belong not only to these 17 amino acids. On the basis of Figure 7 we get

From these overlappings we find the following encodings:
Ser: bca, bcc, adY; Leu: cbX, cbb, bbX; Arg: cdN, adX.
Step 9. From the ambiguity region in Figure 2, we select cases containing two amino acids from the set Ser, Leu, Arg and giving solutions different from (23). We have:

Arg	Leu	Ser
Ser	Ser	Leu
Val	Ile	Pro

From the first and second overlap we find: Ser: bcd, bcb, and from the thirdLeu: cbc. The final encodings for Ser, Leu, Arg are presented in Table 2. And the total number of semantic triplets for all 20 amino acids from in this table is 61. An additional check shows that all elements of the ambiguity region do not contain any other solutions. Three triplets: baX, bda are not defined when using any elements of the sets $\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3$; they supplement the total number of triplets to 64.

When passing from the set of letters a, b, c, d to the canonical nucleotides A, C, T, G, 24 similar genetic codes can be obtained. Only one of them is standard, with $\mathrm{a}=\mathrm{A}, \mathrm{b}=\mathrm{T}, \mathrm{c}=\mathrm{C}, \mathrm{d}=\mathrm{G}$, and triplets baX, bda become TAA, TAG, TGA; they play a role terminator codons-codons, stopping protein synthesis.

Acknowledgements

The author thanks a brilliant interpreter O. N. Kozlov, who translated this text from Russian.

Funding

The work was supported by Russian Foundation for Basic Research (project codes 16-01-00018, 17-01-00053).

References

[1] Kozlov, N.N. and Eneev, T.M. (2017) Fundamentals of a Mathematical Theory of Genetic Code. Doklady Mathematics, 95, 1-3.
[2] Kozlov. N.N. (2014) Genetic Code: A Mathematician's Point of View. Palamarium Academic, Hamburg, 336 p.
[3] Kozlov, N.N. (2015) Method of Computing a Genetic Code. Doklady Mathematics, 91, 263-266.
[4] Kozlov, N.N. (2015) On Overlaps of More than Two Genes: A Theorem for Homogeneous Overlaps. Doklady Mathematics, 91, 1-3.
[5] Kozlov, N.N. (2002) A Theorem on the Genetic Code. Doklady Mathematics, 65, 83-87.
[6] Kozlov, N.N. (2008) Sets Generated by Genetic Code. Doklady Mathematics, 78, 851-855.
[7] Nakayama T., Asai, S., Takahashi Y., et al. (2007) Overlapping of Genes in the Human. International Journal of Biomedical Science, 3, 14-19.
[8] Kozlov, N.N. (2010) Ambiguity in Sets Generated by the Genetic Code. Doklady Mathematics, 81, 364-367.
[9] Kozlov, N.N. (2013) One Function of Ambiguities from the Sets Generated by the Genetic Code. Mathematical Models and Computer Simulations, 5, 17-24.
[10] Kozlov N.N. (2015) Three Functions of Ambiguities Generated by the Genetic Code. Mathematical Models and Computer Simulations, 7, 401-408.
[11] Kozlov, N.N. (2010) Computation of the Genetic Code. Doklady Mathematics, 82, 535-539.
[12] Kozlov, N.N (2012) Computation of the Genetic Code. Mathematical Models and Computer Simulations, 4, 36-46.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

