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Abstract 
This paper gives an overview of the Lee Carter method and reiterates the fea-
sibility of using it to construct mortality forecast for the population data. In a 
first step, the model is fitted in a traditional way and used to extrapolate fore-
cast of the time-varying mortality index. The observed pattern of the mortality 
rates shows a different variability at different ages, highlighting that the ho-
moscedasticity hypothesis is quite unrealistic. Thus, in a second step, the pa-
per aims to produce more reliable mortality forecasting, focusing on the er-
rors in the estimation of the model parameters. The robustness of the esti-
mated parameter is analysed throughout an experimental strategy which al-
lows to assess the robustness of the Lee Carter model by inducing the errors to 
satisfy the homoscedasticity hypothesis. The graphical and numerical results 
are tested by means of a comparison in terms of prediction accuracy. 
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1. Introduction 

The actuarial literature has developed a number of approaches to make objective 
projections on mortality rates [1] [2] [3]. In particular, in the last decades, actu-
aries and demographers have made increasing use of more and more sophisti-
cated methods to forecast mortality. They moved towards stochastic methods, 
which have the advantage of producing a forecast probability distribution rather 
than a deterministic point forecast. Among the others, we focus on extrapolative 
methods of mortality forecasting, which make use of the regularity typically 
found in both age patterns and trends over time to extrapolate aggregate meas-
ures such as life expectancy in a traditional and relatively simple way. Belong to 
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these methods the Lee Carter (LC hereinafter) method becomes popular thanks 
to its practical applicability, accuracy and objectivity of the results. This model, 
introduced by Lee and Carter in 1992 [4], has become a landmark in the demo-
graphic literature. It combines the information about mortality level and age 
pattern to explain the observed mortality rates. However, the model has quite 
stringent assumptions and some defects. One of the assumptions is that the age 
factor is constant to time factor, but this will determine a loss of ability to reflect 
the mutual effect between age and time. Traditional LC model needs large data 
size, but this requirement cannot be satisfied by all the countries. Another typi-
cal assumption is that the errors are homoscedastic. We will deal with this hy-
pothesis which can seriously differ from reality. In the last few years many re-
searchers have proposed models to improve the LC model, even if in many cases 
they lost advantages in simplicity and effectiveness in fitting accuracy. Some au-
thors, for example, added variables to put birth-year effect into the model [5], 
but they found multicollinearity and homoscedasticity. Other authors have 
combined other theories trying to expand the utility of the model, without im-
proving model effect, but making the model much more complicated. For this 
reasons, we choose to focus on the basic LC model, with the aim to take into ac-
count the more realistic hypothesis of homoscedasticity in the errors. In par-
ticular, once we have tested that errors show homoscedasticity, we propose an 
experimental strategy to assess the robustness of the LC model by inducing the 
errors to satisfy the homoscedasticity hypothesis. Final aim of the paper is to 
show that, by considering the homoscedasticity in the errors, it is possible to ob-
tain more reliable mortality projections. The paper is structured as follows: in 
Section 2, we give a brief overview of the LC model, its fitting using Singular 
Value Decomposition and the Iterative procedure to estimate the time-varying 
parameter. In Section 3, we develop an experimental strategy to face the homo-
scedastic issue of the LC model. In Section 4, an application to real data is illus-
trated using Italian mortality rates and the performance of our experiment is 
examined by a comparative study. Some concluding remarks are provided in 
Section 5.  

2. About the Lee Carter Model 

Let us recall the traditional LC model analytical expression (4): 

( ), ,ln x t x x t x tm α β κ ε= + +
                    

(1) 

where ,x tm  are the log-mortality rates and xα , xβ  and tk  are an age-spe- 
cific parameter independent of time, a coefficient describing the tendency of 
mortality to change and a time-varying parameter, respectively. The error term 

,x tε  is assumed to be homoscedastic (with mean 0 and variance 2
εσ ). 

2.1. Fitting the Model Using Singular Value Decomposition 

To find a Least Squares Solution to the LC analytical expression, we use the close 
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approximation to the Singular Value Decomposition (SVD) method proposed 
by Lee and Carter [4], initially assuming that the errors are homoscedastic. To 
obtain a unique solution, the sum of the xβ  coefficients is fixed equal to 1 and 
the sum of the tk  parameters equal to 0. The SVD approximation follows the 
next step: 
1) We estimate xα  as the logarithm of the geometric mean of the crude mor-

tality rates, averaged over all t , for each x :  
1

1 1

1 ln ln
tntn

h
x xt xt

t t t t
m m

h
α

= =

 
= =  

  
∑ ∏  

In other words, the xα  coefficients must be simply the average values over 
time of the ( ),ln x tm  values for each x .  
2) We compute tk  as the sum over age of ( )( ),ln x t xm α− .  
3) We estimate xβ  from ( ) ( )1ln xt x x t xtm kα β ε ′− = +  (where ( )1

tk  refers to the 

tk  estimated at step 2) using the least squares estimation, i.e. choosing xβ   

to minimize ( )( )21

,
ln xt x x t

x t
m kα β− −∑

( ) ( )
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t t
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−
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∑

∑
.  

By way of these steps, we find each xβ  by regressing ( )( ),ln x t xm α−  on tk , 
without a constant term, separately for each age group x .  

2.2. The Iterative Procedure to Estimate kt 

The estimation introduced in Section 2.1, is a first stage estimation based on logs 
of death rates rather than the death rates themselves. To guarantee that the fitted 
death rates will lead to the actual numbers of deaths, when applied to given 
population age distribution, it is necessary to estimate tk  in a second step, tak-
ing the xα  and xβ  estimates from the first step. In particular, we use an itera-
tive method to adjust the estimated tk , so that the actual total observed deaths  

1

xk

xt
x x

d
=
∑  equal the total expected deaths ( )

1

x x t
xk

k
xt

x x
e e α β+

=
∑ , for each year t . 

The iterative method proceeds as follows: 

1) We compare the total expected deaths 
( )( )1

1

x x t
xk k

xt
x x

e e
α β+

=
∑  to the actual total 

observed deaths 
1

xk

xt
x x

d
=
∑  in each period. 

2) With this comparison, we can find one of three possible states: 

i) If 
( )( )1

1 1

x x t
xk xkk

xt xt
x x x x

e e d
α β+

= =

>∑ ∑ , we need to decrease the expected deaths, adjust- 

ing the estimated tk  so that the new estimate of tk , say ( )2
tk , will be: 

( ) ( ) ( )2 1 1t tk k d= − , if ( )1 0tk >  (where ( )1
tk  is the first estimate of tk ); 

( ) ( ) ( )2 1 1t tk k d= + , if ( )1 0tk < , where d  is a small number. 

ii) If 
( )( )1

1 1

x x t
xk xkk

xt xt
x x x x

e e d
α β+

= =

=∑ ∑ , we stop here the iterations. 
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iii) If 
( )( )1

1 1

x x t
xk xkk

xt xt
x x x x

e e d
α β+

= =

<∑ ∑ , we need to increase the expected deaths adjusting  

the estimated tk  so that : ( ) ( ) ( )2 1 1t tk k d= + , if ( )1 0tk > ; ( ) ( ) ( )2 1 1t tk k d= − , if 
( )1 0tk < . 

3) Go back to Step 1. 
Once we obtain the new time-varying parameter tk , we can model it as a 

stochastic process. To this aim, we use the standard Box and Jenkins methodol-
ogy (identification-estimation-diagnosis) and choose an appropriate ARIMA (p, 
d, q) model for the mortality index tk  [6] [7]. 

3. The Homoscedasticity Issue: Designing the Experiment 

Let us state with ,x tM�  the matrix holding the mean centred log-mortality rates, 
given by ( ),ln x t xm α− . We can express the LC model as follows: 

( ), , ,lnx t x t x x t x tM m α β κ ε= − = +�                   (2) 

We have seen that, in the original LC model, the errors are supposed to be 
homoscedastic with respect to the different age-groups. This hypothesis can be 
seriously different from reality and can affect the robustness of the mortality in-
dex tk . As we know (4, Appendix B), the LC model incorporates different 
sources of uncertainty: uncertainty in the demographic model and uncertainty in 
forecasting. The uncertainty in the demographic model can be incorporated by 
considering errors in fitting the original matrix of mortality rates, while forecast 
uncertainty arises from the errors in the forecast of the mortality index. Aim of 
this contribution is to take into consideration the demographic component in 
order to focus on the sensitivity of the estimated mortality index. To achieve this 
aim, we propose an experimental strategy to force the fulfilment of the homo-
scedasticity hypothesis and to assess its effect on the LC estimates. 

To induce the errors to satisfy the homoscedasticity hypothesis, we propose 
the following scheme: 

1) We express the residual term ,ˆx tε  as the difference between the matrix 

,x tM� , referring to the mean centred log-mortality rates and the product between 
βx and kt, deriving from the LC model estimation:  

, ,
ˆˆ ˆx t x t x tMε β κ= −�

                        (3) 

2) We explore the residuals by means of statistical indicators such as: Range, 
Interquartile Range, Mean Absolute Deviation (MAD) of a sample of data, 
Standard Deviation, Box-plot, etc., in order to find some non-conforming age- 
groups. 

3) We find those age-groups which show higher variability in the errors and 
rank the non-conforming age-groups according to decreasing non-conformity, 
i.e. from the more widespread to the more homogeneous one.  

4) For each selected age-group: 
4.1) we reduce the variability dividing the entire range in several quantiles, 

leaving aside each time the fixed α% of the extreme values;  
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4.2) we substitute the extreme values with uniform random values ranging 
from the αth to the 100-αth percentiles, with α given by: 0.05; 0.10; 0.15; 0.20; 0.25; 
0.30.  

5) For each age-group and for each percentile, we define a new error matrix 

,x tε�  which is used for computing a new data matrix ,
ˆ

x tM , from which it is pos-
sible to derive the correspondent tk .  

6) We replicate each running under the same conditions a large number of 
times (i.e.: 1000). 

By way of this experiment, we investigate the residuals heteroscedasticity de-
riving from two factors: the age-group effect and the amount of altered values in 
each age-group. Throughout the successive running, we obtain more and more 
homogeneous error terms, which allow to determine the hypothetical pattern of 

tk . Thus, under these assumptions, we investigate the changes in tk  which can 
be derived from every simulated error matrix.  

From the relation: 

, , ,x t x t x t x tM Mε β κ − = → 
���

                    
(4) 

we obtain a new matrix ,x tM
�

, where ,x tM�  is the matrix holding the actual data 
and ,x tε�  the matrix holding the mean of altered errors. Assuming fixed the βx, 
the tk  are obtained as the Ordinary Least Square (OLS) coefficients of a multi-
variate regression model: 

( ) ( ) ( ) ( ) ( )1 years 1 age years1 1 ag Mβ β β× × ××
′′ ′ ′Κ =

�
 

4. Numerical Application 
4.1. Traditional LC 

We fit the LC model to a data matrix of male Italian death rates, supplied by the 
Human Mortality Database [8]. The data, downloaded from year 1950 to 2000, 
are divided in 21 subgroups for five-year age groups, ranging from 0, 1 - 4 up to 
95 - 99. We denote the “Death rates” by a 5 1×  matrix, where the first number 
refers to the age interval and the second number to the time interval. For each 
calendar year: 1 1 1, 1, , 1 nt t t t h t= + + − =� , with 1 1nh t t= − + , we consider all 
the ages 1 2, , , kx x x x= � , grouped in classes as [ ]0,1 - 4,5 - 9,10 -14, ,95 - 99� . 
Following the SVD approximation described in Section 2.1, we obtain the raw 
estimates of xα , xβ  and tk . To eliminate potential differences between pre-
dicted and actual deaths, we run the iterative process described in Section 2.2 
many times (1000) obtaining more reliable tk  estimates. 

We model the new time-varying parameter tk , as a stochastic process, fol-
lowing the standard Box and Jenkins methodology (identification-estimation- 
diagnosis). In a first step, we analyse the general pattern of the time series, no-
ticing a decreasing linear trend (see Figure 1). 

By using the Akaike and Schwarz Information Criterion (AIC and SIC) per 
model, together with examination of autocorrelations and partial autocorrela-
tions, we select an ARIMA (0, 1, 0) process to model the male tk  index, i.e.:  
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Figure 1. Mortality index trend—Traditional LC. 

 
Table 1. ARIMA Model Coefficient. 

Male ARIMA (0, 1, 0) 

Variable Coefficient Std. Error t-Statistic Prob. 

λ −0.424882 0.137488 −3.090321 0.0033 

 

1t t tK K λ ε−= + +  
In Table 1 are displayed the estimated parameters for the constant terms λ , 

indicating the average annual change of tk , with its standard errors. The mov-
ing average term and the autoregressive parameter are equal to zero in the 
ARIMA (0, 1, 0) case.  

Basing on the period 1950-2000, we make use of the ARIMA (0, 1, 0) model to 
forecast the index of mortality tk  for the next 25 years. The results will be 
compared in the next to the tk  forecast derived by the experimental strategy. 

4.2. Experimental LC 

As explained in the previous section, the typical result of applying the LC model 
is a time series indicating the mortality trend. Figure 1 shows the tk  estimates 
obtained from real data. With the experiment we propose, we aim to explore in 
which way the presence of heteroscedasticity can affect the successive forecasting 
process.  

Following the scheme of our procedure, after expressing the error term ,ˆx tε  
as the difference: ,

ˆ ˆx t x tM β κ−� , we carry on an analysis of the residuals’ variability 
in order to find some “non-conforming” age-groups. We explore the residuals 
by means of some dispersion indices, in the matter in question Interquartile 
Range, MAD, Range and Standard Deviation, to determine the age-groups in 
which the model hypothesis does not hold (Table 2). 

In Table 2, we highlighted in red the suspected age-groups, noticing that the  
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Table 2. The analysis of the residuals’ variability. 

Age IQ Range MAD Range STD 

0 0.107 0.059 0.3 0.075 

1 - 4 2.046 0.99 4.039 1.139 

5 - 9 1.2 0.565 2.318 0.653 

10 - 14 0.165 0.083 0.377 0.099 

15 - 19 1.913 0.872 3.615 1.007 

20 - 24 0.252 0.131 0.51 0.153 

25 - 29 0.856 0.433 1.587 0.498 

30 - 34 0.536 0.25 1.151 0.299 

35 - 39 0.24 0.186 0.868 0.239 

40 - 44 0.787 0.373 1.522 0.424 

45 - 49 0.254 0.126 0.436 0.145 

50 - 54 0.597 0.311 1.29 0.367 

55 - 59 0.196 0.151 0.652 0.187 

60 - 64 0.247 0.17 0.803 0.212 

65 - 69 0.207 0.119 0.604 0.147 

70 - 74 0.294 0.171 0.739 0.202 

75 - 79 0.23 0.117 0.485 0.133 

80 - 84 0.346 0.187 0.835 0.227 

85 - 89 0.178 0.099 0.482 0.124 

90 - 94 0.307 0.153 0.701 0.186 

95 - 99 0.071 0.042 0.22 0.051 

 
residuals in the age-groups 1 - 4; 5 - 9; 15 - 19 and 25 - 29 show the highest va-
riability. The age - groups 30 - 34; 40 - 44; 50 - 54 could also be suspected and 
should be examined. To choose the age-groups to enter in our experiment, we 
provide also a graphical analysis. In Fig. 2 we display the boxplot of the residuals’ 
variability for each age-group in order to see if these residuals are in compliance 
with the expected ones.  

If we have a look at the age-group 1 - 4; 15 - 19, which show the largest wide-
spread, we can notice that the range goes from −2 to 2. We rank these non- con-
forming age-groups according to decreasing non-conformity, i.e. from the more 
widespread to the more homogeneous one. The ultimate aim is to analyze at 
what extend the estimated tk ’s are affected by such a variability.  

On the basis of the previous analysis, we conclude that the age-groups 1 - 4; 5 
- 9; 15 - 19 and 25 - 29 are far away from being homogeneous and will be se-
quentially entered in the experiment. For each of the four age-groups, we reduce 
the variability dividing the entire range into 6 quantiles: 5%, 10%, 15%, 20%, 
25%, 30%, leaving aside each time a fixed 5% of the extreme values. We generate  

https://doi.org/10.4236/ojs.2017.74042


M. Russolillo 
 

 

DOI: 10.4236/ojs.2017.74042 615 Open Journal of Statistics 
 

 
Figure 2. Residuals’ variability Boxplot for each age-group. 

 

 
Figure 3. Plot-Matrix showing the Kt resulting from different experimental conditions. 
 

1000 random replications and define, for each age-group and for each quantile, a 
new error matrix used for computing a new data matrix. From the replicated 
errors, we compute the estimated tk  and then we extrapolate the 24 average of 
the 1000 simulated tk  (Figure 3). 
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Figure 3 shows the 24,000 estimated tk  (1000 Replications times 4 Age- 
groups times 6 quantile) arranged in 4 rows, representing the successive age- 
groups entered in the experiment, and the 6 columns representing the successive 
increment in the percentage of outer values which have been transformed. For 
better interpret this outcome, in Figure 4 we have plotted the resulting average 
of the 1000 tk  under the 24 conditions.  

By comparing the 24 averaged tk  (in red) to the original one (in black), we 
can see the effect of the changes in homogeneity on the tk  for each of the four 
age-groups. In particular, we can notice that as the homoscedasticity in the er-
rors increases, tk ’s tend to be flatter than the original one. In other words, more 
regular residuals lead to a flatted pattern of the tk ’s. For sake of comparison, in 
Figure 5 we have matched in a Boxplot the original and transformed Residuals. 

 

 
Figure 4. kt synthetic view. 

 

 
Figure 5. Final versus Actual Residuals. 
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Figure 6. Response Surface. 

 
In Figure 5, we can see that the final residual matrix (bottom row) shows, af-

ter the experiment, a more homogenous pattern in line with the classical hy-
pothesis and varies in a range from −1 to 1. Finally, to better interpret the 
changes in the tk  slope, in Figure 6 we illustrate the Response Surface [9] 
plotted for the four age-groups considered in the experiment. What is evident 
from the graph is that the more homogenous the residuals are, the more flatten 
the tk  is. 

4.3. Comparing Actuarial Projections 

Our aim is to compare the results obtained from the LC model fitted in a tradi-
tional way to the results obtained processing the residuals with the proposed ex-
perimental strategy. In the last case, our findings showed that a more regular re-
sidual matrix leads to a flatter tk . Taking into consideration the new tk  (let’s 
call it “experimental tk ”), our aim is to find an appropriate ARIMA time series 
model for the mortality index and then use that mortality model to generate 
forecasts of the mortality rates. The ultimate purpose is to compute life expec-
tancy at birth from forecasted mortality rates in both cases and compare them to 
the actual one.  

As first step, by following the methodology illustrated in Section 4.1, we find 
that, among the others, an ARIMA (0, 1, 0) model is more feasible for the ex-
perimental tk  series as happened for the tk  series derived from the tradi-
tional LC model (let’s call it “traditional tk ”). The ARIMA (0, 1, 0) models are 
then used to generate forecasts of the mortality index for the next 25 years based 
on the period 1950-2000. Table 3 lists these values for both cases.  

As second step, we build up projected life tables in both cases, by using the 
traditional and experimental tk . The procedure tracked is the following: after  
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Table 3. ARIMA (0, 1, 0): Experimental versus traditional projected kt. 

Years Experimental Kt_Males Traditional Kt_Males 

2001 −13.0598 −14.5414 

2002 −15.4492 −14.9663 

2003 −17.8387 −15.3911 

2004 −20.2281 −15.8160 

2005 −22.6176 −16.2409 

2006 −25.0070 −16.6658 

2007 −27.3965 −17.0907 

2008 −29.7860 −17.5156 

2009 −32.1754 −17.9404 

2010 −34.5649 −18.3653 

2011 −36.9543 −18.7902 

2012 −39.3438 −19.2151 

2013 −41.7332 −19.6400 

2014 −44.1227 −20.0648 

2015 −46.5121 −20.4897 

2016 −48.9016 −20.9146 

2017 −51.2911 −21.3395 

2018 −53.6805 −21.7644 

2019 −56.0700 −22.1893 

2020 −58.4594 −22.6141 

2021 −60.8489 −23.0390 

2022 −63.2383 −23.4639 

2023 −65.6278 −23.8888 

2024 −68.0172 −24.3137 

2025 −70.4067 −24.7386 

 
obtaining the tk  projected series, we construct projected mortality rates. Then 
we project life expectancy at birth from 2001 up to 2009, by using the traditional 

tk  in the first case and, for the same period, by using the experimental tk . In 
order to test the validity of our experiment, we compare the resulting life expec-
tancy to the actual life expectancy at birth from 2001 up to 2009. The choice of 
the period (2001-2009) as the forecast date was due to the consideration of up-
dated projections available for Italy in the HMD. Figure 7 shows the results in 
the three cases. This comparative analysis of the traditional and experimental 
procedure to the actual life expectancy values confirms satisfying results.  

From Figure 7, we can notice that the experimental strategy we proposed 
leads to life expectancy values, which interpolates the actual ones. This result 
seems to confirm our initial hypothesis about the heteroscedasticity in the  
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Figure 7. Traditional, experimental and actual life expectancy at birth. 

 
errors. In other words, if we take into account the heteroscedasticity in the errors, 
we obtain more realistic and reliable survival projections. 

5. Conclusions 

The LC mortality forecasting approach has several appreciated properties, but 
also quite stringent assumptions. A major one considers the errors ,x tε  homo-
scedastic but, in our experience, this is seriously different from reality. Our 
analysis illustrates the potential utility of considering the homoscedasticity issue 
of the LC model in survival analysis. When homoscedasticity is found in the re-
siduals, we warn that successive forecast could be biased in some way. For this 
reason, what we propose is an experimental strategy to force the fulfilment of the 
homoscedasticity hypothesis by inducing the errors to satisfy it. In the numerical 
application we find that a more regular residual matrix leads to a more flat tk . 
We test this result by means of a comparison in terms of prediction accuracy. 
We project life expectancy at birth from 2001 up to 2009, by using the traditional 

tk , the experimental tk  and comparing them to the actual life expectancy at 
birth projected for the same period. In terms of predictive performance, for this 
particular data set, we found that the experimental tk  led to more realistic sur-
vival projections. In future research we would like to provide a statistical mean-
ing in the tk  sloping changes and to provide a general rule in assessing the LC 
model sensitivity.  
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