Independence of the Residual Quadratic Sums in the Dispersion Equation with Noncentral χ^{2}-Distribution

Nikolay I. Sidnyaev, Kristina S. Andreytseva
Bauman Moscow State Technical University, Moscow, Russia
E-mail: sidnyaev@yandex.ru, 9259988800@mail.ru
Received May 6, 2011; revised July 1, 2011; accepted July 8, 2011

Abstract

A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering into the equation of the dispersive analysis are considered and their independence is proved. Necessary and sufficient conditions of existence of adequate models are resulted. It is shown that the class of adequate models is infinite.

Keywords: Noncentral χ^{2}-Distribution, Dispersion Analysis, Adequate Models, Quadratic Sums

1. Introduction

The dispersive analysis is defined as the statistical method intended for estimation of influence of various factors on a result of experiment, so application area of this method becomes much wider. Unbiased estimate for unknown parameters is the sum of squares. The main idea of the dispersive analysis consists in splitting of this sum of squares of deviations into some components, each of which corresponds to the prospective reason of averages changing.

Let's consider decomposition of the residual sum of squares

$$
Q_{0}=Q_{1}+Q_{2}
$$

and we will prove independence of the summands Q_{1} and Q_{2}. Two theorems and four auxiliary lemmas will be necessary for the proof.

2. Preliminaries

Lemma 2.1. The rank of composition of two matrixes A and B is less or equal to minimal rank of matrixes A and B i.e.

$$
r(A B) \leq \min (r(A), r(B))
$$

Proof. By a rule of matrixes multiplication, columns of matrix $A B$ are a linear combination of columns of a matrix A, then the number of linearly independent columns in $A B$ can't surpass the number of linearly inde-
pendent columns in A; consequently

$$
r(A B) \leq r(A)
$$

Doing similar reasoning for the lines (the lines of $A B$ are a linear combination of the lines B), we will receive that $r(A B) \leq r(B)$. The lemma is proved.

Consequence of the inertia law of square-law forms (about quantity of invariants): if $Q=x^{\prime} A x$ is the square-law form with n variables $x_{1}, \cdots x_{n}$ and its rank is equal to $r, r(A)=r$, then r linear combinations of variables $x_{1}, \cdots x_{n}$ exist, for example, z_{1}, \cdots, z_{r} such that $Q=\sum_{i=1}^{r} \lambda_{i} z_{i}^{2}$ and every $\lambda_{i}=1$ or -1 .

We will use the Kohran theorem as a simple consequence of the following theorem.

Theorem 2.1. Let $\sum_{i=1}^{N} y_{i}^{2}=Q_{1}+\cdots+Q_{s}$, where Q_{j}, $j=\overline{1, s}$, are the square-law form with rank n_{j} from variables y_{1}, \cdots, y_{N}. Then the condition $n_{1}+n_{2}+\cdots+n_{s}=N$ is a necessary and sufficient condition for existence of the orthogonal transformation $z=A y$ translating a vector $y=\left(y_{1}, \cdots, y_{N}\right)^{\prime}$ into a vector $z=\left(z_{1}, \cdots, z_{N}\right)^{\prime}$ in such way, that

$$
Q_{1}=\sum_{i=1}^{n_{1}} z_{i}^{2}, Q_{2}=\sum_{i=n_{1}+1}^{n_{1}+n_{2}} z_{i}^{2}, \cdots, Q_{s}=\sum_{i=n_{1}+\ldots+n_{s-1}+1}^{n_{1}+\ldots+n_{s}} z_{i}^{2},
$$

Prove. Necessity.
If such orthogonal transformation exists, then
$\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{n_{1}+\cdots+n_{s}} z_{i}^{2}$. The left part is the square-law form of a rank N, and the right part is the square-law form of a rank $n_{1}+n_{2}+\cdots+n_{s}$. By the lemma 2.2, ranks of square-law forms are equal, i.e. $n_{1}+n_{2}+\cdots+n_{s}=N$.

Sufficiency.

As the rank Q_{j} is equal n_{j}, then from a consequence of the inertia law of square-law forms, it follows that n_{j} linear combinations $z_{1}, \cdots, z_{n_{j}}$ of variables y_{1}, \cdots, y_{N} exist, such that $Q_{j}=\sum_{i} \lambda_{i} z_{i}^{2}$ where each $\lambda_{i}=1$ or -1 . For Q_{1} indexes i have values $1,2, \cdots, n_{1}$; for $Q_{2}-n_{1}+1, \cdots, n_{1}+n_{2}$ etc. Now, if $\sum_{i=1}^{s} n_{i}=N$, then N linear combinations z_{1}, \cdots, z_{N} exist, which in matrix designations can be written so: $z=A y$.

Using a diagonal matrix $D_{N \times N}$ with diagonal elements $\lambda_{1}, \cdots, \lambda_{N}$, we receive that

$$
\sum_{j=1}^{s} Q_{j}=\sum_{i=1}^{N} \lambda_{i} z_{i}^{2}=z^{\prime} D z=y^{\prime} A^{\prime} D A y .
$$

On the other hand $\sum_{j=1}^{s} Q_{j}=\sum_{i=1}^{N} y_{i}^{2}=y^{\prime} y$. As the symmetric matrix of the square-law form is unique, it is concluded that $A^{\prime} D A=I$, hence, it is nondegenerate. Now we will prove that $D=I$. Let $\lambda_{k}=-1$. Then under the formula $y=A^{-1} z$ we can find the values of y_{1}, \cdots, y_{N} corresponding to values $z_{i}=0$ at $i \neq k$ and $z_{k}=1$, and for these values

$$
\sum_{i=1}^{N} y_{i}^{2}=\sum_{i=1}^{N} \lambda_{i} z_{i}^{2}=\lambda_{k}=-1
$$

that is impossible. Hence, $D=I$ and $A^{\prime} A=I$. Last equality shows that transformation $z=A y$ is orthogonal. The theorem is proved.
Remark. The condition $\sum_{i=1}^{s} n_{i}=N$ makes the squarelaw forms Q_{i} positive definite, as at orthogonal transformation, it turns out that all their characteristic numbers are equal 0 or 1 .

Theorem 2.2 [1]. Let random variables $y_{i}, i=\overline{1, N}$, are independent and have normal distributions $N\left(\eta_{i}, 1\right)$ accordingly. Let further

$$
\sum_{i=1}^{N} y_{i}^{2}=Q_{1}+\cdots+Q_{s}
$$

where $Q_{i}, i=\overline{1, s}$, -the square-law form from variables y_{1}, \cdots, y_{N} of n_{i} rank. Then Q_{1}, \cdots, Q_{s} have independent noncentral χ^{2}-distribution with n_{1}, \cdots, n_{s} freedom degrees accordingly, in only case, when
$\sum_{i=1}^{s} n_{i}=N$. If δ_{i} is the parameter of noncentrality Q_{i}, then the value δ_{i}^{2} can be received by replacement y_{j} on Q_{i}, i.e. if $Q_{i}=y^{\prime} A_{i} y$, then $\delta_{i}^{2}=\eta^{\prime} A_{i} \eta$, where $\eta=\left(\eta_{1}, \cdots, \eta_{N}\right)^{\prime} ; \quad y=\left(y_{1}, \cdots, y_{N}\right)^{\prime}$.

Proof. Necessity.

If Q_{1}, \cdots, Q_{s} are the independent random variables with χ^{2}-distribution with n_{1}, \cdots, n_{s} freedom degrees accordingly, then $\sum_{j=1}^{s} Q_{j}$ has noncentral χ^{2}-distribution with $\sum_{j=1}^{s} n_{j}$ freedom degrees. As $\sum_{i=1}^{N} y_{i}^{2}$ has noncentral χ^{2}-distribution with N freedom degrees, and $\sum_{i=1}^{N} y_{i}^{2}=\sum_{j=1}^{s} Q_{j}$, hence, $\sum_{j=1}^{s} n_{j}=N$.

Sufficiency. Let $\sum_{j=1}^{s} n_{j}=N$. Then at orthogonal transformation $z=A y$ (theorem 2.1), random variables z_{1}, \cdots, z_{N} will be independent and normally distributed. From parities (2.1) and definitions of noncentral χ^{2} distributions follows that Q_{1}, \cdots, Q_{s} have independent noncentral χ^{2}-distributions with n_{1}, \cdots, n_{s} freedom degrees accordingly. The theorem is proved.

3. Auxiliary Theorems and Lemmas

We will assume that the space of values of random variables is split into finite r parts s_{1}, \cdots, s_{n} without the general points, and let p_{1}, \cdots, p_{n}-probabilities $P_{i}=P\left\{X \in S_{i}\right\}, \quad \sum P_{i}=1$.

Let's assume that all $p_{i}>0$. Let v_{i} is the number of observed values of random variables- X belongs to set s_{i}.

Let's consider a vector $\left(v_{1}, \cdots, v_{r}\right)$. As a divergence measure between empirical and theoretical distribution we will consider $\sum_{i=1}^{r} c_{i}\left(\frac{v_{i}}{n}-p_{i}\right)^{2}$, where factors c_{i} could be chosen random. Pearson has shown $([2,3])$ that if $c_{i}=\frac{n}{p_{i}}$, then received measure

$$
\begin{equation*}
\chi_{n}^{2}=\sum_{1}^{r} \frac{n}{p_{i}}\left(\frac{v_{i}}{n}-p_{i}\right)^{2}=\sum_{1}^{r} \frac{v_{i}^{2}}{n p_{i}}-n \tag{3.1}
\end{equation*}
$$

possesses extremely simple properties.
Theorem 3.1. At $n \rightarrow \infty$, distribution χ_{n}^{2} aspires to distribution χ^{2} with $r-1$ degrees of freedom.

On the basis of this theorem by the set significance value α we will find the number χ_{n}^{2} from the condition

$$
\begin{equation*}
P\left\{\chi^{2}>\chi_{\alpha}^{2}\right\}=\alpha \tag{3.2}
\end{equation*}
$$

The hypothesis H_{0} is rejected, if $\chi_{n}^{2}>\chi_{\alpha}^{2}$.
At the proof of the theorem the following lemma is required to us.

Lemma 3.1. Let v_{1}, \cdots, v_{r}-the whole non-negative numbers, and $v_{1}+v_{2}+\cdots+v_{r}=n$. Number of ways, by means of which n elements can be divided into r groups, the first of which contains v_{1} elements, the second elements- $v_{2}, \cdots, r_{i}-v_{r}$ elements, is equal to

$$
\frac{n!}{v_{1}!\cdots v_{r}!}
$$

Proof. The first group of v_{1} elements can be chosen by $C_{n}^{u_{1}}$ ways. After the first group is formed, $n-v_{1}$ elements remain. Therefore, the second group of v_{2} elements can be chosen by $C_{n-\nu_{1}}^{v_{2}}$ ways etc. After formation of $r-1$ groups, $n-v_{1}-\cdots v_{r-1}=v_{r}$ elements remain, which form the last group. Thus, the number of all possible ways by means of which n elements can be distributed on r groups, from which the first contains v_{1} elements, \cdots, r_{i} contains v_{r} elements, is equal to

$$
C_{n}^{v_{1}} \cdot C_{n-v_{1}}^{v_{2}} \cdots C_{n-v_{1} \cdots \cdots-v_{r-2}}^{v_{r-1}}
$$

Using the formula $C_{n}^{k}=\frac{n!}{k!(n-k)!}$, we will receive the lemma statement.

Proof. Result of any test with probability
$P_{i}=P\left\{X \in S_{i}\right\}$ will belong to set S_{i}. Therefore, on the basis of a lemma 2.1, the probability of that v_{1} values will belong to set S_{1}, \cdots, v_{r} values will belong to set S_{r}, is equal to

$$
\begin{equation*}
\frac{n!}{v_{1}!v_{2}!\cdots v_{r}!} P_{1}^{v_{1}} \cdots P_{r}^{v_{r}} \tag{3.3}
\end{equation*}
$$

This expression, as it is easy to see, is the general member of decomposition $\left(P_{1}+\cdots+P_{r}\right)^{n}$. Joint distribution of a random vector $v=\left(v_{1}, \cdots, v_{r}\right)$ is set by expession (3.3) and is polynominal distribution. We will find the characteristic function with polynominal distributions. We have

$$
\begin{aligned}
M e^{i(t, v)} & =M \mathrm{e}^{i t_{1} v_{1}} \cdots \mathrm{e}^{i t_{r} v_{r}} \\
& =\sum_{\substack{v_{i} \neq 0 \\
v_{1}+\cdots+v_{r}=n}} \mathrm{e}^{i t_{1} v_{1}} \cdots \mathrm{e}^{i t_{r}, v_{r}} \frac{n!}{v_{1}!\cdots v_{r}!} P_{1}^{v_{1}} \cdots P_{r}^{v_{r}} \\
& =\left(P_{1} \mathrm{e}^{i t_{1}}+\cdots+P_{r} \mathrm{e}^{i t_{r}}\right)^{n} .
\end{aligned}
$$

Let's enter new quantities:

$$
x_{i}=\frac{v_{i}-n p_{i}}{\sqrt{n p_{i}}}, i=1,2, \cdots, r
$$

Then obviously, $\sum x_{i} \sqrt{p_{i}}=0, \quad \chi_{r}^{2}=\sum_{1}^{r} x_{i}^{2}$. We will find characteristic function of a random vector $x=\left(x_{1}, \cdots, x_{r}\right)$. We have

$$
\begin{align*}
\varphi\left(t_{1}, \cdots, t_{r}\right) & =M \mathrm{e}^{i\left(t_{1} x\right)}=M \mathrm{e}^{i\left(t, \frac{v-n p}{\sqrt{n p}}\right)}=\sum_{\substack{v_{i} \geq 0 \\
\sum v_{i}=n}} \mathrm{e}^{i t_{1} \frac{v_{1}-n p_{1}}{\sqrt{n p_{1}}} \cdots \mathrm{e}^{i t_{r} \frac{v_{r}-n p_{r}}{\sqrt{n p_{r}}}} \cdot \frac{n!}{v_{1}!\cdots v_{r}!} P_{1}^{v_{1}} \cdots P_{r}^{v_{r}}} \tag{3.4}\\
= & \mathrm{e}^{-i \sum t_{k} \frac{n p_{k}}{\sqrt{n p_{k}}}} \cdot \sum_{\substack{v_{i} \geq 0 \\
\sum \geq v_{i}=n}} \mathrm{e}^{i t_{1} \frac{v_{1}}{\sqrt{n p_{1}}} \cdots \mathrm{e}^{i t_{r}} \frac{v_{r}}{\sqrt{n p_{r}}}} \cdot \frac{n!}{v_{1}!\cdots v_{r}!} P_{1}^{v_{1}} \cdots P_{r}^{v_{r}}=\mathrm{e}^{-i \sqrt{n} \sum t_{k} \sqrt{p k}}\left(P_{1} \mathrm{e}^{\left.\frac{i i_{1}}{\sqrt{n p_{1}}}+\cdots+P_{r} \mathrm{e}^{\frac{i t_{r}}{\sqrt{n p_{r}}}}\right)} .\right.
\end{align*}
$$

Further, for any fixed t_{1}, \cdots, t_{r}^{n}, we will receive

$$
\begin{equation*}
\ln \varphi\left(t_{1}, \cdots, t_{r}\right)=n \ln \left(\sum P_{k} \mathrm{e}^{i t_{k} / \sqrt{n p_{k}}}\right)-i \sqrt{n} \sum t_{k} \sqrt{p_{k}} \tag{3.5}
\end{equation*}
$$

From decompositions $\mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+O\left(x^{3}\right), \ln (1+x)=x-\frac{x^{2}}{2}+\frac{1}{3} R,|R| \leq\left|x^{3}\right|$, and from (2.5) follows that

$$
\begin{align*}
& \sum p_{k} \mathrm{e}^{\frac{i t_{k}}{\sqrt{n p_{k}}}}=\sum p_{k}+\sum p_{k}^{\frac{i t_{k}}{\sqrt{n p_{k}}}}+\frac{1}{2} \sum p_{k} \frac{(i)^{2} t_{k}^{2}}{\left(\sqrt{n p_{k}}\right)^{2}}+O\left(n^{-3 / 2}\right)=\sum p_{k}+\sum p_{k}^{\frac{i t_{k}}{\sqrt{n p_{k}}}}-\frac{1}{2} \sum \frac{t_{k}^{2}}{n}+O\left(n^{-3 / 2}\right), \\
& \ln \varphi\left(t_{1}, \cdots, t_{r}\right)=n \ln \left[1+\frac{i}{\sqrt{n}} \sum t_{k} \sqrt{p_{k}}-\frac{1}{2 n} \sum t_{k}^{2}+O\left(n^{-3 / 2}\right)\right]-i \sqrt{n} \sum t_{k} \sqrt{p_{k}} \tag{3.6}\\
& =n \ln \left[\frac{i}{\sqrt{n}} \sum t_{k} \sqrt{p_{k}}-\frac{1}{2 n} \sum t_{k}^{2}+O\left(n^{-3 / 2}\right)\right]-\frac{n}{2}\left[-\frac{i}{\sqrt{n}} \sum t_{k} \sqrt{p_{k}}-\frac{1}{2 n} \sum t_{k}^{2}+O\left(n^{-3 / 2}\right)\right]^{2}+\frac{n}{3} R-i \sqrt{n} \sum t_{k} \sqrt{p_{k}} \\
& =-\frac{1}{2} \sum t_{k}^{2}+\frac{1}{2}\left(\sum t_{k} \sqrt{p_{k}}\right)^{2}+O\left(n^{-1 / 2}\right)
\end{align*}
$$

So, now we can receive that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(t_{1}, \cdots, t_{r}\right)=\mathrm{e}^{-\frac{1}{2}\left[\sum t_{k}^{2}-\left(\sum t_{k} \sqrt{p_{k}}\right)^{2}\right]}=\mathrm{e}^{-\frac{1}{2} Q\left(t_{1}, \cdots, t_{r}\right)} \tag{3.7}
\end{equation*}
$$

The square-law form

$$
Q\left(t_{1}, \cdots, t_{r}\right)=\sum t_{k}^{2}-\left(\sum t_{k} \sqrt{p_{k}}\right)^{2}
$$

has a matrix $\Lambda=I-p p^{\prime}$ where I designates an individual matrix, and P is a vector-column, replacing t_{1}, \cdots, t_{r} with new variables u_{1}, \cdots, u_{r} by means of orthogonal transformation, at which $u_{r}=\sum t_{k} \sqrt{p_{k}}$, we will receive

$$
Q\left(t_{1}, \cdots, t_{r}\right)=\sum_{1}^{r} t_{k}^{2}-\left(\sum_{1}^{r} t_{k}^{2} \sqrt{p_{k}}\right)^{2}=\sum_{1}^{r} u_{k}^{2}-u_{r}^{2}=\sum_{1}^{r-1} u_{r}^{2} .
$$

So, the square-law form $Q\left(t_{1}, \cdots, t_{r}\right)$ is non-negative and also has a rank $r-1$, i.e. at $n \rightarrow \infty$, joint characteristic function of quantities x_{1}, \cdots, x_{r} aspires to the expression $\exp (-1 / 2 Q)$, which is characteristic function of some nonintrinsic normal distribution of a rank $r-1$, in which all weight is concentrated to a hyperplane $\sum x_{k} \sqrt{p_{k}}=0$.

From the continuity theorem follows that x_{1}, \cdots, x_{r} have nonintrinsic normal distribution with zero average and a matrix of the second moments Λ. From here we receive that the quantity $\chi_{r}^{2}=\sum x_{k}^{2}$ in a limit has distribution χ^{2} with $r-1$ freedom degrees.

4. Noncentral χ^{2}-Distribution

Let's consider that $y_{1}, y_{2}, \cdots, y_{n}$-the independent random variables with normal distribution with an average $\mu_{i} \quad(i=1,2, \cdots, n)$ and a dispersion 1, i.e. $y_{i} \sim N$ $\left(\mu_{i}, 1\right)(i=1,2, \cdots, n)$. Then random variable distribution

$$
u=\sum_{i=1}^{n} y_{i}^{2}
$$

is called as noncentral χ^{2}-distribution [1-3].
The quantity \sqrt{u} represents radius of a hypersphere in n-dimensional space $[1,4]$.

Random variable distribution u depends only on parameters n and $\sigma=\left(\sum_{i=1}^{n} \mu_{i}^{2}\right)^{1 / 2}$. Therefore it also names as noncentral χ^{2}-distribution with n degrees of freedom and non-centrality parameter σ [2,5]. In this case, following [4], a random variable u we will designate

$$
u=\chi_{n ; \sigma}^{2}
$$

If, $\sigma=0$, i.e. $\mu_{i}=0 \quad(i=1,2, \cdots, n)$, distribution of random variable u named as central χ^{2}-distribution or it is simple $\quad \chi^{2}$-distribution with n degrees of freedom and
a random variable u we will designate

$$
u=\chi_{n}^{2}
$$

Let $\left.P\left\{\chi_{n}^{2}\right\rangle \chi_{\alpha ; \sigma}^{2}\right\}=\alpha$. Quantity $\left.\chi_{\alpha ; n}^{2}\right\rangle 0$ is named as a threshold or α - percentage point of χ^{2}-distribution with n freedom degrees. Its values for various α and n [5]. The mean and variance of a random variable $\chi_{n ; \sigma}^{2}$ are

$$
M\left\{\chi_{n ; \sigma}^{2}\right\}=n+\sigma^{2} ; D\left\{\chi_{n ; \sigma}^{2}\right\}=2 n+4 \sigma^{2}
$$

If $u_{1}=\chi_{n_{1} ; \sigma_{1}}^{2}$ and $u_{2}=\chi_{n_{2} ; \sigma_{2}}^{2}$-independent random variables, then from definition of noncentral χ^{2}-distribution it follows that their sum $u=u_{1}+u_{2}=\chi_{n ; \sigma}^{2}$ has noncentral χ^{2}-distribution with $n=n_{1}+n_{2}$ degrees of freedom and parameters of not centrality $\sigma=\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{1 / 2}$.

5. Main Results

For the proof of Q_{1} and Q_{2} independence we will result following auxiliary statements.

Lemma 5.1. The rank of the sum of square-law forms doesn't surpass the sum of their ranks.

Proof. It is enough to show that if A_{1} and A_{2} are matrixes of one order and the rank A_{i} is equal to n_{i}, then $r\left(A_{1}+A_{2}\right) \leq r_{1}+r_{2}$. For the vector space generated by columns A_{i}, we will choose basis from vectors r_{i}. As columns $A_{1}+A_{2}$ are equal to the sums of corresponding columns A_{1} and A_{2}, then they are linear combinations $r_{1}+r_{2}$ of vectors of two bases; hence, the number of linearly independent columns in $A_{1}+A_{2}$ can't surpass $r_{1}+r_{2}$. Hence, $r\left(A_{1}+A_{2}\right) \leq r_{1}+r_{2}$. The lemma is proved.

Consequence. If $\sum_{i=1}^{N} y_{i}^{2}=Q_{1}+\cdots+Q_{s}$, where the rank Q_{j} is less or equal to $n_{j}, j=\overline{1, s}$ and if $n_{1}+n_{2}+\cdots+n_{s}=N$, then $r\left(Q_{j}\right)=n_{j}, j=\overline{1, s}$.

Proof. It follows directly from a lemma 5.1. On the one hand

$$
r\left(\sum_{j=1}^{s} Q_{j}\right) \leq \sum_{j=1}^{s} r\left(Q_{j}\right) \leq \sum_{j=1}^{s} n_{j}=N
$$

and on the other hand

$$
r\left(\sum_{j=1}^{s} Q_{j}\right)=r\left(\sum_{i=1}^{N} y_{i}^{2}\right)=N .
$$

Hence,

$$
\sum_{j=1}^{s} r\left(Q_{j}\right)=N
$$

Under a condition of $r\left(Q_{j}\right) \leq n_{j}, j=\overline{1, s}$, performance of last equality is possible only when $r\left(Q_{j}\right)=n_{j}$,
$j=\overline{1, s}$, as proves a consequence.
Lemma 5.2. If Q is the square-law form from variables y_{1}, \cdots, y_{N} and can be expressed as the square-law form from the variables z_{1}, \cdots, z_{p} which are linear combinations of y_{1}, \cdots, y_{N}, то $r(Q) \leq p$.

Proof. Let $Q=y^{\prime} A_{N \times N} y=z^{\prime} B_{p \times p} z$ and $z=C_{p \times N} y$, A and B are symmetric. Then from equality $Q=y^{\prime} C^{\prime} B C y$ follows that $A=C^{\prime} B C$, and on a lemma 2.1 it is received: $r(Q)=r(A)=r\left(\left(C^{\prime} B\right) C\right) \leq r(C)$. As $C-\mathrm{a}$ matrix of the size $(p \times N)$, then $r(C) \leq p$. The lemma is proved.

Using resulted above the statement, we will start the proof of independence Q_{1} and Q_{2}. As
$Q_{0}=y^{\prime} y-\hat{\beta^{o^{\prime}}} X^{o^{\prime}} y$, then

$$
\begin{equation*}
y^{\prime} y=Q_{1}+Q_{2}+Q_{3} \tag{5.1}
\end{equation*}
$$

where

$$
Q_{3}=\hat{\beta^{o^{\prime}}} X^{o^{\prime}} y=y^{\prime} A_{3} y ; \quad A_{3}=X^{o}\left(X^{o^{\prime}} X^{o}\right)^{-1} X^{o^{\prime}}
$$

Let's define ranks of square-law forms Q_{1}, Q_{2} and Q_{3}. As $r\left(A_{3}\right)=p_{0}$, then $r\left(Q_{3}\right)=n_{3}=p_{0} \quad[1,2,5]$. We will pass to the analysis of the square-law form

$$
Q_{2}=\sum_{l=1}^{n} \sum_{s=1}^{m_{l}}\left(y_{l s}-\bar{y}_{l}\right)^{2} .
$$

Let's enter variables $z_{l s}=y_{l s}-\bar{y}_{l}, \quad l=\overline{1, n} ; s=\overline{1, m_{l}}$. It is obvious that

$$
Q_{2}=\sum_{l=1}^{n} \sum_{s=1}^{m_{l}} z_{l s}^{2} .
$$

As $\bar{y}_{l}=\frac{1}{m_{l}} \sum_{s=1}^{m_{l}} y_{l s}$, then

$$
\sum_{s=1}^{m_{l}}\left(y_{l s}-\bar{y}_{l}\right)=0 \Rightarrow \sum_{s=1}^{m_{l}} z_{l s}=0
$$

therefore

$$
z_{l m_{l}}=-\sum_{s=1}^{m_{l}-1} z_{l s}
$$

Thus,

$$
Q_{2}=\sum_{l=1}^{n} \sum_{s=1}^{m_{l}-1} z_{l s}^{2}+\sum_{l=1}^{n} z_{l m_{l}}^{2}=\sum_{l=1}^{n} \sum_{s=1}^{m_{l}-1} z_{l s}^{2}+\sum_{l=1}^{n}\left(-\sum_{s=1}^{m_{l}-1} z_{l s}\right)^{2} .
$$

Apparently from this expression, Q_{2} is the squarelaw form from n_{2} variables $l=\overline{1, n} ; s=\overline{1, m_{l}-1}$, $n_{2}=\sum_{l=1}^{n}\left(m_{l}-1\right)=N-n$. As variables $z_{l s}$ are linear combinations of $y_{l s}$, and applying a lemma 5.2 , we receive

$$
r\left(Q_{2}\right) \leq n_{2}=N-n
$$

Following the similar scheme for Q_{1} and applying the lemma 5, we find

$$
r\left(Q_{1}\right) \leq n_{1}=n-p_{0} .
$$

Really, square-law form Q_{1} from variables $y_{l s}$ after some transformations can be written down in a kind $Q_{1}=z^{\prime} T z, z-n$-dimensional vector, and $r(T)=n-p_{0}$.

On the basis of a consequence of a lemma 5.1 as $n_{1}+n_{2}+n_{3}=N$, we receive $r\left(Q_{1}\right)=n-p_{0}$;
$r\left(Q_{2}\right)=N-n ; r\left(Q_{3}\right)=p_{0}$.
Regarding that random variables $\frac{y_{l s}}{\sigma}, l=\overline{1, n}$, $s=\overline{1, m_{l}}$ are independent and have normal distribution $N\left(\eta_{l s}^{*}, 1\right)$, where $\eta_{l s}^{*}=\frac{\eta_{l s}}{\sigma}=\frac{\eta_{l}}{\sigma}$, then transition from equality (4.1) to equality

$$
\frac{y^{\prime} y}{\sigma^{2}}=\frac{Q_{1}}{\sigma^{2}}+\frac{Q_{2}}{\sigma^{2}}+\frac{Q_{3}}{\sigma^{2}}
$$

allows to apply the Kohran theorem. Under this theorem random variables $\frac{Q_{1}}{\sigma^{2}}, \frac{Q_{2}}{\sigma^{2}}$ and $\frac{Q_{3}}{\sigma^{2}}$ are independent and have noncentral χ^{2}-distributions with $n-p_{0}$, $N-n$ and p_{0} freedom degrees. Thus, independence of Q_{1} and Q_{2} also is proved.

Remark. Applying the Kohran theorem to calculation of parameter of non-centrality δ_{2}^{2} of the square-law form $\frac{Q_{2}}{\sigma^{2}}$, it is easy to be convinced that if the hypothesis H_{0} is true or not, then $\delta_{2}^{2}=0$ i.e. the quantity $u_{2}=\frac{Q_{2}}{\sigma^{2}}$ has central χ^{2}-distribution:

$$
\begin{aligned}
\delta_{2}^{2} & =\frac{1}{\sigma^{2}} \sum_{l=1}^{n} \sum_{s=1}^{m_{l}}\left(\eta_{l s}-\bar{\eta}_{l}\right)^{2}=\frac{1}{\sigma^{2}} \sum_{l=1}^{n} \sum_{s=1}^{m_{l}}\left(\eta_{l}-\frac{1}{m_{l}} \sum_{s=1}^{m_{l}} \eta_{l}\right)^{2} \\
& =\frac{1}{\sigma^{2}} \sum_{l=1}^{n} \sum_{s=1}^{m_{l}}\left(\eta_{l}-\eta_{l}\right)^{2}=0
\end{aligned}
$$

6. References

[1] V. S. Asaturyan, "The Theory of Planning an Experiment," Radio I Svyaz, Vol. 73, No. 3, 1983, pp. 35-241.
[2] V. A. Kolemaev, O. V. Staroverov and A. S. Turundaevski, "The Probability Theory and Mathematical Statistics," Vyishaya Shkola, Moscow, 1991, pp. 16-34.
[3] O. I. Teskin, "Statistical Processing and Planning an Experiment," MVTU, Moscow, 1982, pp. 12-26.
[4] N. I. Sidnyaev, V. A. Levin and N. E. Afonina, "Mathematical Modeling of Intensity of Heat Transmission by Means of the Theory of Planning an Experiment,"

Inzhenerno Fizicheskii Gurnal (IFG), Vol. 75, No. 2, Analysis of Statistical Data," URight, Moscow, 2011, pp. 2002, pp. 132-138. 95-220.
[5] N. I. Sidnyaev, "The Theory of Planning Experiment and

