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Abstract 
The exponentially-distributed random timestepping algorithm with boundary 
test is implemented to evaluate the prices of some variety of single one-sided 
barrier option contracts within the framework of Black-Scholes model, giving 
efficient estimation of their hitting times. It is numerically shown that this al-
gorithm, as for the Brownian bridge technique, can improve the rate of weak 
convergence from order one-half for the standard Monte Carlo to order 1. 
The exponential timestepping algorithm, however, displays better results, for 
a given amount of CPU time, than the Brownian bridge technique as the step 
size becomes larger or the volatility grows up. This is due to the features of the 
exponential distribution which is more strongly peaked near the origin and 
has a higher kurtosis compared to the normal distribution, giving more stabil-
ity of the exponential timestepping algorithm at large time steps and high le-
vels of volatility. 
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1. Introduction 

Barrier options are path-dependent exotic options with payoff depending on the 
price of the underlying asset at expiration and whether or not the asset price 
reaches a pre-specified barrier during the option’s life [1]. Since 1976, barrier 
options have become extremely popular and have been traded in the over-the 
counter (OTC) market. There are two main types of such options: knock-in 
(up-and-in and down-and-in) and knock-out (up-and-out and down-and-out) 
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that can either have put or call feature. The up and down refer to the position of 
the barrier relative to the initial asset price. The in and out specify the type of the 
barrier, referring to activating and inactivating when the barrier is hit, respe- 
ctively. In 1973, Merton [2] derived the first analytical formula for the down- 
and-out call option. In 1991, Reiner and Rubinstein [3] extended this work 
further to provide closed form solutions for all eight types of single barrier 
options in Black-Scholes environment. Later in 1998, Haug [4] gave a generalization 
of these formulas in order to complete the total sixteen pricing formulae for the 
barrier options.  

Some barrier options specify that a fixed cash rebate is to be given to the 
option-holder if the knock-out and knock-in options become worthless. This 
can make the barrier options more attractive to the potential purchasers by 
compensating them for the loss of the option when the knock-out option ceases 
to exist or when knock-in option comes into existence [5]. The valuation of such 
an option can be then expressed as the sum of the payoff of the standard barrier 
option with zero rebate and the payoff of the pure rebate option [6].  

However, the rebate options are not necessarily be combined with the 
standard barrier options and in this case the rebate options are usually called 
binary or digital barrier options [6]. These options can be divided into two main 
types: cash-or-nothing barrier options and asset-or-nothing barrier options. The 
payoff of the cash-or-nothing option is either a fixed amount of money or 
nothing at all, depending on whether the asset price has crossed the given barrier 
or not. For the asset-or-nothing barrier option, the payoff is the value of the 
underlying asset or nothing at all, depending on whether the asset price has 
crossed the given barrier or not [4]. These options are widely traded in the OTC 
market as hedges against jump risk and in the sports betting industry, due to the 
binary in nature of their payoffs [7]. They are also important for financial 
engineers as building blocks for constructing more complex derivatives products 
[4]. In 1991, Reiner and Rubinstein derived analytical formulas for pricing 28 
different types of knock-out and knock-in call or put binary barrier options in 
Black-Scholes enviroment [3] [4].  

Since early nineties, more complicated structures of barrier options have been 
innovated according to clients and investors needs. For controlling starting and 
ending time of the monitoring period, one can use partial-time barrier option, 
where the underlying price is monitored during a fraction of the option’s 
lifetime [4]. Heynen and Kat (1994) gave closed form valuation formulae for 
pricing this type of options in terms of bivariate normal distribution functions [4] 
[8]. Partial-time barrier options have two main types: early-ending and forward- 
starting barrier options. The first one is known as type A partial-time barrier 
option where the monitoring period of the barrier starts at the option’s initial 
starting date 0t =  and ends early at some time 1t T<  before expiration. The 
other is called type B partial-time barrier option where the barrier option 
becomes active at an arbitrary time 1t T<  before expiration and ends at 
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maturity date T  [4].  
The analytical expressions for the barrier options, however, are available only 

under these particular frameworks and in fact, many other cases such as options 
with multiple assets and some path-dependent options have not explicit formulae 
yet. Therefore, accurate numerical and Monte Carlo simulation procedures play 
crucial role in this situation.  

Barrier options are considered as exit time problems and therefore large errors 
can occur when direct Monte Carlo simulations are used. Specifically, Monte 
Carlo algorithm for pricing the continuously monitored barrier options has slow 
convergence and produces high statistical and hitting time errors, due to the 
knockout feature of such options [9]. We here concentrate on analyzing the hitting 
time error and how to reduce it efficiently. In fact, the direct MC simulation 
overestimates the actual values of the barrier option prices due to the possibility 
that these prices may hit the barrier and comeback within the time step, say t∆ , 
producing a hitting time error with order of convergence of ( )O t∆  [9].  

A clever idea to reduce this kind of error efficiently is to apply a simple hitting 
test after each time step using the distribution of the Brownian bridge pinned 
between the discrete computational nodes, in order to check if the barrier is 
crossed during the time step or not [9] [10]. This technique is known as a 
Brownian bridge technique and according to Gobet [11], using this simple 
technique can improve the order of convergence from ( )O t∆  to ( )O t∆  
under some conditions on functional of the asset price. For more analysis on 
using the Brownian bridge technique, see for example [9]-[16] and the refer- 
ences quoted therein.  

In this paper, we present an analogous method called the exponential 
timestepping algorithm introduced by Jansons and Lythe [17] [18] for 
simulating the hitting time of one-dimensional diffusion models. Under this 
technique, in place of a fixed time step t∆ , we take time steps tδ  that are i.i.d 
exponentially distributed random variables and ( ) ( )expt t tδ λ> = − , 0t ≥  
where the rate 0λ >  plays the role of discretization parameter. The random  

time step tδ  then has the expectation [ ] 1E tδ
λ

=  as equivalent to the fixed  

time step t∆ . Analogously to the Brownian bridge technique, the probability 
that the barrier has been hit during the time step can also be taken into account 
using an efficient boundary hitting test at the end of each time step. Numerical 
experiments for the double-well potential physical problem [18] and for the 
neural diffusion models [12] show that incorporating this boundary test with 
exponential timestepping can retrieve a first order of convergence ( )O t∆  in 
approximating hitting time, coinciding with our numerical observations for 
financial derivatives of barrier feature. Although, in general, both techniques 
achieve similar levels of accuracy, the random timestepping method, in 
simulating hitting time, gives better results than the fixed timestepping method 
at large time steps and high levels of volatility, due to the features of the 
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exponential distribution. This distribution has a memoryless property and is 
highly peaked near the origin, compared to the Gaussian distribution [19]. The 
distribution of the diffusion process at the end of the exponential time step tδ , 
conditional on it having hit the given barrier during the time step, is the same as 
if the time step had started at the barrier [17] [18]. The price to be paid is 
uncertainty since the precise value of the time step tδ  is not formally known,  

but its mean value is given as 
1 t
λ
= ∆ . The total elapsed time after N  time 

steps is thus a random variable with mean 
N
λ

 [18].  

The contribution of this work is to present an efficient method for simulating 
the exit time or functional of the exit time of one dimensional diffusion models 
such as barrier options in environment of Black-Scholes models. The remainder 
of this paper is structured as follows. Section 2 discuses the analytical expre- 
ssions for valuating some variety of one-sided barrier options contracts in Black- 
Scholes environment. In Section 3, we describe the implementation of the 
exponential timestepping algorithm with boundary test for pricing the three 
types of one-sided single barrier options outlined in the previous section. Section 
4 includes our numerical experiments concerning these barrier options, in order 
to compare such an algorithm for efficiency and accuracy with the well-known 
algorithm called the Brownian bridge technique. The hitting time errors are also 
discussed and analyzed. Section 5 presents our concluding remarks and some 
ideas for future work. 

2. Valuation of Barrier Options 

We here consider some of different structures of one-sided barrier options 
within the framework of Black-Scholes model. Thus, under a risk-neutral 
measure Q  the asset price tS  is represented by a geometric Brownian model:  

0d d d , ,t t t tS S t S W S Sµ σ= + =                   (1) 

where tW  is a standard Brownian motion and σ  is the constant volatility of 
the asset price. ( )t tS r q Sµ = − , is the drift under the risk-neutral probability, 
where r  and q  represent the risk-free interest rate and the continuous 
dividend payable, respectively. The first hitting time of the asset price tS  with 
barrier H , where 0 t T< <  and T  is expiry time, is thus defined by  

{ }
{ }

inf 0 : for down-option,

inf 0 : for up-option.
t

H
t

t S H

t S H
τ

 ≥ ≤= 
≥ ≥              

(2) 

Based on above, we will discuss the valuation of some variety of one-sided 
barrier option contracts in the Black-Scholes environment as follows. 

2.1. Vanilla Barrier Options with Pre-Specified Cash Rebate 

As a case study, we consider up-and-out put vanilla barrier option with cash 
rebate and other forms can be dealt with, in the same manner. The discounted 
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payoff of such an option at risk-free interest rate r  is given by [4]  

( )
vanilla

e max ,0 if for all 0

e if for some 0H

rT
T t

r
t

K S S H t T
f

R S H t Tτ

−

−

 − < < <= 
≥ < <       

(3) 

The value of the option price at time 0t =  can be formally given as [4]  

[ ]vanilla ,Q
uoprV E f=                        (4) 

where the expectation here is taken with respect to the risk-neutral probability 
measure Q , R  is rebate payment and K  is strike price of the barrier option.  

The theoretical value of such an option can be calculated as the sum of the 
values of the up-and-out put option with zero rebate uopV  and a pure rebate  

option ropV . To calculate uopV , we first consider 
( )0ln H S

d
Tσ

= , 
( )0ln K S

c
Tσ

= , 

2

0
2

r q Tσ

θ
σ

 
− + 

 =  and 

2
2

1

2
r q Tσ σ

θ
σ

  
− + +     = , where σ  and q  

represent the volatility and dividend payable respectively. The value of the 
up-and-out put option with zero rebate is thus given by [4] [6]  

( )( ) ( )( )0 0 1e min , , , e min , , , ,rT qT
uopV K F c d d S F c d dθ θ− −= −

      
(5) 

where  

( ) ( ) ( )2, , e 2 .bF a b N a N a bθθ θ θ= − − − −  

N  denotes the standard normal distribution function defined as  

( )
2

21 e d .
2π

y
x

N x y
−

−∞
= ∫  

The pure rebate option ropV  can be calculated as [4] [6]  

( )0e , , .rT
ropV R F d d θ−=                      (6) 

Consequently, the up-and-out put option with cash rebate can be given as  

.uopr uop ropV V V= +                        (7) 

2.2. Binary Barrier Options  

Here, we consider the down-and-out cash-or-nothing option as an example of 
binary barrier options. The holder of this contract will receive a fixed cash 
amount R  only if the underlying asset price never hits the barrier H  from 
above before the expiry date T . Otherwise, the option will expire without value. 
The discounted payoff of such an option with 0S H>  at risk-free interest rate 
r  is given by [6]  

e if for all 0
0 if for some 0

rT
t

bin
t

R S H t T
f

S H t T

− > < <= 
≤ < <              

(8) 

The value of the down-and-out cash-or-nothing option price at time 0t =  
can be formally given as [4]  
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[ ],Q
bdo binV E f=                         (9) 

where the expectation here is taken with respect to the risk-neutral probability 
measure Q  and R  is pre-specified cash amount.  

The theoretical value of the down-and-out cash-or-nothing option bdoV  at 
time 0t =  with barrier H , 0S H>  can be calculated as [4] [6] [7]  

( ) ( )( )0 2
2e 1 , , ,d

bdoV R F d dθ θ θ−= − − − −
               

(10) 

where 2
2 0 2rTθ θ= + . d , 0θ  and F  are defined as above. 

2.3. Partial-Time Single-Asset Barrier Options 

The type A (early-ending) partial-time barrier option is considered here as an 
example of partial-time single-asset barrier options. This type of option is 
defined such that the barrier starts at time 0t =  and ends at some time 1t T< . 
Since the barrier will end before the expiration time T , we do not need to 
distinguish whether K H>  or K H< . Therefore, we have a total of eight 
varieties of type A partial-time barrier option. As an example, we discuss a 
down-and-out call partial-time barrier option, where the option is knocked out 
during the interval [ ]10, t  as soon as the underlying price is below the barrier 
H . The discounted expected payoff for such an option at risk-free interest rate 
r  can be thus written as: [8]  

( ) 1

1

e max ,0 if for all 0
0 if for some 0

rT
T t

A
t

S K S H t t
f

S H t t

− − > < <= 
≤ < <        

(11) 

The value of the down-and-out call partial-time barrier option at time 0t =  
can be formally given as [4]  

[ ],Q
Ado AV E f=                        (12) 

where the expectation here is taken with respect to the risk-neutral probability 
measure Q .  

The closed form formula for pricing this type of options was originally 
derived by Heynen and Kat as [4] [8] 

( )
( )

( )

( ) ( )

2 1

0 1 1 3 3
0

2

2 2 4 4
0

e , ; , ,

e , ; , , ,

qT
Ado

rT

HV S M d e M d e
S

HK M d e M d e
S

µ

µ

ρ ρ

ρ ρ

+

−

−

  
 = −  
   
  
 − −  
   

        

(13) 

where 

2

0
1

ln
2

K r q T
S

d
T

σ

σ

 
+ − + 
 = , 2 1d d Tσ= − , 0

3 1

2 ln H
Sd d
Tσ

= + , 

4 3d d Tσ= − , 

2
0

1

1
1

ln
2

S r q t
H

e
t

σ

σ

 
+ − + 
 = , 2 1 1e e tσ= − , 0

3 1
1

2 ln H
Se e
tσ

= + , 
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4 3 1e e tσ= − , 

2

2
2

r q σ

µ
σ

− +
= , 1t

T
ρ =  and ( ).,.;.M  is bivariate normal 

distribution. 

3. Exponential Timestepping Algorithm with Boundary Test 

The strategy of this algorithm is based on approximating the asset price tS  of 
the underlying barrier option at each time by a Brownian motion with a 
constant drift t tY t Wµ σ= + , 0 0Y = , where µ  and σ  are constants, with 
parameters determined at the current position and in this case, the increment 

tWδ  has a symmetric exponential distribution [18]. Thus, exact calculations can 
be easily obtained for the density of tYδ  and the probability that the barrier H  
being hit during the exponential time step. We then update the exponential 
timestepping method for tS  using these calculations. First, the density of tYδ  
can be written as  

( ) ( )
( )

( )

( )( )
( )( )

2

20 2

1
2

1exp exp d
22π

exp if 0,

exp otherwise,

S t
p S t t

tt

S G F S
G

S G F

µ
λ λ

σσ

λ
σ

∞

−

 − −
 = −
 
 

 − − − <= 
− −

∫

         

(14) 

where 2F µ
σ

=  and ( )2
2

2G F λ
σ

= + . Integrating over the density of tYδ  

defined in Equation (14) yields  

( ) ( )( )exp ,
2t

G FY S G F S
Gδ
+

> = − −
               

(15) 

and thus tYδ  has exponential distribution and can be easily sampled. To 
produce updates for tS  using these calculations, we first consider a uniformly 
distributed random variable nu  in ( )0,1  and an exponentially distributed 
random variable np  that can be generated as lnn np v= − , where ( )~ 0,1nv U  
and is independent of nu . Then with given the value ( )n nS S t≈ , we generate 
the value of ( )1 1n nS S t+ +≈  for 1n nt t tδ+ = + , where tδ  is exponential time step  

with [ ] 1E tδ
λ

= , as [18]  

( )
( ) ( ) ( )1 ,n

n n n
n n n

g S
S S p

G S g S F S+

 
= +  

−                 
(16) 

where ( ) ( )
2 2

n
n

n

r q S
F S

Sσ
−

=  and ( ) ( )( )2

2 2

2
n n

n

G S F S
S
λ

σ
= + .  

( ) ( ) ( )
( )2

n n
n n

n

G S F S
g S sign u

G S

  +
= −      

 where the quantity 
( ) ( )

( )2
n n

n

G S F S
G S
+

 

comes from Equation (15) by setting 0S = .  
Next, a simple posteriori test is performed after each time step in order to 
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calculate the conditional probability of a given barrier H  being hit during the 
time step [18]. This probability can be calculated as [18]  

( ) ( ) ( )12 max ,
Up 1

1

, e

if , , for up options

n n nG S H S S
H n n

n n

P t S S

S S H

τ δ + − − 
+

+

= < =

<


          

(17) 

and  

( ) ( ) ( )12 min ,
Down 1

1

, e

if , , for down options.

n n nG S S S H
H n n

n n

P t S S

S S H

τ δ + − − 
+

+

= < =

>


          

(18) 

Then, an excursion is deduced in [ ]1,n nt t +  if  

1 Upor ,n nS H z P+ > <  

for the case of up barrier options and  

1 Downor ,n nS H z P+ < <  

for down barrier options, where nz  is a uniformly distributed random variable. 
The time stepping will be repeated until this hitting event is detected or the 
maximum number of exponential time steps is reached. The output is hitting  

time approximated as 
n
λ

, where n  is the number of taken time steps. Based  

on this, the discounted payoffs of the three cases of the underlying barrier 
options discussed in Section 2 are calculated using (3), (8) and (11), respectively. 
The prices of the underlying barrier options are then computed as the 
expectations of such discounted payoffs under the risk-neutral measure. A 
monte Carlo procedure is therefore used to estimate these expectations by a 
sample average of M  independent simulations; see Appendix A for full 
algorithm.  

4. Summary of Numerical Results 

In our numerical experiments, the mean value 
1
λ

 of the random time step tδ   

is used in the exponential timestepping algorithm as equivalent to the fixed time 
step t∆  in the Brownian bridge technique. We employ these simulation 
algorithms for the three types of one-sided single barrier options outlined in 
Section 2, and compare the efficiency of such techniques. The hitting time errors 
will be discussed and analyzed.  

For the first type, we consider up-and-out put vanilla barrier option with 
rebate payment, and its computational results are displayed in Figure 1 and 
Table 1. The plots of the hitting time error calculated using the two underlying  

simulation techniques against the discretization parameter 
1t
λ

∆ =  are shown  

in log-log scale at the top of Figure 1, and the plots of the CPU time as a 
function of hitting time error are shown at the bottom of the figure. The 
parameters are fixed as the volatility parameter 0.60σ = , the dividend 

0.03q = , the risk-free interest rate 0.08r = , the current value of the option  
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Table 1. Hitting time errors and standard errors for the up and out put barrier option 
with rebate payments with 0.004t∆ = , 610M = .  

Volatility 
parameter 

σ  

Hitting Time Error 
using Brownian 

Bridge Technique 

Standard Error 
using Brownian 

Bridge Technique 

Hitting Time Error 
using Exponential 

Timestepping 
algorithm 

Standard Error using 
Exponential 

Timestepping 
algorithm 

0.20 0.0031 0.0026 0.0046 0.0026 

0.30 0.0040 0.0039 0.0056 0.0039 

0.40 0.0098 0.0050 0.0051 0.0050 

0.50 0.0126 0.0060 0.0021 0.0060 

0.60 0.0173 0.0068 0.0043 0.0068 

 

 
Figure 1. (a) Plots of the hitting time error calculated using the Brownian bridge 
technique and the exponential time stepping algorithm against the discretization 
parameter t∆  for the up and out put barrier option with rebate payments. The 
parameters are fixed as: the volatility parameter 0.60σ = , the dividend 0.03q = , the 
risk-free interest rate 0.08r = , the current value of the option 0 100S = , the strike price 

100K = , the barrier 130H = , the rebate 1.5R =  and the expiration time 1T = . The 
theoretical value is 15.5550 and the averages are taken over 710M =  realizations; (b) 
Plots the CPU time as a function of hitting time error.  

 

0 100S = , the strike price 100K = , the barrier 130H = , the cash rebate 
1.5R =  and the expiration time 1T = . Using (7), we get the theoretical value of 

15.5550 and use it to check the efficiency of the two algorithms. We choose a 
discretization of 10,25,40,100,250N =  time steps per year and, the averages 
are taken over 710M =  paths in order to avoid the effects of statistical errors. 
For a reference, a line of slope one is included. For both simulation techniques,  

the first hitting time error was found to be proportional to ( ) 1O t
λ

∆ = , achieving  
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a first order weak convergence. However, in this case, the exponential time 
stepping algorithm is more accurate for a given amount of CPU time, particularly 
for high frequency monitoring or large time steps.  

Table 1 compares the hitting time errors and standard errors obtained by the 
two underlying algorithms for different values of volatility,  

0.20,0.30,0.40,0.50,0.60σ =  of the up-and-out put vanilla barrier option with 
rebate payment. We chose 0.004t∆ = , 610M = , with keeping other 
parameters as in Figure 1. The standards errors seem to be the same across both 
methods. However, in this case, we observe that the exponential time stepping 
algorithm performs very well compared to the Brownian bridge technique in 
terms of hitting time errors for high levels of volatility. For instance, when 
volatility 0.60σ = , the hitting time error is 0.0173 for Brownian bridge 
technique and can be improved to 0.0043 when the exponential time stepping 
algorithm is used.  

For the second type, we consider down and out cash-or-nothing barrier 
option, and display the behavior of its hitting time errors obtained by the two 
methods in Figure 2, when the volatility σ  varies from 0.20 to 0.60. Other 
parameters are fixed as 0q = , 0.1r = , 0 105S = , 98K = , 100H = , 15R =  
and 0.5T = , with 610M =  paths of Monte Carlo simulation. We choose 

0.002t∆ =  for the results shown in the top picture and 0.02t∆ =  for the 
bottom picture of the figure. The results are consistent with those for the case of  

 

 
Figure 2. Plots of the hitting time error for the down and out cash or nothing option as a 
function of volatility parameter σ  using the Brownian bridge technique and the 
exponential time stepping algorithm: (a) 0.002t∆ = ; (b) 0.02t∆ = . The parameters are 
fixed as: the dividend 0q = , the risk-free interest rate 0.1r = , the current value of the 
option 0 105S = , the strike price 98K = , the barrier 100H = , the rebate 15R = , the 

expiration time 0.5T =  and the averages are taken over 610M =  realizations.  
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Figure 3. Plots of the hitting time error for the Type A partial time (early-ending)call 
barrier option as a function of volatility parameter σ  using the Brownian bridge 
technique and the exponential time stepping algorithm: (a) 0.004t∆ = ; (b) 0.025t∆ = . 
The parameters are fixed as: the dividend 0.03q = , the risk-free interest rate 0.02r = , 
the current value of the option 0 100S = , the strike price 100K = , the barrier 70H = , 
the barrier monitoring time 1 0.5t = , the expiration time 1T =  and the averages are 

taken over 610M =  realizations.  
 

the up-and-out put vanilla barrier option with rebate payment considered above. 
Thus, for the present example, as we increase the volatility more, the random 
timestepping algorithm shows greater accuracy than the Brownian bridge 
technique.  

For the third type, we consider the type A partial time (early-ending) call 
barrier option. Figure 3 illustrates the hitting time errors of such a barrier 
option, under both simulation techniques, as a function of volatility parameter 
σ  chosen between 0.20 and 0.60. The other parameters are selected as 0.03q = , 

0.02r = , 0 100S = , 100K = , 70H = , 1T = , the barrier monitoring time 

1 0.5t = , and the averages are taken over 610M =  realizations. The upper 
picture covers the case of 0.004t∆ =  and the lower one shows the results when 

0.025t∆ = . As observed from the graph, the exponential timestepping algo- 
rithm shows smaller hitting time errors than the Brownian bridge technique as 
the volatility grows up, coinciding with the observations with other examples 
considered here.  

Finally, we present some prices of these three different types of barrier options 
using the underlying two algorithms with [ ] 0.02t E tδ∆ = = , 0.50σ =  and 

610M = . The other parameters for the considered barrier options are chosen as 
in Figures 1-3, respectively. The results associated with the resultant standard 
errors and the corresponding analytical values are shown in Table 2. For such a  
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Table 2. Pricing some various structures of one-sided barrier options using the Brownian 
Bridge Technique and the Exponential Time Stepping Algorithm with 0.02t∆ = , 0.50σ = , 

610M = . 

Type of barrier option 

Pricing using  
Brownian Bridge  

Technique ± standard 
Error 

Pricing using  
Exponential 

Timestepping  
algorithm ± standard 

Error 

Analytical  
result 

up-and-out put vanilla barrier option 
with cash rebate 14.0736 0.0189±  14.0051 0.0191±  14.0218 

down-and-out cash-or-nothing option 1.4065 0.0043±  1.5294 0.0044±  1.5048 

type A (early-ending) partial-time 
barrier option 17.3005 0.0379±  17.3413 0.0376±  17.3410 

 
choice of volatility, we see that the approximations obtained using the expo- 
nential timestepping algorithm are more accurate than those obtained using the 
Brownian bridge technique, coinciding with our observations discussed above. 
For an instance, using the random timestepping algorithm, the pricing value of 
type A (early-ending) partial-time barrier option is 17.3413, which is very close 
to the analytical value (17.3410), compared to the value obtained using the 
Brownian bridge technique (17.3005). 

5. Conclusions and Suggestions 

Barrier options have become increasingly popular in financial markets, parti- 
cularly in over-the-counter market, since they are cheaper than the plain vanilla 
options and they can offer a protection for the investor when are used as hedges. 
We have discussed four various types of single one-sided barrier options within 
the framework of Black-Scholes environment, including up-and-out put vanilla 
barrier option with cash rebate, down-and-out cash-or-nothing barrier option 
and early-ending partial-time barrier option. The barrier options are the most 
popular class of path-dependent options, where their closed-form pricing 
formulas are available only under particular frameworks. Therefore, accurate 
numerical techniques and Monte Carlo simulations play a crucial role in such 
situation. However, for pricing barrier options, a standard Monte Carlo 
algorithm yields an over-estimation of hitting time since there is a possibility 
that the barrier may be hit between the discrete computational nodes, causing 
large hitting time errors and slow convergence of weak order ( )O t∆ .  

In order to reduce this kind of errors efficiently, we have implemented a 
method called exponential timestepping algorithm with boundary test introduced 
by Jansons and Lythe [17] [18] for simulating hitting times of one-dimensional 
diffusion models. The magnitude of the time step tδ  is exponentially 
distributed random variable with rate λ  and for comparison purposes, we  

chose its mean duration (
1
λ

) as equivalent to the fixed time step t∆  used for  

the Brownian bridge technique. As observed from our numerical experiments, 
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both methods significantly improved the weak order of convergence from one- 
half order to one order with the same level of standards errors. However, in spite 
of similarity between their respective rates of convergence, the random time- 
stepping algorithm displayed better results, for a given amount of CPU time, 
than the Brownian bridge technique as the time step grows up or the volatility 
becomes high, due to the features of the exponential distribution. To be specified, 
the random time step takes samples of exponential distribution and this distri- 
bution is more strongly peaked near the origin than that of the normal distri- 
bution. Thus, the symmetric exponential distribution has a higher kurtosis 
compared to the normal distribution and this gives more stability of exponential 
timestepping algorithm at large time steps and high levels of volatility [19].  

For the present work, the exponential timestepping algorithm is implemented 
for only one-asset barrier options, giving efficient estimation for their hitting 
times. The challenge is how to develop this technique to deal with the barrier 
options with multiple assets efficiently. Jansons and Lythe [20] developed their 
exponential timestepping algorithm to generate the updates for only the case of 
the multidimensional Brownian motion with hitting times of curved surfaces. 
One interesting area to consider in future work is to develop this algorithm to be 
able to deal with more general diffusion problems such as barrier options with 
multiple assets in Black-Scholes environment. Furthermore, as observed from 
real market data for barrier options, the implied volatility is not constant as 
assumed in Black-Scholes framework, but changes randomly. Hence, the models 
with stochastic volatility are more appropriate for capturing this effect and 
forming the volatility smile. In follow-up work, we plan to examine the possi- 
bility of applying such a random timestepping algorithm on these realistic 
models.  
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Appendix A 
Algorithm of exponential timestepping with boundary test for the barrier options. 
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