
Journal of Software Engineering and Applications, 2017, 10, 777-786
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.109043 Aug. 17, 2017 777 Journal of Software Engineering and Applications

Application Resource Management for Highly
Computational Applications in the Operational
Environment: A Critical Review

Joseph Balikuddembe, Jael Gudu

Department of Networks, College of Computing and Information Sciences, Makerere University, Kampala, Uganda

Abstract
Computational resources have such a significant influence on the operation of
any software application, it is therefore important to understand how these
applications utilize these resources. Modern resource-intensive enterprise and
scientific applications are creating a growing demand for high performance
computing infrastructures. They constantly interact with and rely heavily on
complex resources. However, they often operate in resource-limited environ-
ments yet they often handle massive data, both in size and complexity. Soft-
ware application services, processes or transactions compete for the much re-
quired but scarce resources. This creates the need to improve the existing re-
source allocation and management issue in such operational environments, as
well as propose new ones, if necessary. Software developers try to analyze ap-
plication operation environment using diverse analysis and design methods.
Our aim therefore, is to design a tool that is able to work with a hybrid of
adaptive and prediction-based resource management and allocation models
while applying the priority based job scheduling algorithm to try and solve the
application resource management challenges currently being faced in such
environments, even if, partially.

Keywords
Resource Management, Resource-Intensive Applications, Resource
Allocation, Design

1. Introduction

There is growing interest in improving the resources utilization, such as memory
and processor time efficiency of large scale enterprise applications [1]. A system

How to cite this paper: Balikuddembe, J.
and Gudu, J. (2017) Application Resource
Management for Highly Computational
Applications in the Operational Environ-
ment: A Critical Review. Journal of Soft-
ware Engineering and Applications, 10,
777-786.
https://doi.org/10.4236/jsea.2017.109043

Received: December 22, 2016
Accepted: August 14, 2017
Published: August 17, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.109043
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.109043
http://creativecommons.org/licenses/by/4.0/

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 778 Journal of Software Engineering and Applications

resource can be defined as a provider of a set of capabilities and they entail a
network, hardware (memory) and software [2] that are needed to execute any
transaction initiated in and by the application. “[1]” notes that memory usage
(as a resource) is perhaps the most important factor in system performance. In
support [3] argues that processor time and memory resources have such a sig-
nificant influence on the operation of any software application, it is therefore
important to understand how these applications utilize them. Continued expan-
sion of software applications represents the need for more of such resources [4].

Resources should be distributed among the different application transactions
in such a way that there should not be starvation [5]. Monitoring their utiliza-
tion helps software engineers know how applications make demands on the re-
sources and how those resources respond to each job or transaction [3]. This is
what resource management is about; monitoring the availability of system re-
sources, allocating the resources and provisioning of the resources [6] as de-
mand arises. In this regard, interest is in controlling how capabilities provided
by system resources and services are made available to other entities, whether
users, applications, services. For improper resource management is susceptible
to the underutilized and wastage of resources. The net result on user application
experience is poor service delivery in these applications and data centers. [7]
mentions that it is desirable to not just avoid wasting resources as a result of un-
derutilization, but to avoid lengthy response times as a result of over-utilization.

There are many ways to provide resource management controls proposed by
various researchers, we categorize them as: 1) resource management Middleware
techniques; 2) Prediction-based resource allocation techniques [8] [9]; 3) Web
services; and 4) Virtualization Technology. However, our study proposes a self-
adaptive and prediction-based resource allocation mainly because they allow for
resource allocation at an application level. The operational environment of the
used is a disease surveillance environment. However, it is important to note that
there is no single technique or method which provides the complete solution for
transaction and resource management challenges in dynamic operational envi-
ronment in which these disease surveillance applications are deployed. Even so,
this does not negate the fact that software developers are trying to analyze appli-
cation operation environment using diverse analysis and design methods [10].
Methods here include the different ways of monitoring a utilization amount of
resources within a server and identifying a resource-strained server to avoid an
activation of capacity upgrade on demand (CUoD) [11].

2. Background
2.1. Resource-Intensive Applications

Modern resource-intensive enterprise and scientific applications are creating a
growing demand for high performance computing infrastructures [12]. These
applications constantly interact with and rely heavily on complex resources and
are all stretching the limits of the organization’s existing resources [13]. Such

https://doi.org/10.4236/jsea.2017.109043

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 779 Journal of Software Engineering and Applications

applications are characterized by complex processes [14] that sometimes need to
run for extended periods of time [15].

Resource intensive applications can be either data-intensive or compute-in-
tensive applications [14]. Data-intensive applications handle massive amounts of
data commonly referred to as “big data”. Another category is the user-intensive
applications, an aspect introduced by [16]. Such include web applications that
must satisfy the interaction requirements of thousands if not millions of users,
which can be hardly fully understood at design time. Both data-intensive and
user-intensive software applications could be considered as compute-intensive
applications. This is because they often require continuously increasing power of
computing resources and storage volume that are in many cases required on-
demand for specific operations in data lifecycle [17]. This therefore calls for a
capacity planning approach as suggested by [18] in most organizations that are
not in a position to purchase additional computational resources each time need
arises due to financial constrains.

2.2. Transaction Processing in Resource-Intensive Applications

Transaction processing is one of the essential features of such an enterprise ap-
plication, since they perform computationally intensive work [15] [19]. For the
transaction processing to happen efficiently and effectively, considerable
amounts of resources are required to complete execution in a reasonable time-
frame [14]. Each time a transaction is initiated it creates the demand for a re-
source [19] and there are instances where two or more workloads can place a
demand for the resources at the same time. We deduce that for the extended
time such a workload is running it will be assigned available resources and will
consume the resources until its execution is complete which could lead to other
applications being denied or put on hold (waiting) since the resource is commit-
ted elsewhere. The resources must therefore be sliced and shared between ma-
chines running potentially heterogeneous workloads [6] [20], consisting of many
short jobs (transactions) and a small number of large jobs (transactions) that
consume the bulk of the available resources, without incurring extra resource
and performance costs [21] [22]. That is why it is important to determine how
best to maximize the performance of the system even in such circumstances. It is
also important that software applications must have the ability to self-adapt to
meet changes in such execution environment and yet still maintain expected
qualities-of-service [23].

3. Design Concerns and Methods
3.1. Design Concerns for Resource-Intensive Applications

Insufficient attention to workloads and the interactions of the applications with
the available (limited) resources at the application design time can reduce the
quality and effectiveness of the software [13], yet there is an increasing demand,
from the users, for software products with increasing quality [24]. We infer that

https://doi.org/10.4236/jsea.2017.109043

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 780 Journal of Software Engineering and Applications

for any application design, it is important to understand the management of the
application transactional processes and its implication within its operational en-
vironment. Accordingly, scheduling of transactions and management of their
execution time are important performance requirements of any enterprise ap-
plication [25] [26].

Designing for such situations is a challenging task because resource manage-
ment in resource limited/constrained environment, in itself, is a hard problem
due to the following: the large scale nature and complexity of such applications
[27] [28] [29] [30]; the heterogeneity of resource types and their interdependen-
cies; the variability and unpredictability of the load [2] [28]. Failure to interpret
different complexities that can arise in the course of an application development
within the planning process can result in huge bottlenecks. This therefore means
that a lot of attention should go to the planning of the architecture [31] [32], and
that is where the design comes in.

The underlying goal of any design process or decisions that are to be incorpo-
rated in the final architecture is ensuring that quality attribute are achieved [33]
since these attributes are used as a bridge to connect business goals and software
architectures [32]. In planning the components and how they will relate, it is
important work out how the different categories of the heterogeneous workloads
will be processed [21] and that is where the method comes in. There is need to
assign available local resources for these applications which is capable of execut-
ing on it [6], but in order to improve resource utility, resources must be properly
allocated and load balancing must be guaranteed [34]. It is also important to
note that the resource demand of an application can change over time [6] and a
software application designer needs to factor in such changes in the design plan.
The analysis drawn from this is that resource management in transaction
processing and management is an important design decision and concern in the
software engineering discipline.

3.2. Design Methods for Resource-Intensive Applications

Define There are different techniques are being used to target specific design and
implementation issues in the dynamic environment. “[35]” argues that there is
always a trade-off in terms of performance, availability, consistency, concurren-
cy, scalability and elasticity. Virtualization focuses heavily on the physical level
of resource allocation for the transactions [36], while web services, such as Elas-
tic Compute Cloud (EC2) adopted by [37], focuses on involving the users by
giving them a chance to be able to monitor the allocation of resources and ap-
plications and also monitor the custom metrics generated by a customer’s appli-
cations and service, an aspect that will not be covered in this work. “[38] [39]”
Present adaptive resource management middleware techniques that achieve the
QoS requirements of the system.

The middleware performs QoS monitoring and failure detection, QoS diagno-
sis, and reallocation of resources to adapt the system to achieve acceptable levels

https://doi.org/10.4236/jsea.2017.109043

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 781 Journal of Software Engineering and Applications

of QoS; for an application to be able to adaptive applications needs to be self-
aware, resource-aware and also context aware [40]. This means it should be able
to understand its current environment of operation and the current circums-
tances, and the resources available [41]. Prediction and Forecasting should be
important components of many real-world enterprise applications [42]. Such
capabilities help in reducing the risk of making wrong decisions while allocating
resources to transactions [9]. Our aim therefore, is to be able to work with a hy-
brid of adaptive and prediction-based resource management and allocation
models to try and solve the application resource management challenges cur-
rently being faced in such environments, even if, partially. The resulting tabula-
tion is an on demand plan (type of resources provision plan based on needs of
each transaction or workload) [5] identified using the hybrid model.

The on demand plan, such as the one shown in Table 1, helps ensure that the
software engineers are fully aware of the types of jobs to be executed and the re-
source demand for each transaction during the design of the application and the
modules for the application.

3.3. Workload Classification and Execution

Priority based job scheduling algorithm proposed by [43] [44] to help us identify
the level of priority of each job. “[43]” mentions that in a workload there are
some jobs that are executed prior to others depending on the nature of the job.
Disease surveillance has the following components that are used to classify task:
case detection, data recording, data compilation, and data transmission. Trans-
actions from disease surveillance applications can be within any of these com-
ponents and there must be a provision that all resources are made available to
requesting users in efficient manner to satisfy their needs. But the question is
how? Of the components mentioned which one should be executed before the
other?

For example, the graph in Figure 1 indicates that the most urgent task is given
the available shortest execution time, while the lease urgent task will be executed
within the last 3.5 time block. It is therefore important have a criteria that can

Table 1. Sample on demand plan.

Transaction Network CPU Memory

T1 (Retrieve user
details)

Demand 45% of
network in 10

minutes

Currently utilizing
(20%)

Demand (30% of
memory in 15

minutes)

T2 (Upload updated
information)

Demand (In 30
minutes needs 60%

of network)

Demand (30% of
CPU in 5 minutes)

Currently utilizing
(50% job will release

resource in 15
minutes)

T3 (Execute natural
language processing)

Currently utilizing
(80% will release in

20 minutes)

Currently utilizing
(30%)

Demand (10% of
memory in 2

minutes)

https://doi.org/10.4236/jsea.2017.109043

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 782 Journal of Software Engineering and Applications

Figure 1. Sample job mapping based on urgency of output.

be used to initiate the tasks and then executing the tasks when the criteria is met,
a process known as task scheduling; a vital part that assigns tasks to suitable re-
sources for execution. “[9]” proposes classification criteria that entail the fol-
lowing: Performance goals, Resource requirements and Business importance.

This approach is important in task classification where the concern is in add-
ing value to a business process as shown in Table 2. For example in a disease
surveillance environment, based on the output it will be improvement in patient
monitoring where high risk conditions. However, it leaves out the element of
understanding the nature of the task or workload and how that will contribute to
the overall performance of an application; yet this study infers that if an applica-
tion is “heavy” dealing with large quantities of data it will consume more re-
sources and will in turn affect the performance of the application.

Table 2. Sample task classification.

Task Performance goals Resource requirements Business importance

T1 (case detection)
Will require more resources, but might be
transmitted or shared faster

- 50% CPU
- 10% Bandwidth
- 80% Memory and Storage

Important in single patient
monitoring or disease
surveillance

T2 (data recording)
Will require little resources, depending
on amount being recorded at any given
cycle or time

- 20% CPU
- 5% Bandwidth
- 10% Memory and Storage

Important for information
preservation

T3 (data transmission)
Will require little resources, depending
on amount being transmitted at any given
cycle or time

- 10% CPU
- 2% Bandwidth
- 5% Memory and Storage

Important for information
sharing

“[36]” proposes an approach that considers the nature and characteristics of

the job. They mention that the following three characteristics can be used: Vo-
lume: This refers to the quantity of data which is generated and it determines the
size only; Variety: This specifies the category to which the data belong for exam-
ple in a disease surveillance environment the categories are (case identification,
case reporting etc); and Velocity: It specifies the speed at which the data is gen-
erated for example social media data comes in fast while hospital data comes in
on either a weekly or monthly basis. The challenge with using this approach is

0
0.5

1
1.5

2
2.5

3
3.5

Very
urgent

Urgent Least
urgent

Resource
Allocation (CPU)

https://doi.org/10.4236/jsea.2017.109043

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 783 Journal of Software Engineering and Applications

that it is fully focused on the job leaving out other important things that need to
be considered such as the available resources. “[37]” describes an approach to
workload classifications based on task resource consumption needs and patterns;
such as the time needed to execute the job (short or long duration), CPU and
memory demand. However, the challenge with this approach according to is that
it does not perform intra-cluster analysis to derive a detailed workload model
and it also neglects the user patterns which are as important as the tasks in the
overall workload model.

4. Conclusion

Achieving efficient resource allocation is one of the most challenging problems.
But the question is how to choose a method that will give efficient resource allo-
cation and management. This study has proposed a self adaptive resource aware
approach which will give a better application capacity planning view to the soft-
ware engineers during the design of the applications. It is important that soft-
ware engineers know how applications make demands on the resources and how
those resources respond to each job or transaction considering the fact that the
computational resources are scarce. A priority based scheduling approach will
help in ensuring that jobs which are considered most urgent, especially where
disease surveillance is concerned, are given the priority that they deserve in
terms of execution. This is because each job will be classified based on its nature
and business value. This however does not mean that all resources will be com-
mitted to jobs considered “most important or urgent”, but the application will
avail tasks based on how much resources need an aspect that is very much
needed.

References
[1] Urgaonkar, R., et al. (2010) Dynamic Resource Allocation and Power Management

in Virtualized Data Centers. Network Operations and Management Symposium
(NOMS), 2010 IEEE, Osaka, 19-23 April 2010, 479-486.
https://doi.org/10.1109/NOMS.2010.5488484

[2] Ngenzi, A., et al. (2015) Dynamic Resource Management in Cloud Datacenters for
Server Consolidation.

[3] Microsoft (2016) Watching How Programs Use System Resources.
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en
-us/sag_mpmonperf_14.mspx?mfr=true

[4] Yang, C. (2010) Green Power Management with Dynamic Resource Allocation for
Cloud Virtual Machines. IEEE 13th International Conference on High Performance
Computing and Communications (HPCC), Banff, 2-4 September 2011, 726-733.

[5] Beeda, K. and Manikandan, A.R. (2015) Secure and Optimal Resource Allocation in
Cloud Environment for Media Streaming Applications. International Journal of
Research and Engineering, 2, 68-73.

[6] K.L.A. and Suresh, S. (2015) A Survey on Dynamic Resource Management Tech-
nologies in Cloud Datacenter. International Journal of Advanced Research in
Computer and Communication Engineering, 4.

https://doi.org/10.4236/jsea.2017.109043
https://doi.org/10.1109/NOMS.2010.5488484
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sag_mpmonperf_14.mspx?mfr=true
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sag_mpmonperf_14.mspx?mfr=true

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 784 Journal of Software Engineering and Applications

[7] Yazir, Y.O. (2010) Dynamic Resource Allocation in Computing Clouds Using Dis-
tributed Multiple Criteria Decision Analysis. IEEE 3rd International Conference on
Cloud Computing, Miami, 26 August 2010, 91-98.

[8] Jokhio, F. (2013) Prediction-Based Dynamic Resource Allocation for Video Tran-
scoding in Cloud Computing. 21st Euromicro International Conference, Belfast, 27
February-1 March 2013, 254-261.

[9] Gorde, B.P.A., Gandhi, N., Mishra, R. and Pathak, R. (2016) Prediction Based Out-
come for Media Streaming Applications. International Journal of Computer Appli-
cations, 1, 11-15.

[10] Amid, A. and Moradi, S. (2013) A Hybrid Evaluation Framework of CMM and
COBIT for Improving the Software Development Quality. International Journal of
Software Engineering and Knowledge Engineering, 6, 9.
https://doi.org/10.4236/jsea.2013.65035

[11] Dawson, C. (2013) Method and System for Cost Avoidance in Virtualized Compu-
ting Environments. http://www.google.com/patents/US8347307

[12] Beloglazov, A. and Buyya, R. (2010) Energy Efficient Resource Management in Vir-
tualized Cloud Data Centers. 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, Melbourne, 17-20 May 2010, 826-831.

[13] Shin, S.Y. (2015) Resource Specification for Prototyping Human-Intensive Systems.
International Conference on Fundamental Approaches to Software Engineering,
332-346. https://doi.org/10.1007/978-3-662-46675-9_22

[14] Buyya, R. and Vecchiola, C. (2013) Mastering Cloud Computing. Tata McGraw Hill
Education Private Limited, New York.

[15] IBM (2016) Compute-Intensive Programming Mode.
https://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.webspher
e.nd.doc/info/ae/ae/cgrid_schintensve.html

[16] Ghezzi, C. (2014) Mining Behavior Models from User-Intensive Web Applications.
Proceedings of the 36th International Conference on Software Engineering, Hyde-
rabad, 31 May-7 June 2014, 277-287. https://doi.org/10.1145/2568225.2568234

[17] Demchenko, Y. (2016) CYCLONE: A Platform for Data Intensive Scientific Appli-
cations in Heterogeneous Multi-Cloud/Multi-Provider Environment. IEEE Interna-
tional Conference on Cloud Engineering Workshop (IC2EW), 4-8 April 2016, Ber-
lin, 154-159.

[18] Huang, C., He, D. and Miao, B. (2014) A Survey of Resource Management in Mul-
ti-tier Web Applications. IEEE Communications Surveys & Tutorials, 16, 1574-
1590.

[19] Mihindukulasooriya, R.C.N. and Gutiérrez, M.E. (2014) Seven Challenges for RESTful
Transaction Models. Proceedings of the 23rd International Conference on World
Wide Web, Seoul, 7-11 April 2014, 949-952.
https://doi.org/10.1145/2567948.2579218

[20] Halevy, A.Y., et al. (2005) Enterprise Information Integration: Successes, Challenges
and Controversies. Proceedings of the 2005 ACM SIGMOD International Confe-
rence on Management of Data, Baltimore, 14-16 June 2005, 778-787.
https://doi.org/10.1145/1066157.1066246

[21] Deldago, P. (2015) Hawk: Hybrid Datacenter Scheduling. Proceedings of the USENIX
Annual Technical Conference, Santa Clara, 8-10 July 2015, 499-510.

[22] Gember, A.A.A. and Dragga, C. (2012) ECOS: Practical Mobile Application Of-
floading for Enterprises. Proceedings of the 2nd USENIX conference on Hot Topics

https://doi.org/10.4236/jsea.2017.109043
https://doi.org/10.4236/jsea.2013.65035
http://www.google.com/patents/US8347307
https://doi.org/10.1007/978-3-662-46675-9_22
https://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/cgrid_schintensve.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.nd.doc/info/ae/ae/cgrid_schintensve.html
https://doi.org/10.1145/2568225.2568234
https://doi.org/10.1145/2567948.2579218
https://doi.org/10.1145/1066157.1066246

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 785 Journal of Software Engineering and Applications

in Management of Internet, Cloud, and Enterprise Networks and Services, San Jose,
4 April 2012, 4-4.

[23] Cheng, S.-W. and Garlan, D. (2012) Stitch: A language for Architecture-Based Self-
Adaptation. Journal of Systems and Software, 85, 2860-2875.
https://doi.org/10.1016/j.jss.2012.02.060

[24] Miguel, G.R.J.P. and Mauricio, D. (2014) A Review of Software Quality Models for
the Evaluation of Software Products. International Journal of Software Engineering
& Applications, 5. https://doi.org/10.5121/ijsea.2014.5603

[25] Lin, W. (2011) A Threshold-Based Dynamic Resource Allocation Scheme for Cloud
Computing. Procedia Engineering, 23, 695-703.
https://doi.org/10.1016/j.proeng.2011.11.2568

[26] Singh, Y.J. (2010) Dynamic Management of Transactions in Distributed Real-Time
Processing System.

[27] Gerostathpoulous, L. (2016) Self-Adaptation in Software-Intensive Cyber-Physical
Systems: From System Goals to Architecture Configurations. Journal of Systems
and Software, 122, 378-397. https://doi.org/10.1016/j.jss.2016.02.028

[28] Jennings, B. and Stadler, R. (2013) Resource Management in Clouds: Survey and
Research Challenges. Journal of Network and Systems Management, 23, 567-619.
https://doi.org/10.1007/s10922-014-9307-7

[29] Aktunc, O., Erol, B.A. and Garcia, J.D. (2012) Redesign of a Seismic Monitor Using
Contextual Design. International Journal of Software Engineering & Applications,
3. https://doi.org/10.5121/ijsea.2012.3601

[30] Njeru, M.E. (2014) Software Frameworks, Architectural and Design Patterns. Jour-
nal of Software Engineering and Applications, 7, 670-678.
https://doi.org/10.4236/jsea.2014.78061

[31] Balikuddembe, J.K., Osunmakinde, I.O. and Bagula, A. (2008) Software Project Pro-
fitability Analysis Using Temporal Probabilistic Reasoning: An Empirical Study
with the CASSE Framework. International Conference on Security Technology,
138-150.

[32] Tan, L., Lin, Y. and Ye, H. (2012) Quality-Oriented Software Product Line Archi-
tecture Design. Journal of Software Engineering and Applications, 5, 472-476.
https://doi.org/10.4236/jsea.2012.57054

[33] Otero, C. (2012) Software Design Challenges.
http://www.ittoday.info/ITPerformanceImprovement/Articles/2012-06Otero.html

[34] Balan, R.V.S. and Punithavalli, M. (2011) Decision Based Development of Produc-
tline: A Quintessence Usability Approach. Journal of Scientific Computing, 7, 619-
628. https://doi.org/10.3844/jcssp.2011.619.628

[35] Waqas, A. (2015) Transaction Management Techniques and Practices in Current
Cloud Computing Environments: A Survey. Int. J. Database Manag. Syst., 7.

[36] Lee, E.K., Viswanathan, H. and Pompili, D. (2015) Proactive Thermal-Aware Re-
source Management in Virtualized HPC Cloud Datacenters. IEEE Transactions on
Cloud Computing, 5, 234-248. https://doi.org/10.1109/TCC.2015.2474368

[37] Kaleeswari and Juliet, N.M. (2014) Dynamic Resource Allocation by Using Elastic
Compute Cloud Service. International Journal of Innovative Research in Science,
Engineering and Technology, 3, 12375-12379.

[38] Ravindran, B., Welch, L. and Shirazi, B. (2011) Resource Management Middleware
for Dynamic, Dependable Real-Time Systems. Real-Time Systems, 20, 183-196.

[39] Dharaskar, R.V., Tondre, V.S., Thakare., V.M. and Sherekar, S.S. (2011) Trends and

https://doi.org/10.4236/jsea.2017.109043
https://doi.org/10.1016/j.jss.2012.02.060
https://doi.org/10.5121/ijsea.2014.5603
https://doi.org/10.1016/j.proeng.2011.11.2568
https://doi.org/10.1016/j.jss.2016.02.028
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.5121/ijsea.2012.3601
https://doi.org/10.4236/jsea.2014.78061
https://doi.org/10.4236/jsea.2012.57054
http://www.ittoday.info/ITPerformanceImprovement/Articles/2012-06Otero.html
https://doi.org/10.3844/jcssp.2011.619.628
https://doi.org/10.1109/TCC.2015.2474368

J. Balikuddembe, J. Gudu

DOI: 10.4236/jsea.2017.109043 786 Journal of Software Engineering and Applications

Prospectives of the Dynamic Resource Management Using Adaptive Techniques in
Distributed System. International Journal of Computer Science and Telecommuni-
cations, 2, 68-77.

[40] Becker, T. (2012) EPiCS: Engineering Proprioception in Computing Systems. 15th
International Conference on Computational Science and Engineering (CSE), 2012
IEEE. Nicosia, 5-7 December 2012, 353-360.

[41] Miraoui, M. (2011) Dynamic Context-Aware and Limited Resources-Aware Service
Adaptation for Pervasive Computing. Advances in Engineering Software, 2011, 11.
https://doi.org/10.1155/2011/649563

[42] Wagner, N. (2011) Intelligent Techniques for Forecasting Multiple Time Series in
Real-World Systems. International Journal of Intelligent Computing and Cybernet-
ics, 4, 284-310. https://doi.org/10.1108/17563781111159996

[43] Kumar, R.S. and Rekha, S. (2014) Priority Based Job Scheduling For Heterogeneous
Cloud Environment. International Journal of Computer Science Issues, 11, 114.

[44] Blessie, R. and Stanislas, A. (2014) A State of Art Scheduling Algorithms in Cloud
Environment. International Journal of Advance Research in Computer Science and
Technology, 2, 476-481.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.4236/jsea.2017.109043
https://doi.org/10.1155/2011/649563
https://doi.org/10.1108/17563781111159996
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Application Resource Management for Highly Computational Applications in the Operational Environment: A Critical Review
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Resource-Intensive Applications
	2.2. Transaction Processing in Resource-Intensive Applications

	3. Design Concerns and Methods
	3.1. Design Concerns for Resource-Intensive Applications
	3.2. Design Methods for Resource-Intensive Applications
	3.3. Workload Classification and Execution

	4. Conclusion
	References

