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Abstract 
A weather-adaptive forward collision warning (FCW) system was presented 
by applying local features for vehicle detection and global features for vehicle 
verification. In the system, horizontal and vertical edge maps are separately 
calculated. Then edge maps are threshold by an adaptive threshold value to 
adapt the brightness variation. Third, the edge points are linked to generate 
possible objects. Fourth, the objects are judged based on edge response, loca-
tion, and symmetry to generate vehicle candidates. At last, a method based on 
the principal component analysis (PCA) is proposed to verify the vehicle can-
didates. The proposed FCW system has the following properties: 1) the edge 
extraction is adaptive to various lighting condition; 2) the local features are 
mutually processed to improve the reliability of vehicle detection; 3) the hie-
rarchical schemes of vehicle detection enhance the adaptability to various 
weather conditions; 4) the PCA-based verification can strictly eli- minate the 
candidate regions without vehicle appearance. 
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1. Introduction 

To avoid the traffic accidents and to decrease injuries and fatalities, many ad-
vanced driving assistance systems (ADASs) have been developed paying more 
regard to situations on road for drivers, such as forward collision warning 
(FCW), lane departure warning (LDW), blind spot detection (BSD), etc. Based 
on our previous studies [1] [2] [3], this study focuses on developing a FCW sys-
tem. 
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Extensive studies have been proposed for vision-based FCW systems [4] [5] 
[6] [7]. Sun et al. [4] and Sivaraman et al. [5] generally divided the vision-based 
vehicle detection methods into three categories: knowledge-based, motion- 
based, and stereo-based methods. Knowledge-based methods integrate many 
features of vehicles to recognize preceding vehicles in images. Most of these me-
thods are implemented by two steps: hypothesis generation (HG) and hypothesis 
verification (HV) [4]. The HG step detects all possible vehicle candidates in an 
image; the vehicle candidates are then confirmed by the HV step to ensure cor-
rect detections. 

Due to the rigidness and the specific appearance of vehicles, many features 
such as edges, shadow, symmetry, texture, color, and intensity can be observed 
in images. The features used in knowledge-based methods can be further divided 
into global features and local features according to whether the vehicle appear-
ance is considered when using the features. A usable FCW system should be sta-
ble in various weather conditions and in various background scenes. Further-
more, the system should get high detecting rate with fewer false alarms by uti-
lizing both local- and global features. 

The weather adaptability of edge information is much better than other local 
features such as shadow and symmetry. The contour of a vehicle can represent 
by horizontal and vertical edges. However, the local edge features are not strict 
enough to describe vehicle appearance. The appearance based verification is 
better and need to support the vehicle detection based on edge information. 

We here propose a FCW system combining the advantage of the global fea-
tures and local features to improve the reliability of vehicle detection. The local 
feature is invariant to vehicle direction, lighting condition, and partial occlusion. 
The global feature is used to search objects in the image base on whole vehicle 
configuration. In the detection stage, all vehicle candidates are located according 
to the local as many as possible to avoid missing targets; in the verification stage, 
each candidate is confirmed as real target by the global as strictly as possible to 
reduce the false alarms. 

The proposed FCW system detects vehicles relying on edges; thereby the pro-
posed system can work well under various weather conditions. At first, the lane 
detector [1] [2] is performed to limit the searching region of preceding vehicles. 
Then an adaptive threshold is used to obtain bi-level horizontal and vertical 
edges in the region. The vehicle candidate is generated depending on a valid ho-
rizontal edge and the geometry constrains vertical edges at two ends of the hori-
zontal edge. In verification stage, the vehicle candidates are verified by vehicle 
appearance and principal component analysis (PCA). A principal component set 
is obtained by applying PCA to a set of canonical vehicle images. These compo-
nents are used to dominate the appearance of vehicle-like regions; therefore, the 
regions of vehicle-like objects can be well reconstructed by the principal com-
ponents. The closer the distance between an image and its reconstruction image 
is, the higher the probability of the object on the image being a vehicle is. 
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2. Vehicle Detection 

Edge information is an important feature for detecting vehicles in an image, es-
pecially the horizontal edges of underneath shadows. In the detection stage, ve-
hicle candidates are generated based on local edge features. Firstly, the appropri-
ate edge points are extracted in the region of interest (ROI) defined by lane 
marks as shown in Figure 1. Then, the significant horizontal edges indicating 
vehicle locations are refined. The negative horizontal edges (NHE) are thought 
belonging to underneath shadow. The positive horizontal edges (PHE) are 
mostly formed by bumper, windshield and roof of vehicles. For each kind of ho-
rizontal edges with different property, a specific procedure to find vertical bor-
ders of vehicles is applied around each horizontal edge. Finally, the horizontal 
edges and vertical borders are used to find the bounding boxes of vehicle candi-
dates. 

The horizontal edges are expected belonging to underneath shadows or ve-
hicle body. Considering the sunlight influences, the horizontal edges belonging 
to underneath shadows are further divided into the moderate or the long by edge 
widths. The procedures for searching the paired vertical borders are designed 
according to the specific properties of different kinds of horizontal edges. In the 
proposed vehicle detection, three detecting methods (Case-1, Case-2, and Case- 
3) are respectively designed to generate vehicle candidates based on the hori-
zontal edges of underneath shadows, long underneath shadows, and vehicle bo-
dies. In the situations of clear weather with less influence from sunlight, the un-
derneath shadows are distinct and the widths of shadows are similar to vehicle 
width; Case-1 method proposed based on horizontal edges of moderate under-
neath shadows is adequately used to generate candidates. In the situations of 
sunny weather with lengthened shadow, there is the strong possibility that only 
one vertical border is searched by using Case-1 method; Case-2 method is pro-
posed based on horizontal edge of long underneath shadows to search two cor-
responding vertical borders in a larger region, as shown in Figure 2. In the situ-
ations of bad weather disturbed by water spray and reflection, the underneath 
shadows are not reliable and are not observed at the worst; Case-3 method base 
on vehicle bodies is applied in a different way to retrieve the missing cases of 
using Case-1 and 2 methods. 

If the only one vertical edge of the NHE is at the right side, it is taken as the 
 

 
Figure 1. Two examples of ROI setting based on the detected lane marks. 
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Figure 2. An example of the vertical characteristics in a long 
underneath shadow area. 

 
right boundary of the window. The left boundaries of all windows are respec-
tively set at the x-positions which are 0.3 wlane to 0.8 wlane away from the right 
boundaries, and vice versa. The symmetry of the vertical edge points in the 
window is calculated by 
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where h and w are the height and the width of the window, xi and yj are the x- 
and y-locations in the window, eng(xi, yj) is the energy of symmetry at (xi, yj) de-
fined by 
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where Iep(x, y) is the value of the edge point map Iep at (x, y) and Iep is one of the 
vertical, the positive horizontal, and the negative horizontal edge point maps 
which are Ivep, Ip_hep, and In_hep. 

The horizontal edges in Case-3 are the edges of the vehicle body, though the 
components which they belong to are unknown. The y-positions of the horizon-
tal edges can’t indicate the y-positions of the candidate bottoms, which only 
gives a hint of the vehicle’s location. In the image, two vertical edges could be 
detected at vehicle sides, which are similar to each other in length and y-posi- 
tion. Therefore, two characteristic vertical edges are extracted from the areas 
around two endpoints of the horizontal edge, respectively. The distance and the 
y-position overlapping between two vertical edges are used to determine candi-
date bottom. 

Firstly, the areas for searching the vertical edges are set extending upward and 
downward from the horizontal edge endpoints, as the gray regions in Figure 3. 

According to the candidate bottoms, the images of the vehicle candidates are 
extracted with ratio height/width being 1. In the detecting result, the candidate 
locations are represented by “U” shape bounding boxes. The bottom of a “U” 
shape bounding box is the candidate bottom. The left and right margins of the  
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Figure 3. The searching areas for vertical edges and the long-
est vertical edges in each area. 

 
bounding box are defined as the vertical line segments from (xl, yl) to (xl, yl + 
w� ) and from (xr, y(r)) to (xr, yr + w� ), respectively. w�  is the width of the can-
didate bottom, that is w�  = xr – xl. Each horizontal edge is individually deter-
mined if it belongs to a vehicle candidate. Around one vehicle target, there might 
be many bounding boxes which are set according to the horizontal edges at dif-
ferent y-positions. To delete the repetitions, the candidate being most closes to 
the host vehicle in a candidate group is reserved for the rest processes. That is, 
the bounding box with smallest y-position in image is reserved. 

3. Vehicle Verification 

In the verification stage, the vehicle candidates are determined applying PCA 
reconstruction. The reconstruction images are obtained according to the images 
of pre-trained eigenvehicles. Then, the image comparison methods are used to 
evaluate the likelihood of the vehicle candidates to e vehicle. 

3.1. The Principle and Procedure of PCA-based Verification 

Principal components analysis (PCA) is a statistical technique used to analyze 
and simplify a data set. Each principle component (eigenvector) is obtained with 
a corresponding data variance (eigenvalue). The larger the corresponding va-
riance is, the more important the data information contained by the principle 
component is. For application of reducing data dimensionality, the principle 
components are sorted by the corresponding variance; and the original data are 
projected onto the principle components with the largest m variance. PCA is 
widely performed to image recognition and compression. 

3.2. Eigenvehicle Generation 

The images of the eigenvectors obtained by applying PCA to vehicle images are 
called “eigenvehicles”. To generate a set of eigenvehicles, a training set of pre-
ceding vehicle images cropped from on-road driving videos are prepared. The 
on-road driving videos are captured under various weather conditions; the 
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training images are collected with various vehicle types, in various distance far 
from the own vehicle, and at the own/adjacent lane. The cropped images of pre-
ceding vehicles are firstly resized to 32 × 32. For each resized image, the edge 
map is produced and then normalized by letting the sum of edge values being 
equal to 1. The normalized edge maps as the training images are represented as 
vectors Γ1, Γ2, …,and ΓM of size N, where M is the number of training images 
and N = 32 × 32. 

Only the leading eigenvehicles are applied in the verification of vehicle candi-
dates. The sixteen leading eigenvehicles with largest eigenvalues of all are shown 
in Figure 4. 

Eigenvehicles are easily influenced by background content, foreground size, 
illumination variation, and imaged orientation. To solve most of the problems, 
the original vehicle images of the training set are manually identified and seg-
mented fitting the contour. The color and illumination factors would be also 
eliminated by using edge map and applying normalization to the edge map. 

3.3. Evaluation by The Reconstruction Error 

For each vehicle candidate, the original image is firstly resized to 32 × 32 and 
transformed into a normalized edge map Γ. The edge map Γ subtracts the mean 
image Ψ to have the difference, and the difference is then projected onto the M' 
leading eigenvehicles. Each value representing a weight would be calculated by 

( – ),T
iiw G Y= u                         (3) 

where i = 1, 2, …, M'. The reconstruction image  of the normalized edge 
map Γ is then obtained by 

'
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The vehicle space is the subspace spanned by the eigenvehicles, and the re-
construction image is the closest point to Γ on the vehicle space. The reconstruc-
tion error of Γ could be easily calculated by Euclidean distance (ED), 

ˆd Γ= −Γ                            (5) 

The reconstruction images are usually dusted by a lot of noises. For more ac-
curate comparison between Γ and Γ̂ , the comparing method should be more 
robust to noise and neighboring variations. The images could be regarded as 3D 
models by taking the intensity at the image coordinate (x, y) to be the height of 
 

 
Figure 4. The top 16 eigenvehicles of the training set. 

Γ̂
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the model bin (x, y). The 3D models can be compared to each other by a cross- 
bin comparison measurement such as the quadratic-form distance [8], Earth 
Mover’s Distance (EMD) [9], and the diffused distance (DD) method [10]. Earth 
Mover’s Distance is calculated as 

( ) 1 1

1 1

1 2,
m n
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where H1 and H2 are two compared histograms, fij is the work flow from bin i to 
bin j, and dij is the ground distance between bins i and j. The diffused distance is 
calculated by 

( )2 01 ( ), ,L
llK H H d x

=
= ∑                        (7) 

where d0(x) = H1(x) – H2(x) and dl(x) = [dl–1(x) * φ (x, σ)] ↓2 are different lay-
ers of the diffused temperature field with l = 1, 2, …, L, φ (x, σ) is a Gaussian fil-
ter of standard deviation σ, and the notation “↓2“ denotes half size down- sam-
pling. 

The recognition abilities of ED, EMD, and DD can be compared by receiver 
operating characteristic (ROC) curves to decide the appropriate measurement 
for the proposed vehicle verification, as shown in Figure 5. There are 500 posi-
tive and 500 negative samples used to evaluate each ROC curve. The ROC curves 
are plotted with the false positive rate in x-axis and the true positive rate in y- 
axis by changing the threshold of judging a sample as a vehicle. The statistics of 
positive and negative samples measured using ED, EMD and DD are shown in 
Figure 6. The x-axis is the measured distance and the y-axis is the accumulation 
of samples. The threshold of measured distance is changed in the statistics from 
minimum to maximum distance values to calculate the ratio of positive and 
negative samples being recognized as a vehicle. 

The verification based on PCA reconstruction is deeply influenced by the 
 

 
Figure 5. The ROC curves of the distance measurements: ED, EMD, and 
DD. 
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(a) 

 
(b) 

 
(c) 

Figure 6. The measurement statistics of positive and negative 
samples using three methods. (a) ED; (b) EMD; (c) DD. 

 
number of used eigenvehicles. The distance between the original image and re-
construction image decreases with the increment of the eigenvehicle number; 
however, the execution time of projecting and reconstructing linearly increases 
with the increment of the eigenvehicle number. According to our analysis, the 
distance decrement is obviously slowdown when the eigenvehicle number is 
larger than 50. It is important to consider that is the time cost of using eigenve-
hicles more than 50 worth enough for the PCA-based verification. The verifica-
tion ability of the PCA-based method can be analyzed by ROC curves. The vari-
ation of the area ratio under the ROC curves shows the limitation of improving 
reconstruction difference by increasing the eigenvehicle number. Depending on 
the application, a suggestion of the eigenvehicle number is 40 - 80. 

4. Experiment and Discussions 

The proposed FCW system has been tested with the videos captured under var-
ious weather conditions and environment situations: sunny day (S), cloudy day 
(C), long shadow (LS), facing sun ray (FS), rainy day (R), heavily rainy day 
(HR), etc. 
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The comparison of detecting vehicles without and with verification scheme is 
show in Table 1. The symbol “d*” and “d” represent the trials of detecting ve-
hicles using the idealized constrains and the less rigorous constrains, respective-
ly. The “d*” and “d” trials are both implemented without verification scheme. 
The geometry constrains being relaxed in “d” trail include the pre-trained 
learning threshold models, the thresholds of the length of small noise horizontal 
edge, the ratio width/height of the bounding box for extracting a significant ho-
rizontal edge, the searching areas of upper significant vertical edges and symme-
tric vertical border, the threshold of symmetry, etc. The symbol “v” represents 
the trial of detecting vehicles using the less rigorous constrains with the verifica-
tion scheme. 

To illustrate the effect of the proposed learning thresholding of edge maps, the 
system accuracies of using three constant thresholds and the learning threshold 
to each environment situation are compared in Table 2. The threshold for ver-
tical edge map is dynamically calculated by the proposed learning thresholding 
in all case for the single-variable analysis. The proposed learning thresholding 
makes our FCW system having the ability to adjust an appropriate threshold for 
each frame of any environment situation. As shown in Table 2, applying the 
learning threshold produces higher accuracy with a lower false detection rate 
than applying the constant thresholds. 

The detecting performances of various driving situation are given in Table 3. 
The average accuracy of all environment situations could reach 91%. The results 
 
Table 1. The Comparison of System Performance without and with Verification Proce-
dure. 

Weather 
conditions 

Accuracy (%) False detection rate (%) 

d* d d+v d* d d + v 

Sunny day 91.8 96.9 98.6 0.3 2.8 1.1 

Cloudy day 93.0 97.6 98.7 1.2 3.1 0.8 

Facing sun ray 88.6 92.2 93.9 0.2 1.3 0.2 

Long shadow 81.3 92.8 95.3 6.3 11.4 4.3 

Rainy day 77.1 83.5 84.4 1.2 5.6 2.3 

Heavily rainy day 64.7 73.6 72.3 1.9 12.5 6.4 

 
Table 2. The Comparison between Constant Thresholds and the Learning Threshold. 

Weather 
conditions 

Accuracy (%) False detection rate (%) 

10% 20% 30% learning 10% 20% 30% learning 

Sunny day 97.8 98.8 97.6 98.6 1.3 1.2 2.1 1.1 

Cloudy day 78.5 99.5 95.8 98.7 0.2 0.7 1.6 0.8 

Facing sun ray 35.7 83.6 96.3 93.9 0.7 0.2 0.4 0.2 

Long shadow 79.6 85.1 85.7 95.3 7.8 6.9 8.3 4.3 

Rainy day 63.4 79.8 87.5 84.4 3.9 2.4 2.9 2.3 

Heavily rainy day 38.0 66.8 63.7 72.3 15.0 8.8 5.9 6.4 
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of the detection followed by verification in these difficult situations are shown in 
Figure 7. The left and right of a pair of images are the results of vehicle detection 
and vehicle verification, respectively. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7. Examples of detected and verified results in various weather situations. (a) In a low- 
contrast environment; (b) With long shadow of vehicles; (c) In rainy day; (d) With cast 
shadow; (e) With smeary road surface and on-road traffic sign; (f) In heavily rainy day. 
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5. Conclusions 

The proposed system possesses several special and unique properties: 1) The ap-
propriate amount of edge points are reserved by a smart learning thresholding 
method for less influenced by weather conditions; 2) the vehicle detection is ac-
complished by applying the horizontal edges with the consideration of the loca-
tion of vertical edges and edge symmetries instead of that each feature is indivi-
dually used; 3) the vehicle detection is robust to partial occlusions and lighting 
variations by using local features; 4) the vehicle verification reliably determines 
the detected candidates by evaluating the probability that the candidate has ve-
hicle appearance. The characteristics of local and global features are comple-
mentary to each other. However, most related studies apply only one of the fea-
tures in their system. The proposed system efficiently uses the merits of local 
and global features to attain the stability and reliability. 
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