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Abstract 
Output measurement for nonlinear optimal control problems is an interesting 
issue. Because the structure of the real plant is complex, the output channel 
could give a significant response corresponding to the real plant. In this paper, 
a least squares scheme, which is based on the Gauss-Newton algorithm, is 
proposed. The aim is to approximate the output that is measured from the 
real plant. In doing so, an appropriate output measurement from the model 
used is suggested. During the computation procedure, the control trajectory is 
updated iteratively by using the Gauss-Newton recursion scheme. Conse-
quently, the output residual between the original output and the suggested 
output is minimized. Here, the linear model-based optimal control model is 
considered, so as the optimal control law is constructed. By feed backing the 
updated control trajectory into the dynamic system, the iterative solution of 
the model used could approximate to the correct optimal solution of the orig-
inal optimal control problem, in spite of model-reality differences. For illu-
stration, current converted and isothermal reaction rector problems are stu-
died and the results are demonstrated. In conclusion, the efficiency of the ap-
proach proposed is highly presented. 
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1. Introduction 

Many real processes are not linear in natural, so the actual model would not be 
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necessary known. In addition to this, modeling the real process into a dynamical 
system could be an alternative solution plan. Since dynamical system has evolved 
over time, efficient computational approaches are highly demanded, and their 
development towards to optimize and control dynamical system is properly re-
quired. This situation imposes on obtaining the optimal solution of the real 
process enthusiastically. However, the difficulty level of solving the optimal con-
trol problems is increased with respect to the nonlinearity structure of dynamical 
systems. Simultaneously, the use of output measurement, especially from the 
industrial control applications [1], becomes importance in constructing the cor-
responding dynamical system, which covers model predictive control [2] [3] [4] 
[5], system identification [6] [7] [8], and data-driven control [9] [10] [11]. 

In fact, the solution methods of linear optimal control problem have been 
well-developed. Particularly, the linear quadratic regulator (LQR) technique is 
recognized as a standard procedure in solving the linear optimal control prob-
lems [12] [13] [14] [15] [16]. Recently, an efficient computational method, 
which is based on LQR optimal control model, is proposed to solve the nonli-
near stochastic optimal control problems in discrete time [17] [18] [19] [20]. 
This approach is known as the integrated optimal control and parameter estima-
tion (IOCPE) algorithm. It is an extension of the dynamic integrated system op-
timization and parameter estimation (DISOPE) algorithm [21]. The applications 
of the DISOPE algorithm have been well-defined in solving the deterministic 
nonlinear optimal control problem [22] [23]. By virtue of this, the IOCPE is de-
veloped, based on the principle of model-reality differences, for solving the dis-
crete time deterministic and stochastic nonlinear optimal control problems. 

Indeed, in both of these iterative algorithms, the adjusted parameters are in-
troduced in the model-based optimal control problem. The aim is to calculate 
the differences between the real plant and the model used. These differences are 
then taken into account in updating the model used iteratively. Once the con-
vergence is achieved, the iterative solution could approximate to the correct op-
timal solution of the original optimal control problem, in spite of model-reality 
differences. On the other hand, the use of the model output is an additional fea-
ture in the IOCPE algorithm [20], which does not executed in the DISOPE algo-
rithm. 

Definitely, in this paper, the use of the output measurement, rather than add-
ing the adjusted parameters into the model used, is further discussed. In our ap-
proach, the LQR optimal control model with the output measurement is simpli-
fied from the nonlinear optimal control problem. The differences between the 
output measurements, which are, respectively, from the model used and the real 
plant are defined. Follow from this, a least squares scheme is established. The 
aim is to approximate the output that is measured from the real plant in such a 
way that the output residual between the output measurements is minimized. In 
doing so, the linear dynamic system in the model used is reformulated and the 
control sequence is added into the output channel. Then, the model output is 
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presented as input-output equations. 
During the computational procedure, the control trajectory is updated itera-

tively by using the Gauss-Newton algorithm. As a result, the output residual be-
tween the original output and the model output is minimized. Here, the optimal 
control law is constructed from the model-based optimal control problem, 
which is not adding the adjusted parameters. By feed backing the updated con-
trol trajectory into the dynamic system, the iterative solution of the model used 
approximates to the correct optimal solution of the original optimal control 
problem, in spite of model-reality differences. Hence, the efficiency of the ap-
proach proposed is highly recommended. On the basis of this, it is highlighted 
that applying the least-square updating scheme for solving discrete-time nonli-
near optimal control problems, both for deterministic and stochastic cases, are 
well-presented. See [24] for more details on stochastic case. 

The rest of the paper is organized as follows. In Section 2, a discrete time non-
linear optimal control problem is described and the corresponding model-based 
optimal control problem is simplified. In Section 3, the construction of the 
feedback optimal control law is discussed. The output residual is defined in 
which a least-squares minimization problem for the model-based optimal con-
trol problem is formulated. The iterative algorithm based on the Gauss-Newton 
method is established, and the computational procedure is summarized. In Sec-
tion 4, two illustrative examples, which are current converted and isothermal 
reaction rector problems, are demonstrated, and their results show the efficiency 
of the approach proposed. Finally, some concluding remarks are made. 

2. Problem Statement 

Consider a general discrete time nonlinear optimal control problem, given by 

( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )
( ) ( )( )

1

0
0

0

min , , ,

subject to 1 , , , 0

,

N

u k k

P

g u x N N L x k u k k

x k f x k u k k x x

y k h x k k

ϕ
−

=

= +

+ = =

=

∑
       (1) 

where ( ) , 0,1, , 1mu k k N∈ℜ = − , ( ) , 0,1, ,nx k k N∈ℜ =   and ( ) ,p
Py k ∈ℜ  

0,1, ,k N=   are, respectively, control sequence, state sequence and output se-
quence, : n m nf ℜ ×ℜ ×ℜ→ℜ  represents the real plant and : n ph ℜ ×ℜ→ℜ  
is the output measurement, whereas : nϕ ℜ ×ℜ→ℜ  is the terminal cost and 

: n mL ℜ ×ℜ ×ℜ→ℜ  is the cost under summation. Here, 0g  is the scalar cost 
function and 0x  is the initial state. It is assumed that all functions in Equation 
(1) are continuously differentiable with respect to their respective arguments. 

This problem, which is referred to as Problem (P), is complex. Solving Prob-
lem (P) would increase the computational burden and the exact solution might 
not exist due to the nonlinear structure of Problem (P). Nevertheless, in order to 
obtain the optimal solution of Problem (P), the linear model-based optimal con-
trol model, which is referred to as Problem (M), is proposed. This problem is 
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given by 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

1T T T
1

0

0

1 1min
2 2

subject to 1 , 0

N

u k k

M

g u x N S N x N x k Qx k u k Ru k

x k Ax k Bu k x x

y k Cx k

−

=

= + +

+ = + =

=

∑
 (2) 

where ( ) , 0,1, ,p
My k k N∈ℜ =   is model output sequence, n nA ×∈ℜ  is a 

state transition matrix, n mB ×∈ℜ  is a control coefficient matrix, and p nC ×∈ℜ  
is an output coefficient matrix, while ( ) n nS N ×∈ℜ  and n nQ ×∈ℜ  are positive 
semi-definite matrices and m mR ×∈ℜ  is a positive definite matrix. Here, 1g  is 
the scalar cost function. 

Notice that only solving Problem (M) would not give the optimal solution of 
Problem (P). However, by constructing an efficient matching scheme, it is possi-
ble to obtain the optimal solution of the original optimal control problem, in 
spite of model-reality differences. 

3. System Optimization with Gauss-Newton Updating 
Scheme 

Now, consider the following solution method on system optimization. Define 
the Hamiltonian function for Problem (M) as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T T T1 1
2

H k x k Qx k u k Ru k p k Ax k Bu k= + + + + . (3) 

Then, the augmented objective function becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

T T T
1

1 T

0

1 0 0
2

N

k

g u x N S N x N p x p N x N

H k p k x k
−

=

′ = + −

+ −∑
    (4) 

where ( ) np k ∈ℜ  is the appropriate multiplier to be determined later. 

3.1. Necessary Optimality Conditions 

Applying the calculus of variation [12] [14] [15] [16] to the augmented cost 
function in Equation (4), the necessary optimality conditions are obtained, as 
shown below: 

(a) Stationary condition: 

( )
( ) ( ) ( )T 1 0

H k
Ru k B p k

u k
∂

= + + =
∂

              (5) 

(b) Costate equation: 

( ) ( ) ( ) ( )T 1Hk Qx k A p k p k
x k
∂

= + + =
∂

             (6) 

(c) State equation: 

( )
( ) ( ) ( ) ( )1

1
H k

Ax k Bu k x k
p k
∂

= + = +
∂ +

            (7) 
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with the boundary conditions ( ) 00x x=  and ( ) ( ) ( )p N S N x N= . 

3.2. Feedback Optimal Control Law 

According to the necessary conditions given in Equations (5) to (7), a feedback 
optimal control law could be constructed in which the optimal solution of Prob-
lem (M) is obtained. For this purpose, the corresponding result is stated in fol-
lowing theorem. 

Theorem 1. For the given Problem (M), the optimal control law is the feed-
back control law defined by 

( ) ( ) ( )u k K k x k= −                        (8) 

where 

( ) ( )( ) ( )
1T T1 1K k B S k B R B S k A
−

= + + +           (9) 

( ) ( ) ( )( )T 1S k A S k A BK k Q= + − +             (10) 

with the boundary condition ( )S N  given. 
Proof: From Equation (5), the stationary condition is rewritten as follows: 

( ) ( )T 1Ru k B p k= − + .                   (11) 

Applying the sweep method [15] [16], that is, 

( ) ( ) ( )p k S k x k= ,                      (12) 

and substitute Equation (12) for 1k k= +  into Equation (11) to yield 

( ) ( ) ( )T 1 1Ru k B S k x k= − + + .                   (13) 

Taking Equation (7) in Equation (13), and after some algebraic manipula-
tions, the feedback control law (8) is obtained, where Equation (9) is satisfied. 

From Equation (6), after substituting Equation (12) for 1k k= +  into Equa-
tion (6), the costate equation is rewritten as follows: 

( ) ( ) ( ) ( )T 1 1p k Qx k A S k x k= + + + .          (14) 

Considering the state Equation (7) in Equation (14), we have 

( ) ( ) ( ) ( ) ( )( )T 1p k Qx k A S k Ax k Bu k= + + + .          (15) 

Apply the feedback control law (8) in Equation (15), and doing some algebraic 
manipulations, it is concluded that Equation (10) is satisfied after comparing the 
manipulation result to Equation (12). This completes the proof. ♦ 

Taking Equation (8) in Equation (7), the state equation becomes 

( ) ( )( ) ( )1x k A BK k x k+ = −                    (16) 

and the model output is measured from 

( ) ( )My k Cx k= .                            (17) 

Hence, the solution procedure of solving Problem (M) is summarized below: 
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Algorithm 1: Feedback control algorithm 
Data Given ( ) 0, , , , , , ,A B C Q R S N x N . 
Step 0 Calculate ( ) , 0,1, , 1K k k N= −  and ( ) , 0,1, ,S k k N=   from Eq-

uations (9) and (10), respectively. 
Step 1 Solve Problem (M) that is defined by Equation (2) to obtain 
( ) , 0,1, , 1u k k N= −  and ( ) ( ), , 0,1, ,Mx k y k k N=  , respectively, from Equ-

ations (8), (16) and (17). 
Step 2 Evaluate the cost function 1g  from Equation (2). 
Remarks: 
a) The data , ,A B C  are obtained by the linearization of the real plant f  

and the output measurement h  from Problem (P). 
b) In Step 0, the offline calculation is done for ( ) , 0,1, , 1K k k N= −  and 
( ) , 0,1, ,S k k N=  . 

3.3. Gauss-Newton Updating Scheme 

Now, let us define the output residual by 

( ) ( ) ( ) ,P Mr u y k y k= −                    (18) 

where the model output (17) is reformulated as 

( ) ( ) ( )My k Cx k Du k= + .                   (19) 

Rewrite Equation (19) as the following input-output equations [25]: 

( )
( )
( )

( )

( )
( )
( )

( )

2
0

1 2 3

0 00 0 0
1 10 0
2 20

1

M

M

M

N N N N
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y uCA CB D

xy uCA CAB CB D

y N u NCA CA B CA B CA B D− − −

      
      
      
      = +
      
      
       −      







      



 (20a) 

for convenience, 

0My Ex Fu= +                          (20b) 

where 

2
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C
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 
 
 
 =
 
 
  


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1 2 3

0 0 0
0 0

0

N N N

D
CB D

F CAB CB D

CA B CA B CA B D− − −

 
 
 
 =
 
 
  







    



. 

Notice that the matrix ( )1N p nE + ×∈ℜ  is the extended observability matrix, and 
the matrix ( ) ( )1 1N p N mF + × +∈ℜ  is one type of block Hankel matrix [25]. 

Hence, consider the objective function, which represents the sum squares of 
error (SSE), given by 

( ) ( ) ( )T
2g u r u r u= .                     (21) 

Then, an optimization problem, which is referred to as Problem (O), is de-

https://doi.org/10.4236/ojop.2017.63007


S. L. Kek et al. 
 

 

DOI: 10.4236/ojop.2017.63007 91 Open Journal of Optimization 
 

fined as follows: 
Problem (O): 
Find a set of the control sequence ( ) , 0,1, , 1u k k N= − , such that the objec-

tive function 2g  is minimized. 
To solve Problem (O), consider the second-order Taylor expansion [26] [27] 

about the current ( )iu  at iteration i : 

( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( ) ( )( )

T1 1
2 2 2

T1 12
2

1 .
2

i i i i i

i i i i i

g u g u u u g u

u u g u u u

+ +

+ +

≈ + − ∇

+ − ∇ −
        (22) 

The first-order condition for Equation (22) with respect to ( )1iu +  is expressed 
by 

( )( ) ( )( )( ) ( ) ( )( )12
2 20 i i i ig u g u u u+≈ ∇ + ∇ − .                (23) 

Rearrange Equation (23) to yield the normal equation, 
( )( )( ) ( ) ( )( ) ( )( )12

2 2
i i i ig u u u g u+∇ − = −∇ .                   (24) 

Notice that the gradient of 2g  is calculated from 
( )( ) ( )( ) ( )( )T

2 2i i ig u r u r u∇ = ∇                   (25) 

and the Hessian matrix of 2g  is computed from 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T2 2
2 2i i i i ig u r u r u r u r u ∇ = ∇ +∇ ∇ 

 
       (26) 

where ( )( )ir u∇  is the Jacobian matrix of ( )( )ir u , and its entries are denoted 
by 

( )( )( ) ( )( ) , 1, 2, , 1; 1,2, , 1.i ii

ij j

rr u u F i N j N
u
∂

∇ = = = − = −
∂

 
 (27) 

From Equations (25) and (26), Equation (24) can be rewritten as 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )T T T12 i i i i i i i ir u r u r u r u u u r u r u+ ∇ +∇ ∇ − = −∇ 
 

. (28) 

By ignoring the second-order derivative term, that is, the first term at the 
left-hand side of Equation (28), we obtain the following recurrence relation: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
1T T1i i i i i iu u r u r u r u r u
−

+  = − ∇ ∇ ∇ 
 

          (29) 

with the initial ( )0u  given. Hence, Equation (29) is known as the Gauss-New- 
ton recursive equation [26] [27]. 

From the discussion above, the updating scheme based on Gauss-Newton re-
cursive approach for the control sequence is summarized below: 

Algorithm 2: Gauss-Newton updating scheme 
Step 0 Given an initial ( )0u  and tolerance ε . Set 0i = . 
Step 1 Evaluate the output error ( )( )ir u  and the Jacobian matrix ( )( )ir u∇  

from Equations (18) and (27), respectively. 
Step 2 Solve the normal equation ( )( ) ( )( ) ( ) ( )( ) ( )( )T Ti i i i ir u r u u r u r u∇ ∇ ∆ = −∇ . 
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Step 3 Update the control sequence by ( ) ( ) ( )1i i iu u u+ = + ∆ . If ( ) ( )1i iu u+ = , 
within a given tolerance ε , stop; else set 1i i= +  and repeat from Step 1 to 
Step 3. 

Remarks: 
a) In Step 1, the calculation of the output error ( )( )ir u  is done online, while 

the Jacobian matrix ( )( )ir u∇  might be done offline. 
b) In Step 2, the inverse of ( )( ) ( )( )Ti ir u r u∇ ∇  must be exist. The value of 
( )iu∆  represents the step-size for the control set-point. 

c) In Step 3, the initial ( )0u  is taken from Equation (8). The condition 
( ) ( )1i iu u+ =  is required to be satisfied for the converged optimal control se-

quence. The following 2-norm is computed and it is compared with a given to-
lerance to verify the convergence of ( )u k : 

( ) ( ) ( )( ) ( )( )
1 21 11

0

N i ii i

k
u u u k u k

−
++

=

 − = − 
 
∑ .           (30) 

d) In order to provide a convergence mechanism for the state sequence, a 
simple relaxation method is employed: 

( ) ( ) ( )( )1i i i
x px x k x x+ = + −                   (31) 

where [ ]0,1xk ∈ , px  is the state sequence of the real plant and ( )ix  is updated 
from (16). 

4. Illustrative Examples 

In this section, two examples are illustrated. The first example shows a direct 
current and alternating current (DC/AC) converter model [28] [29], while the 
second example gives a model of an isothermal series/parallel Van de Vussue 
reaction in a continuous stirred-tank reactor [30] [31]. In these models, the real 
plants are in nonlinear structure and the single output is measured. Since these 
models are in continuous time, the simple discretization scheme with the respec-
tive sampling time is applied. The optimal solution would be obtained by using 
the approach proposed and the solution procedure is implemented in the 
MATLAB environment. 

To be convenient, the quadratic criterion cost function, for both Problem (P) 
and Problem (M), is employed, that is, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1T T T

0

1 1
2 2

N

k
x N S N x N x k Qx k u k Ru k

−

=

+ +∑  

where ( ) 2 2S N I ×= , 2 2Q I ×=  and 1R = . 

4.1. Example 1 

Consider the state space representation of a direct current/alternating current 
(DC/AC) converter model [28] [29] given by 

( )
( )( )
( ) ( ) ( )

2
2

1 1
1

5 5
x t

x t x t u t
x t

= − +  
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( )
( )( )
( )( )

( ) ( )
( ) ( ) ( )

3
2 2

2 2 12
11

7 5 2
x t x t

x t x t x t u t
x tx t

 
= − + +  

 
  

( ) ( )2y t x t=  

with the initial ( )T
0 0.1,0x = , where 1x  and 2x  represent the current (in unit 

of ampere) and the voltage (in unit of volt) flow in the circuit, and u  is the 
control signal. This problem is referred to as Problem (P). 

The discrete time model of Problem (M) is formulated by 

( )
( )

( )
( ) ( )1 1

2 2

1 1 5 0 5
1 0 1 7 0.2

x k x kT T
u k

x k x kT T
 +   − ⋅ ⋅   

= +      + − ⋅ ⋅      
 

( ) ( )2y k x k=  

for 0,1, ,80k =  , with the sampling time 0.01T =  minute. 
The simulation result is shown in Table 1. The initial cost of 0.0429 unit, 

which is the cost function value for Problem (M), is calculated before the itera-
tion. After five iterations, the convergence is achieved. The final cost of 110.8926 
units is preferred instead of the original cost of 1.0885 × 103 units. This reduc-
tion saves 89.8 percent of the expense. The value of SSE of 7.647011 × 10–12 
shows that the model output is very close to the real output. Hence, the ap-
proach proposed is efficient to obtain the optimal solution of Problem (P). 

Figure 1 shows the final control trajectory, which is used to update the model 
output, in turn, to approximate the real output trajectory. From Figure 2, it can  
 

 
Figure 1. Final control trajectory. 

 

 
Figure 2. Final output (–) and real output (+) trajectories. 
 

Table 1. Simulation result for Example 1. 

Number of Iterations Initial Cost Final Cost Original Cost SSE 

5 0.0429 110.8926 1.0885 × 103 7.647011 × 10–12 
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be seen that both of the output trajectories are fitted each other with the smallest 
value of SSE. 

Figure 3 shows the control trajectory, which is applied in the real plant. With 
the matching scheme that is established in the approach proposed, the final state 
trajectory tracks the real state trajectory closely, as shown in Figure 4. 

Figure 5 and Figure 6 show the initial trajectories of control and state, re-
spectively. They are the optimal solution of Problem (M) before the Gauss- 
Newton updating is applied. 

The differences between the real output and the model output, which are after and 
before iteration, and are shown in Figure 7 and Figure 8, respectively. These 
 

 
Figure 3. Real control trajectory. 

 

 
Figure 4. Real state (+) and final state (–) trajectories. 

 

 
Figure 5. Initial control trajectory. 

 

 
Figure 6. Initial state trajectory. 
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model-reality differences reveal the applicability and reliability of the approach 
proposed, where the output error is minimized definitely. 

4.2. Example 2 

Consider the dynamical system of an isothermal series/parallel Van de Vussue 
reaction in a continuous stirred-tank reactor [30] [31]: 

( ) ( ) ( )( ) ( )( ) ( )2
1 1 1 150 10 10x t x t x t x t u t= − − + −  

( ) ( ) ( ) ( ) ( )2 1 2 250 100x t x t x t x t u t= − +  

( ) ( )2y t x t=  

with the initial ( )T
0 2.5,1x = , where 1x  and 2x  are, respectively, the dimen-

sionless reactant and product concentration in the reactor, and u  is the di-
mensionless dilution rate. Let this problem as Problem (P). 

In Problem (M), the model used is presented by 

( )
( )

( )
( ) ( )1 1

2 2

1 1 100 0 7.5
1 50 1 100 1

x k x kT T
u k

x k x kT T T
 +   − ⋅ ⋅   

= +      + ⋅ − ⋅ ⋅      
 

( ) ( )2y k x k=  

for 0,1, ,100k =  , with the sampling time 0.002T =  second. 
  Table 2 shows the simulation result, where the number of iteration is 5. The 

 

 
Figure 7. Output error after iteration. 

 

 
Figure 8. Output error before iteration. 

 
Table 2. Simulation result for Example 2. 

Number of Iterations Initial Cost Final Cost Original Cost SSE 

5 12.6916 543.1649 3.0122 × 105 1.587211 × 10–12 
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implementation of the approach proposed begins with the initial cost of 12.6916 
units. During the iterative procedure, the convergence is achieved with giving 
the final cost of 543.1649 units. This shows a reduction of 99.8 percent of the 
saving cost from the original cost of 3.0122 × 105 units. The value of SSE of 
1.587211 × 10–12 indicates that the approach proposed is efficient to generate the 
optimal solution of Problem (P). 

The graphical result in Figure 9 and Figure 10 shows, respectively, the tra-
jectories of final control, final output and real output. The final control is stable 
and this stabilization manner makes the steady state of the final output occurred 
at 1.2324. Moreover, the final output fits the real output very well. 

Figure 11 and Figure 12 show the trajectories of control and state in the real 
plant. With this control trajectory, the state trajectories are converged to 2.8250 
and 1.2324, respectively. In addition, by using the approach proposed, this 
steady state is tracked closely by the final state trajectory. 

The initial trajectories of control and state are shown, respectively, in Figure 
13 and Figure 14. They are the optimal solution of Problem (M) before the 
Gauss-Newton updating scheme is employed. 

Figure 15 and Figure 16 show the differences between the real output and the 
model output, respectively. These differences are the output error, which is mi-
nimized apparently. 
 

 
Figure 9. Final control trajectory. 

 

 
Figure 10. Final output (–) and real output (+) trajectories. 

 

 
Figure 11. Real control trajectory. 

https://doi.org/10.4236/ojop.2017.63007


S. L. Kek et al. 
 

 

DOI: 10.4236/ojop.2017.63007 97 Open Journal of Optimization 
 

 
Figure 12. Real state (+) and final state (–) trajectories. 

 

 
Figure 13. Initial control trajectory. 

 

 
Figure 14. Initial state trajectory. 

 

 
Figure 15. Output error after iteration. 

 

 
Figure 16. Output error before iteration. 

4.3. Discussion 

From Examples 1 and 2, the structures of Problem (M) and Problem (P) are 
clearly different. Solving Problem (M) with taking the Gauss-Newton updating 
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scheme into consideration provides us the iterative solution, which approx-
imates to the correct optimal solution of Problem (P), in spite of the model-re- 
ality differences. The results obtained are evidently demonstrated in Figure 1 
and Figure 16. Hence, the applicability of the approach proposed is significantly 
proven. 

5. Concluding Remarks 

In this paper, an efficient computational approach was proposed, where the least 
squares scheme is established. In our approach, the model-based optimal control 
problem is solved in advanced. Consequently, the feedback control law, which is 
constructed from the model used, is added in the output measurement. Through 
optimizing the sum squares of error, the Gauss-Newton updating scheme is de-
rived. On this basis, the control trajectory is updated repeatedly during the 
computational procedure. By feed backing the updated control trajectory into 
the dynamic system, the iterative solution of the model used approximates to the 
correct optimal solution of the original optimal control problem, in spite of 
model-reality differences. For illustration, two examples were studied. Their si-
mulation results and graphical solutions indicated the applicability and reliabili-
ty of the approach proposed. In conclusion, the efficiency of the approach pro-
posed is proven. 
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