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Abstract 
 
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – 
Volterra integro-differential equation with non-local and global boundary conditions by converting it to the 
corresponding well known Fredholm integral equation of second kind. The considered problem in this paper 
has been solved already numerically in [1]. 
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1. Introduction 
 
Let’s consider a problem under boundary condition con-
taining non-local and global terms for a fractional order 
integro-differential equation  
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where  0,1m q  ,  f x ,  1 ,K x t ,  2 ,K x t  and  

 iH t , = 1,i m  are continuous, real-valued functions, 

ij , ij , i  and i , d = 1,i m , = 1,j m  are real con-
stants, and boundary conditions (2) are linearly independent. 
 
2. Existence and Uniqueness of Solution 
 
Theorem. Let the functions  f x ,  ,jK x t , j = 1, 2 and 

 iH t , = 1,i m  are continuous, ij , ij , i  and id , 
. = 1i j


  

(2) 

, m  are real constant, the boundary conditions (2) 
are linearly independent and condition (15) is satisfied. 
Then the boundary value problem (1)-(2) has unique 
solution. 

Proof: Acting in Equation (1) by fractional order de-
rivative operator m qD   [2], we get  

 

           1 2, d , d
x b

m q q m q m q m q

a a

D D y x D f x D K x t y t t D K x t y t t    
  

 
  ,

,

d ,
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Now, we write Equation (3) in the general from  

   ,mD y x G x y ,



           (3.1) 

and accept that  is known, then the fundamen-
tal solution (see [3]) is in the form  
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is Heaviside’s unit function. 
Now, we try to get some basic relations. The first of 

these relations is Lagrange’s formula. We multiply both 
ides of Equation (3) by fundamental solution (5) and 
integrate the obtained expression on  (see [4,5]) 
to get  
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where,  
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 (7.1) 
integrating by parts on the left hand side of expression (7) 
and taking into account that (5) is a fundamental solution 
of (3.1), give the first basic relation in the form  
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Hence, the first expressions for the necessary conditions are obtained in the form  
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It is easy to see that the second expression in (9) turns 

into an identity. Indeed, as it is seen from (5)-(6), the 
integral at the right side of the second condition contains 
the value of the function   ,x   which is zero for 

= b . For =x a  the the summation in the second ex-
pression contains the Heaviside function which is zero 
for = 0, 1m s



. 
Finally, the first summand contains positive degrees of 

x   for = 0, 2s m   these terms become zero at 
= =x b . Here, for =s m 1 , the the expression of 

fundamental solution for  yields the Heaviside  =s m 1

function. For =x b , = b  this becomes 
1

2
, therefore,  

the second one of necessary conditions (9) turns into 
identity. 

Now, we construct the second basic expression to get 
the second group of necessary conditions. For that, we 
multiply both sides of (3) by the derivative of (5) and 
integrate on  ,a b  [6,7]:  
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Integrating by parts on the left side of the obtained ex-
pression and taking into account (5) and (6), we get the 
second basic relation as follows:  
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and so the second group of the necessary conditions are obtained as  
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Similar to the second expression of (9), we can show 

that the second expression of (11) turns into identity. If 
we continue this process, in order to get the m-th basic 
relation, we multiply (3) the  1m 


b b

-th order derivative 
of (5) and integrate on  to get:   ,a b
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x x

a a

D y x Y x x G x y Y x x      d .  

Here, once integrating by parts on the left side of the  

obtained expression gives  
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Thus, if we take into account that (5) is the fundamen-
tal solution, the last relation (m-th) will be as follows:  
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Therefore, the last group of necessary conditions will be in the form:  
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here, as above, the second necessary condition turns into 
identity. 

Now, we join to the given m linearly independent 
boundary condition (7), the necessary conditions in (9), 

(11) and etc. (13) that are not identities, and write the 
system of 2m linear algebraic equations obtained with 
respect to the boundary values of the unknown function 
in the following way.  
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For solving the system (14) by the Cramer’s rule, it is 

necessary that its basic determinant differ from zero. 
Accept that the following condition is satisfied  
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Then, from system (14), we get  
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where ( , )p q  denotes the cofactor of the elements at the 
intersection of p-th row and q-th column of the determi-

nant  . Calculate the following expression:  
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Finally, coming back to (8), we take into account (16) 

and (17) and write the second kind Fredholm type inte-
gral equation [8] for which the boundary value problem 
(1)-(2) is reduced to:  
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By the hypothesis of theorem on the functions  f x , 
 ,j K x t , j = 1, 2 and  iH t , = 1,i m  the integral 

Equation (19) has unique solution and so in all con-
ducted operations we can come back and we conclude 
that  the solution of (19) is the unique solution of 
boundary value problem (1)-(2). 
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