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Abstract 
In two previous papers, we explained the classification of all crystallographic 
point groups of n-dimensional space with n ≤ 6 into different isomorphism 
classes and we describe some crystal families. This paper mainly consists in 
the study of three crystal families of space E5, the (di-iso hexagons)-al, the 
hypercube 5 dim and the (hypercube 4 dim)-al crystal families. For each stu-
died family, we explain their name, we describe their cell and we list their 
point groups which are classified into isomorphism classes. Then we give a 
WPV symbol to each group. (WPV means Weigel Phan Veysseyre). Our me-
thod is based on the description of the cell of the holohedry of each crystal 
family and of the results given by the Software established by one of us. The 
advantage to classify the point groups in isomorphism classes is to give their 
mathematical structures and to compare their WPV symbols. So the study of 
all crystal families of space E5 is completed. Some crystal families of space E5 
can be used to describe di incommensurate structures and quasi crystals. 
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1. Introduction 

The crystal families of fourth-dimensional space E4 have been studied in the pa-
per [1]. 

The crystal families of five-dimensional space E5 have been studied in differ-
ent papers: 

- the names of the 32 crystal families together with the WPV symbols of their 
holohedries are listed in paper [2]. 
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- families numbered I, II, III, IV, V, VI, VII, XII, XIII, XVI, XVII in paper [3]. 
- families numbered I to XV together with all point groups in paper [4]. 
- families numbered XII, XVI, XVII, XIX, XX, XXI in paper [5]. 
- families numbered XVIII, XXII, XXVI, XXVII in paper [6]. 
- families numbered XXIII, XXIV, XXV, XXX, XXXII in paper [7]. 
The studied families have been reassembled thanks to the geometric nature of 

their cell. Their numbers appear in different papers as for instance in the paper 
of Plesken [8]. 

To end the study of all crystal families of space E5, we list the properties and 
the crystallographic point groups of the three following families: the (di iso hex-
agons)-al family (N˚XXIX), the hyper cube 5 dim. family (N˚XXXI) and the 
(hyper cube 4 dim)-al family (N˚XXVIII). Their names are explained in different 
paragraphs. 

From now, we use cr for crystallographic.  
For each family, we use the results given by the Scientific Software established 

by H. Veysseyre [9] (SS E5 is the given name of this software) i.e. the point op-
eration list and the sub group list of the holohedries of the three studied families. 
These results have been completed by the geometric nature of the cell. The given 
symbols are in agreement with the “Hermann-Mauguin” symbols of the cr point 
groups of spaces E2 and E3 and respect the International Sub-Commission of the 
Nomenclature recommendations [10]. However some symmetry operations ap-
pear in spaces E4 and E5 as double rotations or reflection-double rotations and 
we introduce some new notations explained in different paragraphs.  

The cr point groups of a given family are rearranged in “isomorphism classes” 
which have been explained in the previous two papers [7], [11]. We only give the 
examples of the classes C5 and C5 × C2 then D5 and D5 × C2 or D10. 

The isomorphism class C5 (generated by a cyclic group of order 5) has the 
identity and one double rotation of order 5 generated by the operation 5153, i.e. 4 
elements of order 5, so we write this list of elements 4(5) 1. Only one cr point 
group belongs to this class, the group denoted [5] (space E4) of the crystal family 
decadic-al (N˚XXIV, [7]). Then, we consider the isomorphism class C5 × C2 or 
C10 (generated by a cyclic group of order 10) with 4(10) 4(5) 1(2) 1 for elements, 
this list means 4 elements of order 10, 4 elements of order 5, one element of or-
der 2, and the identity. These elements are obtained as the Cartesian product of 
the elements of groups C5 and C2 (4(5) 1) × (1(2) 1) = 4(10) 4(5) 1(2) 1. To ob-
tain this result, we do the direct product of one element of order 5 and one ele-
ment 2 which gives one element of order 10, therefore 4 elements of order 10, 
then the product of the 4 elements of order 5 with the identity give 4 elements of 
order 5. We repeat this process with the second element of group C2 i.e. the 
identity. We finally obtain 4(10) 4(2) 4(5) 1 Three cr point groups of class C5 × 
C2 belong to the family N˚XXIV [7], they have for WPV symbols [10], 5 

 
 

and [5] ⊥ m. The isomorphism class D5 dihedral group of order 10 has 4(5) 5(2) 
1 for elements and 2 groups of family N˚XXIV [7] belong to this class. Their 
WPV symbols are [5] 2 (space E4), [ ]5 1 . 
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Then, we consider the isomorphism class D5 × C2 or D10 (dihedral group of 
order 20) with 4(10) 4(5) 11(2) 1 for elements; these elements are obtained as the 
Cartesian product of the elements of groups D5 and C2. Four cr point groups of 
class D5 × C2 belong to family N˚XXI, they are [10] 2 2 (space E4), [ ]10 11 , 

5 2 1 
   and ([5] 2) ⊥ m. 

In these two examples, we note that a group g4 (space E4) of a class C, gives a 
group g4 ⊥ m in the class C × C2. We find this general property for any class C 
(see Tables 1-5).  

Other examples of direct product of arrangements are given in paragraph 
2.2. 

2. Some Properties of the Element List of a Finite Point Group 
2.1. Remark 

The number of elements of order two is an odd number whereas the one of ele-
ments of any order different of two is always an even number. 

2.2. Relations between the Element Numbers of Different Orders 

We begin with an example, the direct product of the two groups Q8 and C2. 
Elements of group Q8: 6(4) 1(2) 1, of group C2: 1(2) 1.  
Elements of the group Q8 × C2 (6(4) 1(2) 1) × (1(2) 1) = 12(4) 3(2) 1 (Table 

4). 
Indeed, the direct product of the 6 elements of order 4 with 1 element of order 

2 gives 6 elements of order 4 and with the identity 6 elements of order 4 there-
fore 12 elements of order 4. The three elements of order 2 are easily found. 

It is possible to generalize this process for any Cartesian products but it is not 
valid for a semi direct product. For instance if n2 is the number of elements of 
order 2 in the group C, 2n′  the one in the group C × C2, then 2 22 1n n′ = +  

Now, we give the example of the direct product D3 × D3 (Table 1). 
Elements of dihedral group D3 (order 6) 2(3) 3(2) 1. 
Elements of the group D3 × D3  

(2(3) 3(2) 1) × (2(3) 3(2) 1) = 4(3) 6(6) 2(3) 6(6) 9(2) 3(2) 2(3) 3(2) 1  
     = 12(6) 8(3) 15(2) 1. 

3. General Introduction about the Three Studied Families 

1) The (di iso hexagons)-al family splits into two sub-families, the primitive 
sub-family (N˚XXIX) and the centered sub-family (N˚XXIXa). The holohedry 
symbols of these two families are respectively (([12] 2 2).6 mm) ⊥ m (order 24 × 
12 × 2 = 576) and ( )( ) 563 2 2 3m 1×  (order 12 × 6 × 2 = 144). These families 
have respectively 89 and 15 cr point groups. 

2) The hyper cube 5 dim. family (N˚XXXI) has for holohedry the cr point 
group [ ]( ) [ ] ( )( )4 55 2 8 42 3 1 1×   (order 10 × 8 × 24 × 2 = 3840). This family is 
an irreducible crystal family of space E5, [12], therefore all these 13 point groups 
belong to space E5. 
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3) The (hyper cube 4 dim.)-al family splits into two sub-families, the primitive 
sub-family (N˚XXVIIIa) and the (hyper cube 4 dim. Z centered)-al sub-family 
(N˚XXVIII). The holohedry symbols of these two families are respectively  

[ ]( )8 m3m m⊥  (order 8 × 48 × 2 = 768) and [ ] [ ]( )( )12 8 43m m− ⊥  (order 48 
× 24 × 2 = 2304). These two families have 90 and 51 cr point groups. 

The name of these crystal families, the building of their cells and some nota-
tions used in different WPV symbols are explained below. 

4. (Di iso Hexagons)-al Crystal Families (N˚XXIX) 
4.1. Geometric Study of the Cell 

As the name suggested it, the cell of the primitive family is a right hyper prism 
(suffix “al”), the basis of which is constituted by two equal hexagons belonging 
to two orthogonal planes, it is the reason why the words di and iso appear in the 
family name. This cell is the one of the family N˚XXI of space E4 (system 29) de-
scribed in paper [1]. 

The metric tensor of the quadratic form defining the cell of this family is as 
follows (matrix N˚1): 

Matrix N˚1 associated with the cell of the (di iso hexagons)-al family in 
space E5 

2 0 0 0
2 0 0 0

0 0 2 0
0 0 2 0
0 0 0 0

a a
a a

a a
a a

b

− 
 − 
 −
 

− 
 
 

 

Caption Let be denoted ei (i =1, … , 5) the five axis which define the Eucli-
dean space E5 

2 2
5 1 2 2 1 3 4 4 31, , 4 2ie a i e b e e e e e e e e a= ∀ = = • = • = • = • = −  

This tensor depends on two length parameters: the side of the two hexagons (a) 
and the length of the hyper prism (b). 

4.2. Properties of the Point Groups and of the Isomorphism  
Classes of the Two Families N˚XXIX 

The orders of all cr point groups of these two families and of the isomorphism 
classes are multiplies of 12, i.e. of the form p × 12 (with p integer) except for one 
class of order 18 The p values are 1, 2, 3, 4, 6, 8, 12, 24 and 48 for the holohedry 
of the primitive family (48 × 12 = 576). Indeed, the family cell is built from two 
equal hexagons belonging to two orthogonal planes. As a matter of fact, the cr 
point group of the hexagon is 6 mm of order 12 and the one of the equilateral 
triangle is 3 m of order 6; these two groups belong to the cr point groups of the 
two families N˚XXIX. It is the reason why the orders of the cr point groups are 
on the form p × 12 and why two groups of order 18 appear into the list of the 
groups. 
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Table 1 lists the 15 cr point groups of family XXIXa and Table 2 the 89 cr 
point groups of family XXIX 

 
Table 1. Cr point groups of the centered (di iso hexagons)-al family (N˚XXIXa). 

Classes WVP Symbols of the the cr point groups Arrangements Orders 

D3 × C3 ( )33 2 3×  E4; ( )33 1 3×  6(6) 8(3) 3(2) 18 

D3 × D3 ( ) ( )33 2 3 2×  E4; ( ) ( )33 1 3 2× ; ( ) ( )33 1 3 1×  12(6) 8(3) 15(2) 36 

D3 × C3 × C2 ( )( ) 533 2 3 1× ×  20(6) 8(3) 7(2) 36 

(C3 × C3).C4 ( )3 3 4⊥   E4; ( )3 3 42⊥   18(4) 8(3) 9(2) 36 

D3 × D3 × C2 ( ) ( ) 533 2 3 2 1× ×  32(6) 8(3) 31(2) 72 

((C3 × C3).C4) × C2 ( )( ) 53 3 4 1⊥ ×  8(6) 36(4) 8(3) 19(2) 72 

D6.D3 
( )63 2 2 3m  E4; ( ) ( )463 2 2 3 1  

( ) ( )436 2 1 3 1

; ( )36 2 1 3m  
24(6) 18(4) 8(3) 21(2)) 72 

(D6.D3) × C2 ( )( ) 563 2 2 3m 1×  56(6) 36(4) 8(3) 43(2))  144 

 
Table 2. Cr point groups of the primitive (di iso hexagons)-al family (N˚XXIX). 

Classes WVP Symbols of the the Point Groups Arrangements Orders 

Q12 44 33  E4, 44 33  2(6) 6(4) 2(3) 1(2) 12 

Q12 × C2 ( )44 33 m⊥  6(6) 12(4) 2(3) 3(2)  

C6.C4 63 44  E4; 63 44 ; 36 44 ; 36 44  6(6) 6(4) 2(3) 9(2) 24 

D3 × C4 
( )33 2 44×  E4; ( )33 2 44×  

( )33 1 44× ; ( )33 1 44×  

4(12) 2(6) 8(4) 2(3) 
7(2) 

24 

D4 × C3 ( )44 2 2 33×  E4; ( )44 1 1 33× ; ( )44 2 1 33×  4(12) 10(6) 2(4) 2(3) 
5(2) 

24 

D3 × C6 ( )33 2 63×  E4; ( )33 1 36×  20(6) 8(3) 7(2) 36 

D3 × C3 × C2 ( )( )33 2 3 m× ⊥  20(6) 8(3) 7(2) 36 

Q12 × C3 ( )44 33 3×  E4; ( )44 33 3×

 12(12) 8(6) 6(4) 8(3) 
1(2) 

36 

D4 × D3 
( ) ( )44 2 2 33 2×  E4; ( ) ( )44 2 2 33 1×  ( ) ( )44 2 1 33 2× ; 

( ) ( )44 2 1 33 1× , ( ) ( )44 1 1 33 2× ; ( ) ( )44 1 1 33 1×  
4(12) 10(6) 8(4) 2(3) 23(2) 48 

(C6.C4) × C2 ( )63 44 m⊥  14(6) 12(4) 2(3) 19(2) 48 

D3 × C4 × C2 ( )( )33 2 44 m× ⊥  8(12) 6(6) 16(4) 2(3) 15(2) 48 

D4 × C3 × C2 ( )( )44 2 2 33 m× ⊥  8(12) 22(6) 4(4) 2(3) 11(2) 48 

D6 × D3 ( ) ( )63 2 2 33 2×  E4; ( ) ( )63 1 1 33 2×  ( ) ( )36 2 1 33 2×  32(6) 8(3) 31(2) 72 

D3 × D3 × C2 ( ) ( )( )33 2 3 2 m× ⊥  32(6) 8(3) 31(2) 72 

C12.C6 [ ]12 63  E4; [ ]12 36 ; 12 63 
  



; 12 36 
  



 12(12) 20(6) 6(4) 8(3) 25(2) 72 

D6.D3 
( ) ( )63 2 2 3 1  E4; ( ) ( )63 2 2 3 2  

( ) ( )36 2 1 3 1

, ( ) ( )36 2 1 3 2

 
24(6) 18(4) 8(3) 21(2) 72 
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Continued 

((C3 × C3). 
C4) × C2 ( )( ) 43 3 4 1⊥ ×  E4; ( )( ) 43 3 42 1⊥ × ; ( )( )3 3 4 m⊥ ⊥  8(6) 36(4) 8(3) 19(2) 72 

C12.D3 [ ] ( )12 3 2  E4; ( )12 3 2 
  



; [ ] ( )12 3 1  24(12) 8(6) 12(4) 8(3) 19(2) 72 

(C6.C4) × C3 ( )63 44 3×  E4; ( )36 44 3×

; ( )63 44 3×

; ( )36 44 3×

 12(12) 36(6) 6(4) 8(3) 9(2) 72  

D3 × C6 × C2 ( )( )33 2 63 m× ⊥  48(6) 8(3) 15(2) 72 

Q12 × C3 
 × C2 ( )( )44 33 3 m× ⊥  24(12) 24(6) 12(4) 8(3) 3(2) 72 

D4 × D3 × C2 ( ) ( )( )44 2 2 33 2 m× ⊥  8(12) 22(6) 16(4) 2(3) 47(2) 96 

D12.C6 
[ ]( )12 2 2 63  E4; [ ]( )12 2 2 36 ; [ ]( )12 1 1 63  [ ]( )12 1 1 36 ; 

( )12 2 1 63 
   ; ( )12 2 1 36 

    
24(12) 48(6) 12(4) 8(3) 51(2) 144 

(C12.C6) ×  
C2 [ ]( )12 63 m⊥  24(12) 48(6) 12(4) 8(3) 51(2) 144 

((C3 × C3). 
C4) × C2) × C2 

( )( )( )43 3 4 1 m⊥ × ⊥  24(6) 72(4) 8(3) 39(2) 144 

(C6 × C6).C4 ( )6 6 4⊥   E4; ( )6 6 42⊥  ; ( )66 3 4×   24(6) 72(4) 8(3) 39(2) 144 

(D6.D3) × C2 
 

( )( ) 463 2 2 3m 1×  E4; ( )( )63 2 2 3m m⊥  

( ) ( )( ) 463 2 2 3 2 1× ; ( ) ( )( ) 563 2 2 3 2 1×  

( ) ( )( ) 436 2 1 3 2 1× ; ( )( ) 436 2 1 3m 1×  

( ) ( )( )63 2 2 3 1 m⊥  

56(6) 36(4) 8(3) 43(2) 144 

D6 × D3 × C2 ( ) ( )( )63 2 2 3 2 m× ⊥  72(6) 8(3) 63(2) 144 

C12.D6 
[ ]12 3m  E4; 12 3m 

  


 

[ ] ( )12 62 2 2 ; ( )12 62 2 2 
  



  
24(12) 32(6) 48(4) 8(3) 31(2) 144 

(C12.D3) × C2 [ ] ( )( )12 3 2 m⊥  48(12) 24(6) 24(4) 8(3) 39(2) 144 

(C6.C4) × C3 
 × C2 ( )( )63 44 3 m× ⊥  24(12) 80(6) 12(4)8(3)19(2) 144 

D12.D6 
[ ]( )12 2 2 6mm  E4, [ ]( )12 2 2 622 , [ ]( )12 2 2 3m

( )12 1 2 6mm 
  

 , ( )12 1 2 622 
  

 , ( )12 1 2 3m 
  

  
24(12) 96(6) 84(4) 8(3) 75(2) 288 

(D12.C6) × C2 [ ]( )( )12 2 2 63 m⊥  48(12) 104(6) 24(4) 8(3) 103(2) 288 

((C6 × C6).C4) 
× C2 

( )( )6 6 4 m⊥ ⊥  56(6) 144(4) 8(3) 79(2) 288 

((D6.D3) × C2) 
× C2 ( )( )( )463 2 2 3m 1 m× ⊥  120(6) 72(4) 8(3) 87(2) 288 

(C12.D6) × C2 [ ]( )12 3m m⊥  48(12) 72(6) 96(4) 8(3) 63(2) 288 

(D12.D6) × C2 [ ]( )( )12 2 2 6mm m⊥  
48(12) 200(6) 168(4) 8(3) 

151(2) 
576 

Caption of the two Table 1 and Table 2: First column: Mathematical symbols of the isomorphism classes. Second column: WPV symbols of the cr point 
groups of the centered (di iso hexagons)-al crysal family (Table 1), of the primitive (di iso hexagons)-al crystal family (Table 2), the cr point groups of 
space E4 are pointed out. Third column: List of the symmetry elements with their numbers of every isomorphism class. Fourth column: Order of these 
classes.  
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4.3. Remarks about Some Notations of the WPV Symbols 

1) We recall the well-known symbols used in the WPV symbols; the cross × 
for a direct product, the point. for a semi-direct product, the geometric symbol ⊥ 
for a geometric and direct product. 

2) A great number of cr point groups are isomorphic to dihedral groups. 
Some of them are well known as 3 m (isomorphic to group D3 of order 6), 4 mm 
(isomorphic to group D4 of order 8), 6 mm (isomorphic to group D6 of order 
12). In Table 1, another dihedral groups appear:  

The groups (63 2 2), (66 2 2) isomorphic to dihedral group D6 (order 12), 63 
is the symbol of a double rotation of order 6 generated by a rotation of order 6 
and a rotation of order 3 into two orthogonal planes, 66 has a similar property. 

The group ([8] 2 2) isomorphic to group D8 (order 16),  
The groups ([12] 2 2), ([12] 1  1 ), ([12 ] 2 1 ) isomorphic to group D12 (order 

24). 
As previously, the first number of the symbol i.e. 63, 8, 12 for instance, gives 

the order of the rotation generating the dihedral group and the following num-
bers are operations of order two. We note that the order of the group is the 
double of the order of the first cr. point operation. 

4.4. Summary 

Among the 15 + 89 = 104 cr point groups of the two families N˚XXIX, 22 cr 
point groups g4 belong to space E4 and define 22 isomorphic classes that we de-
note Cg4. These 22 groups appear in space E5 under the form g4 ⊥ m or g4 × 51 . 

18 cr point groups g4 give 18 cr point groups on the form g4 ⊥ m, therefore 18 
isomorphic classes denoted Cg4 × C2. 

4 cr point groups give 2 groups g4 ⊥ m and g4 × 51  which belong to the same 
isomorphic class, therefore 4 isomorphism classes. However 2 groups g4 ⊥ m 
belong to another classes defined by another group g’4. 

Two arrangements define two different isomorphism classes.  
Then, the result is that the 104 cr point groups of the two families N˚XXIX 

belong to 22 + 18 + (4 − 2) + 2 = 44 different isomorphic classes. 
The 13 cr point groups. 

5. (Hyper Cube 5 dim) Crystal Family (N˚ XXXI) 
5.1. Geometrical and Analytic Description of the Hyper Cube  

5 dim. (H5) of Space E5 

The cell of the family N˚XXXI is a regular hyper cube, one of the five regular 
polytopes of the Euclidean five-dimensional space [13]. It is the generalization of 
the square (space E2), of the cube (space E3). The hyper cube of space E4, one of 
the six regular polytopes of this Euclidean space can be built by translating a 
cube (of space E3) along a line orthogonal to space E3 of a length equal to the side 
of the cube. This polytope is called “Hyper cube 4 dim.” or H4 for short. The 
description of its cell and the list of its cr point groups are in [14]. Then, we re-

https://doi.org/10.4236/apm.2017.78027


R. Veysseyre et al. 
 

 

DOI: 10.4236/apm.2017.78027 420 Advances in Pure Mathematics 
 

peat the same method from the hyper cube H4 in order to obtain the hypercube 
H5. We recall that the square has 4 vertices and 4 sides, the cube 8 vertices, 12 
sides and 6 faces (equal squares); the hyper cube H4 has 16 vertices, 32 sides and 
24 faces, it is bounded by 16 equal cubes or volumes. The hyper cube H5 has 32 
vertices, 80 sides and 24 faces, it is bounded by 16 equal cubes or volumes, it is 
bounded by 20 equal cubes and 10 equal hyper cubes H4. 

In Euclidean space E3, the characteristic numbers of a regular polytope verify 
the Euler relation: 

Number of vertices − number of sides + number of faces = 2 (8 − 12 + 6 = 2 
for the cube). 

This relation becomes Number of vertices + number of faces = number of 
sides + number of volumes (16 + 24 = 32 + 8) for the hyper cube H4. 

The analytic description of the hyper cube H5 can be obtained by choosing an 
orthonormal basis denoted (O, i, j, k, l, m) where O is the center of the hyper 
cube H5 and (i, j, k, l, m) the names of the unit vectors of the five axes. The 32 
vertices of H5 have for coordinates: ±1, ±1, ±1, ±1, ±1. The side of this hyper 
cube has for length 2. The 10 hyper cubes H4 which bound the hyper cube H5 
belong to space (i, j, k, l), (j, k, l, m) and so on…, one coordinate of the center Oi 
(i = 1, …., 10) equals +1 (or −1) and the other are null for instance (0, 0, −1, 0, 0). 
Thanks to this analytic description, it is easy to write the matrices of all the point 
groups of the hyper cube H5. 

The metric tensor of the quadratic form defining the cell of this family is as 
follows (matrix N˚2). 

Matrix N˚2 associated with the cell of the (hyper cube 5 dim.) family in 
space E5 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a
a

a
a

a

 
 
 
 
  
 
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5.2. Order of the Symmetry Group of the Holohedry of the Hyper  
Cube H5 

The order of the symmetry group of the hyper cube H5 is 3840, this number is 
given by the software SS5. It can be found by the relation given in the publica-
tion to the Academic Sciences of Paris (1980) [15]. Indeed, we find that the ho-
lohedry order of the hyper cube H4 is 384. The hyper cube H5 can be built as a 
right hyper prism of basis the hyper cube H4 hence the holohedry order is 384 × 
2 and this decomposition can be done in 5 different ways therefore the holohe-
dry order is 384 × 2 × 5 = 3840. 

5.3. Properties of the Point Groups and of the Isomorphism  
Classes of the Family N˚XXXI 

The software SS5 gives 13 point groups to the family XXXI. This family is an ir- 
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Table 3. Cr point groups of the (hyper cube 5 dim) crystal family (N˚XXXI). 

 Cr point groups of the (Hyper cube 5 dim) crystal family 

Classes WPV Symbols Arrangement Order 

C5.(C2)4 [ ]5 2222  64(5) 15(2) 80 

(C5.(C2)4) × C2 [ ]( ) 55 2222 1×  64(10) 64(5) 31(2) 160 

D5. 
(D4 × C2) 

[ ]( ) ( )( )45 2 42 2 2 1× ; 

[ ]( ) ( )( )45 1 4 2 1 1×  
64(5) 60(4) 35(2) 160 

D5.(C2)5 [ ]( )5 2 mmmmm  64(10) 64(5) 120(4) 71(2) 320 

D5.C8.C4 [ ]( ) [ ]5 2 8 42  ; [ ]( )5 2 8 4 
  
 

 80(8) 64(5) 140(4) 35(2) 320 

(D5.C8.C4) × C2 [ ]( ) [ ]( ) 55 2 8 42 1×   64(10) 160(8) 64(5) 280(4) 71(2) 640 

D5.(A4 ×  
C2).C4 [ ]( ) ( )5 2 2 62 42   384(5) 240(6) 180(4) 80(3) 75(2) 960 

D5.C8.S4 [ ]( ) [ ] ( )45 2 8 42 3 1  ; [ ]( )5 2 8 43m 
  
 

 160(12) 240(8) 384(5) 400(6) 500(4) 80(3) 155(2) 1920 

(D5.(A4 ×  
C2).C4) × C2 [ ]( ) ( )( ) 55 2 2 62 42 1×   384(10) 384(5) 560(6) 360(4) 80(3) 151(2) 1920 

(D5.C8.S4) × C2 [ ]( ) [ ] ( )( ) 55 2 8 42 3 1 14 ×   320(12) 384(10) 480(8) 384(5) 880(6) 1000(4) 80(3) 311(2) 3840 

First column: Mathematical symbols of the isomorphism classes. Second column: WPV symbols of the cr point groups of the (hyper cube 5 dim) crystal 
family. Third column: List of the symmetry elements with their numbers of every isomorphism class. Fourth column: Order of these classes. (C2)4 is the 
abridged notation of C2 × C2 × C2 × C2. 
 

reducible family of space E5, [12], therefore all the point groups belong to space 
E5, no group takes the form g4 ⊥ m or g4 × 51  where g4 is a group of space E4. 
The 13 cr point groups belong to 10 isomorphism classes. Table 3 lists the 13 cr 
point groups of family N˚XXXI. 

5.4. Summary 

The 13 cr point groups of family N˚XXXI belong to 10 isomorphic classes: 
7 classes with one point group only, 
3 classes with two point groups. 

6. (Hyper Cube 4 dim)-al Crystal Family (N˚XXVIII) 
6.1. Geometric Study of the Cell 

The suffix “al” means that the cell of this family is a right hyper prism, its basis is 
a regular hyper cube H4. As the hyper cube family H4 (space E4). This family 
splits into two sub families: the primitive sub-family N˚XXVIIIa with  

[ ]( )8 m3m m⊥  for holohedry symbol (order 8 × 48 × 2 = 768) and 90 cr point 
groups and the (hyper cube 4 dim. Z centered)-al sub-family N˚XXVIII with 

[ ] [ ]( )( )12 8 43m m− ⊥  for holohedry (order 48 × 24 × 2 = 2304 and 51 cr point 
groups. We note that the order of the holohedry of the centered sub-family is 
greater than the one of the primitive family; as in space E4.  

The metric tensor of the quadratic form defining the cell of this family is as 
follows (matrix N˚3). 

Matrix N˚3 associated with the cell of the (hyper cube 4 dim.)-al family in 
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space E5 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a
a

a
a

b

 
 
 
 
 
 
 
 
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It depends on 2 parameters of length: a the side of the hypercube H4 and b the 
side of the hyper prism. 

6.2. Properties of the Point Groups and of the Isomorphism  
Classes of the Two Families N˚XXVIII 

The orders of all cr point groups of these two families and of the isomorphism 
classes are multiplies of 8, i.e. of the form p × 8 (with p integer). The p values are 
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144 and 288 for the holohedry 
(288 × 8 = 2304) of the centered family. Indeed, another name of the family 
N˚XXVIII, (hyper cube 4 dim.)-al could be “(di iso squares)-al because its cell is 
built from two equal squares in space E4 belonging to two orthogonal planes. As 
a matter of fact, the cr point group of the square is 4 mm of order 8. It is the 
reason why the orders of the cr point groups are on the form p × 8. The hyper 
cube of space E4 has been studied in paper [14]. 

Table 4 lists the 90 cr point groups of family XXVIIIa and Table 5 the 51 cr 
point groups of family XXVIII. 

6.3. Remark about One Notation of the WPV Symbols 

Besides the well-known marks as the cross × for a direct product, the point. for a 
semi-direct product, the geometric symbol ⊥ for a geometric and direct product, 
another mark has been introduced into some symbol, a hyphen -.This mark is 
used into the symbol 44 - 44, of order 8 in space E4, the two generators have a 
common element, the homothetie 41 , therefore it is not a semi-direct product; 
in Annex, we show how the 8 elements of this cr point group can be obtained. 
This mark is used for the following point groups of order 16 [8]-[8], [8]-[ 8 ], of 
order 48 [12]-[8], [12]-[12], [12]-[12 ]. The order of the groups so generated 
depend of the number of common elements of the generators. 

In Annex, we give generators of some cr point groups. 

6.4. Summary 

Among the (90 + 51) = 141 point groups of the two families XXVIII, 37 point 
groups g4 belong to space E4 and define 37 isomorphic classes as we denote Cg4. 
All these 37 groups appear in space E5 under the form g4m and belong to 37 
isomorphism classes denoted Cg4 × C2 and the 141 point groups of the two fam-
ilies XXVIII belong to 37 + 37 = 74 isomorphism classes. 
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Table 4. Cr point groups of the primitive (hypercube 4 dim)-al crystal family (N˚XXVIIIa). 

 Cr point groups of the primitive crystal family (Hyper cube 4 dim)-al 

Classes WPV Symbols Arrangement Order 

Q8 & (C4-C4) 44 44−  E4; 44 44−  6(4) 1(2) 8 

Q8.C2 
( )44 44 2−   E4; ( )44 44 1−  ;  

( )44 44 2− 

; ( )44 44 1− 

 
8(4) 7(2) 16 

Q8 × C2 ( )44 44 m− ⊥  12(4) 3(2) 16 

C8.C2 [ ]8 2  E4; [ ]8 1 ; 8 2 
  


; 8 1 
  


 4(8) 6(4) 5(2) 16 

C8-C8 [ ] [ ]8 8−  E4; [ ]8 8 −   
; 8 8   −      

 8(8) 4(4) 3(2) 16 

Q8.C3 ( )44 44 3−   E4 8(6) 6(4) 8(3) 1(2) 24 

Q8.(C2 × C2) ( )44 44 222−   E4; ( ) ( )44 44 2 1− × ; ( ) ( )44 44 2 1− ×

 12(4) 19(2) 32 

D8.C2 
[ ]( )8 2 2 2  E4; [ ]( )8 2 2 1 ; [ ]( )8 1 1 2 ; [ ]( )8 1 1 1 ; 

( )8 2 1 2 
  

 ; ( )8 2 1 1 
  

  
8(8) 8(4) 15(2) 32 

C4.(C4 × C2) ( )4 44 2×  E4; ( )42 44 2× ; ( )42 44 2×

 20(4) 11(2) 32 

(C8-C8).C2 [ ] [ ]( )8 8 2−   E4; ( )8 8 2   −     ; [ ]( )8 8 1 −   
  16(8) 4(4) 11(2) 32 

C8.C4 [ ]8 42  E4; [ ]8 4 ; 8 42 
  


; 8 4 
  


 8(8) 16(4) 7(2) 32 

(Q8.C2) × C2 ( )( )44 44 2 m− ⊥  16(4) 15(2) 32 

(C8.C2) × C2 [ ]( )8 2 m⊥  8(8) 12(4) 11(2) 32 

(C8-C8) × C2 [ ] [ ]( )8 8 m− ⊥  16(8) 8(4) 7(2) 32 

C8.D3 [ ] ( )8 3 2  E4; ( )8 3 1 
  


 12(8) 8(6) 6(4) 8(3) 13(2) 48 

(Q8.C3) × C2 ( )( )44 44 3 m− ⊥  24(6) 12(4) 8(3) 3(2) 48 

D8.C4 
[ ]( )8 2 2 42  E4; [ ]( )8 2 2 4 ; [ ]( )8 1 1 42  

[ ]( )8 1 1 4 ; ( )8 2 1 42 
  

 ; ( )8 2 1 4 
  

  
16(8) 20(4) 27(2) 64 

D4.(C4 × C2) 
( )42m 44 2×  E4; ( ) ( )42 2 2 44 2×  

( ) ( )42 2 2 44 1× ; ( )42m 44 1×  
36(4) 27(2) 64 

(C4 × C4).C4 ( )4 4 4⊥   E4; ( )4 4 42⊥  ; ( )4 4 42×   44(4) 19(2) 64 

C8.D4 [ ]8 42m  E4, [ ] ( )48 42 1 2 , 8 42m 
  


, ( )48 42 1 2 
  


 16(8) 28(4) 19(2) 64 

Q8.(C2 × C2 × C2 ( )( )44 44 222 m− ⊥  24(4) 39(2) 64 

(D8.C2) × C2 [ ]( )( )8 2 2 2 m⊥  16(8) 16(4) 31(2) 64 

(C4.C4 × C2) × C2 ( )( )4 44 2 m× ⊥  40(4) 23(2) 64 

((C8-C8).C2) × C2 [ ] [ ]( )( )8 8 2 m− ⊥  32(8) 8(4) 23(2) 64 

(C8.C4) × C2 [ ]( )8 42 m⊥  16(8) 32(4) 15(2) 64 

D4.A4 ( )44 2 2 23  E4 32(6) 12(4) 32(3) 19(2) 96 

https://doi.org/10.4236/apm.2017.78027


R. Veysseyre et al. 
 

 

DOI: 10.4236/apm.2017.78027 424 Advances in Pure Mathematics 
 

Continued 

(C8.D3) × C2 [ ] ( )( )8 3 2 m⊥  24(8) 24(6) 12(4) 8(3) 27(2) 96 

D8.D4 
[ ]( )8 2 2 42m  E4; [ ]( ) ( )8 2 2 42 2 2  ( )8 2 1 42m 

  


( ) ( )8 2 1 42 2 2 
  

 ; [ ]( )8 1 1 42m ; ( ) ( )8 2 1 42 m 1 
  

  
16(8) 68(4) 43(2) 128 

(D8.C4) × C2 [ ]( )( )8 2 2 42 m⊥  32(8) 40(4) 55(2) 128 

D4.(C4 × C2) × C2 ( )( )42m 44 2 m× ⊥  72(4) 55(2) 128 

((C4 × C4).C4) × C2 ( )( )4 4 4 m⊥ ⊥  88(4) 39(2) 128 

(C8.D4) × C2 [ ]( )8 42m m⊥  32(8) 56(4) 39(2) 128 

D8.A4 [ ]( )8 2 2 23  E4; ( )8 2 1 23 
  

  48(8) 32(6) 36(4) 32(3) 43(2) 192 

D4.S4 ( )4 2 1 43m  E4; ( ) ( )4 442 1 2 42 1 3  32(6) 84(4) 32(3) 43(2) 192 

D4.(A4 × C2) ( )4 2 1 m3  E4; ( ) ( )442 1 2 2 62  96(6) 36(4) 32(3) 27(2) 192 

(D4.A4) × C2 ( )( )42 2 2 23 m⊥  96(6) 24(4) 32(3) 39(2) 192 

((C8-C8).D4) × C2 [ ]( )( )8 2 2 42m m⊥  32(8) 136(4) 87(2) 256 

C8.(S4 × C2) [ ]8 m3m  E4; [ ] ( )8 2 62 2 ; ( )8 m 3 2 
  


; ( )8 2 62 m 
  


 48(8) 96(6) 132(4) 32(3) 75(2) 384 

(D8.A4) × C2 [ ]( )( )8 2 2 23 m⊥  96(8) 96(6) 72(4) 32(3) 87(2) 384 

(D4.S4) × C2 ( )( )4 2 1 43m m⊥  96(6) 168(4) 32(3) 87(2) 384 

D4.(A4 × C2) × C2 ( )( )4 2 1 m3 m⊥  224(6) 72(4) 32(3) 55(2) 384 

(C8.(S4 × C2)) × C2 [ ]( )8 m3m m⊥  96(8) 224(6) 264(4) 32(3) 151(2) 768 

 
Table 5. Cr point groups of the centered (hypercube 4 dim)-al crystal family (N˚XXVIII). 

 Cr point groups of the centered crystal family (Hyper cube 4 dim)-al 

Classes WPV Symbols Arrangement Order 

Q8.C3 ( )44 44 33−   E4  8(6) 6(4) 8(3) 1(2) 24 

Q8 × C3 ( )44 44 33− ×  E4; ( )44 44 33− ×  12(12) 2(6) 6(4) 2(3) 1(2) 24 

C8.C3 [ ]8 33  E4; 8 33 
  


 4(12) 12(8) 2(6) 2(4) 2(3) 1(2) 24 

C8.D3 [ ] ( )8 33 2  E4; ( )8 33 1 
  


 12(8) 8(6) 6(4) 8(3) 13(2) 48 

C12-C8 
[ ] [ ]12 8−  E4; [ ]12 8 −   

;  

[ ]12 8  −  
; 12 8   −      

 
12(12) 12(8) 2(6) 6(4) 2(3) 13(2) 48 

C12-C12 [ ] [ ]12 12−  E4; 12 12   −      
 16(12) 8(6) 8(4) 8(3) 7(2) 48 

(Q8.C3) × C2 ( )( )44 44 33 m− ⊥  24(6) 12(4) 8(3) 3(2) 48 

(Q8 × C3) × C2 ( )( )44 44 33 m− × ⊥  24(12) 6(6) 12(4) 2(3) 3(2) 48 

(C8.C3) × C2 [ ]( )8 33 m⊥  8(12) 24(8) 6(6) 4(4) 2(3) 3(2) 48 
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C12.C6 [ ]12 62  E4 12(12) 26(6) 6(4) 26(3) 1(2) 72 

D8.D3 [ ]( ) ( )8 2 2 33 2  E4; [ ]( ) ( )8 1 1 33 2  ( ) ( )8 2 1 33 1 
  

  16(12) 24(8) 8(6) 8(4) 8(3) 31(2) 96 

(C12-C12).C2 [ ] [ ]( )12 12 2−   E4; ( )12 12 1   −      48(12) 8(6) 12(4) 8(3) 19(2) 96 

(C8.D3) × C2 [ ] ( )( )8 33 2 m⊥  24(8) 24(6) 12(4) 8(3) 27(2) 96 

(C12-C8) × C2 [ ] [ ]( )12 8 m− ⊥  24(12) 24(8) 6(6) 12(4) 2(3) 27(2) 96 

C8.C3.C4 [ ]8 33 42   E4; 8 33 4 
  
 

 16(12) 24(8) 8(6) 32(4) 8(3) 7(2) 96 

(C12-C12) × C2 [ ] [ ]( )12 12 m− ⊥  32(12) 24(6) 16(4) 8(3) 15(2) 96 

(C12-C8).C3 [ ] [ ]( )12 8 3−   E4; [ ]( )12 8 3 −     12(12) 36(8) 26(6) 6(4) 26(3) 37(2) 144 

(C12.C6) × C2 [ ]( )12 62 m⊥  24(12) 78(6) 12(4) 26(3) 3(2) 144 

D12.D4 
[ ]( ) ( )12 2 2 42 2 2  E4; [ ]( ) ( )12 2 2 4 2 1  

[ ]( ) ( )12 1 1 42 1 1 ; [ ]( ) ( )12 1 1 4 2 1   
48(12) 48(8) 8(6) 36(4) 8(3) 43(2) 

 
192 

 

(D8.D3) × C2 [ ]( ) ( )( )8 2 2 33 2 m⊥  32(12) 48(8) 24(6) 16(4) 8(3) 63(2) 192 

((C12-C12).C2) × C2 [ ] [ ]( )( )12 12 2 m− ⊥  96(12) 24(6) 24(4) 8(3) 39(2) 192 

(C8.C3.C4) × C2 [ ]( )8 33 42 m⊥   32(12) 48(8) 24(6) 64(4) 8(3) 15(2) 192 

((C12-C8).C3) × C2 [ ] [ ]( )( )12 8 3 m− ⊥  24(12) 72(8) 78(6) 12(4) 26(3) 75(2) 288 

C12.A4.C2 [ ]12 23 2   E4 96(12) 80(6) 12(4) 80(3) 19(2) 288 

(D12-D4) × C2 [ ]( ) ( )( )12 2 2 42 2 2 m⊥  96(12) 96(8) 24(6) 72(4) 8(3) 87(2) 384 

(C12-C8).D6 
[ ] [ ]( ) ( )12 8 62 2 2−   E4;  

[ ]( ) ( )12 8 62 1 1 −   
  

96(12) 144(8) 80(6) 84(4) 80(3) 91(2) 576 

C12.S4.C2 [ ]12 43m 2   E4; [ ] ( )12 42 3 1 24   96(12) 272(6) 84(4) 80(3) 43(2) 576 

(C12.A4.C2) × C2 [ ]( )12 23 2 m⊥   192(12) 240(6) 24(4) 80(3) 39(2) 576 

(C12-C8).S4 [ ] [ ]( )12 8 43m−   E4; [ ] [ ]( )12 8 432−   [ ]( )12 8 43m −   
  96(12) 144(8) 464(6) 228(4) 80(3) 139(2) 1152 

((C12-C8).D6) × C2 [ ] [ ]( ) ( )( )12 8 62 2 2 m− ⊥  192(12) 288(8) 240(6) 168(4) 80(3) 183(2) 1152 

(C12.S4.C2) × C2 [ ]( )12 43m 2 m⊥   192(12) 624(6) 168(4) 80(3) 87(2) 1152 

((C12-C8).S4) × C2 [ ] [ ]( )( )12 8 43m m− ⊥  192(12) 288(8) 1008(6) 456(4) 80(3) 279(2) 2304 

Caption of the two Table 4 and Table 5: First column: Mathematical symbols of the isomorphism classes. Second column: WPV symbols of the cr point groups 
of the primitive (hyper cube 4 dim)-al crystal family (Table 4), of the centered (hyper cube 4 dim)-al crystal family (Table 5); the cr point groups of space E4 are 
pointed out. Third column: List of the symmetry elements with their numbers of every isomorphism class. Fourth column: Order of these classes.  
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7. Conclusion 

This paper brings a final term to the study of all the crystal families and of the 
crystallographic point groups of space E5. This study has a mathematic interest, 
with the list of the point groups in isomorphism classes but it can be used for the 
study of the incommensurate structures and of the quasi crystals [16]. We have 
studied some families of space E6 used for the tri incommensurate structures. 
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Annex 

In this annex, we explain how some groups can be defined from their generators. 
Let be denoted (x, y, z, t) the four axes of space E4 and (x, y, z, t, u) the five axes 
of space E5. 

Group 44-44, isomorphism class C4-C4 

The 8 elements of group 44-44 of family XXVIIIa (space E4) can be obtained in 
the following way. One double rotation 44 is generated by the element +1 +1

xy zt4 4  
and another one by the element +1 1

xz yt4 4− . The product of these two rotations is 
easy if we use a matrix representation as below: 

1 1
xt yz

0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0

4 4
0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0

− −

−     
     − − −     × = =
     −
     

−     

 

In this way, we can obtain the 6 elements of order 4. The homothetie 41  is 
the square of any matrix and belongs to the two generators. 

Group 44 44− , isomorphism class C4-C4 
For the group 44 44−  (space E5) of family XXVIIIa, we take for generators 

+1 +1
xy zt4 4  and +1 1

xz yt u4 4 m− . The product of these two rotations is easy if we use a 
matrix representation as below: 

1 1
xt yz u

0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0

4 4 m0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1

− −

   
   − −   
   × =−
   

−   
   −   

 

The homothetie 41  is the square of any matrix. 
Group (44-44).2, isomorphism class (C4-C4).C2 
For the group (44-44).2 (order 16, space E5) of family XXVIIIa, we take for 

generators the two double rotations of order 4, +1 +1
xy zt4 4 , +1 1

xz yt4 4−  and the rotation 
of order 2, xy2 . The product of the two rotations +1 +1

xy zt4 4  and xy2  gives 
another double rotation 44. The other rotations of order 2 are obtained from the 
product of the different rotations 44 and 41  with xy2 . The product of these 
two rotations is easy if we use a matrix representation as below 

1 +1
xy zt

0 1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0 0 0

4 4
0 0 0 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 1 0

−

− −     
     − −     × = =
     
     

− −     

 

Group (44-44).1 , isomorphism class (C4-C4).C2 
For the group (44-44). 1  (order 16, space E5) of family XXVIIIa we take for 

generators +1 +1
xy zt4 4 , +1 1

xz yt4 4−  and the homothetie of order 2, xyu1  
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xyu

1 0 0 0 0
0 1 0 0 0

10 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− 
 − 
  =
 
 
 − 

. 

The different operations of this group are obtained as previously (product of 
matrices). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact apm@scirp.org 

https://doi.org/10.4236/apm.2017.78027
http://papersubmission.scirp.org/
mailto:apm@scirp.org

	Crystallography in Spaces E2, E3, E4, E5 … Study of Three Crystal Families of Space E5
	Abstract
	Keywords
	1. Introduction
	2. Some Properties of the Element List of a Finite Point Group
	2.1. Remark
	2.2. Relations between the Element Numbers of Different Orders

	3. General Introduction about the Three Studied Families
	4. (Di iso Hexagons)-al Crystal Families (N˚XXIX)
	4.1. Geometric Study of the Cell
	4.2. Properties of the Point Groups and of the Isomorphism Classes of the Two Families N˚XXIX
	4.3. Remarks about Some Notations of the WPV Symbols
	4.4. Summary

	5. (Hyper Cube 5 dim) Crystal Family (N˚ XXXI)
	5.1. Geometrical and Analytic Description of the Hyper Cube 5 dim. (H5) of Space E5
	5.2. Order of the Symmetry Group of the Holohedry of the Hyper Cube H5
	5.3. Properties of the Point Groups and of the Isomorphism Classes of the Family N˚XXXI
	5.4. Summary

	6. (Hyper Cube 4 dim)-al Crystal Family (N˚XXVIII)
	6.1. Geometric Study of the Cell
	6.2. Properties of the Point Groups and of the Isomorphism Classes of the Two Families N˚XXVIII
	6.3. Remark about One Notation of the WPV Symbols
	6.4. Summary

	7. Conclusion
	Acknowledgements
	References
	Annex
	Group 44-44, isomorphism class C4-C4


