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Abstract 
In this paper, we examine quantum systems with relativistic dynamics. We 
show that for a successful description of these systems, the application of Ga-
lilei invariant nonrelativistic Hamiltonian is necessary. To modify this Ha-
miltonian to relativistic dynamics, we require precise relativistic kinetic ener-
gy operators instead of nonrelativistic ones for every internal (Jacobi) coordi-
nate. Finally, we introduce and investigate the Schrödinger equation with re-
lativistic dynamics for two-particle systems with harmonic oscillator and 
Coulomb potentials. 
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1. Introduction 

The definition of relativistic quantum mechanical momentum operator, introduced 
in [1], allows us to modify the Schrödinger equation for free particle, taking into 
account basic ideas of special relativity theory (SRT). However, the most 
important and interesting problem is the application of relativistic dynamics to a 
many-particle system. To solve it, we have to carefully investigate the main 
conclusions of SRT and quantum mechanics to find the possibility of consistence 
of both theories. 

The core of SRT are two postulates [2]. The first is Galilei invariance, stating 
equivalence of different inertial reference systems, and the second is the 
statement that speed of light c is constant in all systems of this kind. The main 
results of the theory are: 

- the mass of particle m (sometimes called as rest mass) is constant in all 
reference frames; 

- the relativistic momentum of particle, moving in reference frame with 
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velocity v, is p mvγ= , where ( ) 1 22 21 v cγ
−

= −  is the Lorentz factor;  
- the total energy of the particle equals 2E mcγ= , and the kinetic energy is 
( ) 21T mcγ= − ; 

- the general relation between radius vector r  and time t of the event as seen 
in the reference frame S and the radius vector ′r  and time t′  of the same 
event in the reference frame S ′ , which is moving with uniform velocity relative 
to S, is defined by Lorentz transformation, which implies invariance of the 
space-time interval, defined as the scalar product of these four-vectors:  

( ) ( ) ( )2 2 22 2 ;s ct ct′ ′= − = −r r                   (1) 

- the mass invariance with respect to transformations from one to another 
inertial reference frame of the above type also defines invariance of the four- 
vector, composed of relativistic energy and relativistic momentum: 

( ) ( ) ( )2 2 22 4 2 .m c E pc E p c′ ′= − = −                 (2) 

The main problem is—how and to what extent can these statements be 
applied in the theory of quantum systems? 

2. Quantum System’s Schrödinger Equation 

The base for modifications is the many-particle Schrödinger equation 

( ) ( ) ( )1 2 1 2 1 2
ˆ, , , , , , , , , , , ,N N Ni t H t

t
ρ ρ ρ ρ ρ ρ ρ ρ ρ

∂
Ψ = Ψ

∂
   

     
(3) 

written in a laboratory reference system. Here jρ  marks the set of one-particle 
variables (spatial radius vector jr  and internal degrees of freedom jτ  like 
mass, charge, spin, isospin and so on for every particle). The Hamiltonian is 
independent of time, so the formal solution of (3) is 

( ) ( )1 2 1 2
ˆ, , , , exp , , , .N N

it Htρ ρ ρ ρ ρ ρ Ψ = − Φ 
 

 

          
(4) 

The stationary states of (3) correspond to the functions Φ , defined as the 
eigenfunctions of the Hamiltonian: 

ˆ .H EΦ = Φ                           (5) 

The probability density is therefore independent of time. The quantum system 
is stable with respect to breakup into composing particles if the corresponding 
eigenvalue E is negative (−E equals the binding energy of the system). We will 
consider here the application of relativistic dynamics to quantum systems 
defined this way. 

The introduced presentation gives the simplest way to ensure symmetry of the 
Hamiltonian with respect to permutations of one-particle degrees of freedom, 
because quantum systems or their subsystems are composed of identical 
particles. Moreover, these particles are fermions, so the eigenfunction of the 
Hamiltonian has to be antisymmetric with respect to permutations of the 
variables of identical fermions. It is especially simple to project the wave 
function, written in single-particle variables, to the corresponding subspace of 
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Hilbert space. Various methods for antisymmetrization of wave functions, 
dependent on single-particle coordinates, are thoroughly developed from 
application of Slater determinants or Racah coefficients of fractional parentage 
[3] [4], to algorithms, devoted for operations with wave functions of this kind, 
such as second quantization and formalism applying particles creation and 
annihilation operators. 

The relativistic dynamics introduction for Schrödinger Equation (3), if even 
possible, is an immensely difficult problem. The equation is written in a 
laboratory reference system. Due to the necessary equivalence of all inertial 
reference systems, the equation has to be invariant with respect to time and 
space variables for the Lorentz transformation of every particle, keeping 
invariant the length of the four vector, defined by Equation (1). Even for one free 
particle such an equation (known as the Dirac equation) is possible only after 
defining the quantum mechanical momentum operator as corresponding to the 
relativistic momentum. However, this operator does not have any dependence 
on velocity, necessary for relativistic momentum, so the corresponding equation 
can not be considered completely relativistic. 

Moreover, even in the nonrelativistic approximation the wave functions 
defined in this way are not acceptable for a precise description of the quantum 
system. These functions do not satisfy Galilei invariance and, in many cases, 
contains uncontrolled center of mass excitations. For the best illustration of this 
statement, let us consider a two-particle system. The potential energy operator is 
translationally invariant, i.e. independent of the center of mass coordinate, hence 
the only problem is in the kinetic energy operator. The corresponding wave 
function written in one-particle spatial variables is not under application, 
because the elimination of the center of mass kinetic energy operator in a 
two-particle Hamiltonian is an easy task. Elimination of the center of mass 
kinetic energy operator is not complicated for a system of N particles either. 
However, after this the Hamiltonian of the quantum system appears as a 
function of ( )3 1N −  internal spatial variables and N sets of individual degrees 
of freedom of particles and antisymmetrization of eigenfunctions of this 
operator becomes a very complex problem. 

Therefore, the solution of the nonrelativistic Schrödinger equation for a 
quantum system with internal Hamiltonian is a real challenge, but only these 
wave functions can give an adequate description of the quantum system. The 
experimental investigation of a quantum system is based on observing the 
behavior of a system after excitation by an external agent. Every act of this kind 
excites the center of mass of the system and, at the same time, the internal 
degrees of freedom. Unfortunately, control of the center of mass movement after 
a collision is very problematic. Among the attempts to minimize the energy loss 
due to center of mass excitation most notable are the Mösbauer effect and 
colliding beams accelerators. To avoid gamma ray energy loss due to nuclear 
recoil, Mösbauer used nuclei bound in a solid. On the other hand, in an 
experiment involving head-on colliding beams with identical particles and equal 
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energies, the kinetic energy of the center of mass is zero before, and hence after, 
the collision. Either way, as the exciting particle leaves the range of the 
interaction force, the center of mass velocity is constant, so this point can serve 
as the origin of an inertial reference frame. All particles, composing the system, 
move in the same inertial frame, hence any transformations of radius vector and 
time coordinate or energy and momentum of given particle between different 
inertial systems are not necessary. Both the nonrelativistic and modified 
relativistic (introduced in [1]) internal Hamiltonians are invariant with respect 
to translations. The energy of a stationary state is defined precisely, hence the 
energy and momentum conservation law (2) is senseless in a fixed reference 
frame defined for a quantum system by its internal Hamiltonian. Moreover, at a 
precisely defined energy the time coordinate is completely uncertain, therefore it 
is not necessary as argument of wave function. At the same time in formalisms, 
operating with one particle coordinates, all inertial systems have to be equivalent 
and invariance of formalism with respect to Lorentz transformations is necessary. 
The space-time interval, defined by scalar product of four-dimensional vectors 
and invariant with respect to transformations between different inertial frames, 
requires every particle to have different spatial and time variables. The problems 
of wave functions presented this way are well known (lattice QCD; for a review, 
see [5]). In our formalism we don’t have to worry about interval and mass 
invariance in different inertial reference systems. Instead, we just modify the 
internal Hamiltonian of a quantum system by introducing the relativistic kinetic 
energy operator instead of the nonrelativistic one for every internal spatial 
coordinate. 

The transformation of the initial Schrödinger Equation (3), present in a 
laboratory system, to the aforementioned form, starts with the nonrelativistic 
Hamiltonian transformation to center of mass and internal variables. The 
canonical choice is the Jacobian coordinates, defined as in [6]. The nonrelativistic 
kinetic energy operator, expressed in these coordinates, retains the usual form: 

( )

1

1 0

1 1 .
N N

j
j jm β

β βµ

−

= =

∆ = ∆∑ ∑
                     

(6) 

Here β  is the subscript of the Jacobi variable βξ , the corresponding 
Laplasian is ( )β∆ , and reduced mass equals βµ . The Jacobi coordinate 0ξ  and 
mass 0µ  are defined as the system’s center of mass radius vector and mass:  

0 0
1 10

1 , .
N N

j j j
j j

m mξ µ
µ = =

= =∑ ∑r
                   

(7) 

The Hamiltonian appears with separated center of mass and internal variables: 

( ) ( ) ( )1 2 0 1 2 1 1 2
ˆ ˆ ˆ, , , , , , , , ,..., .N cm int N NH H Hρ ρ ρ ξ ξ ξ ξ τ τ τ−= +       (8) 

Furthermore, to transform to a relativistic form, we need to take into account 
the rest energies of the particles in the Hamiltonian:  

2 2
0

1
.

N

j
j

m c cµ
=

=∑
                        

(9) 

1481 



G. P. Kamuntavičius, G. Kamuntavičius 
 

Now the quantum system’s Schrödinger Equation (3) takes the following 
form: 

( )2
0 int 0 1 1 1 2

ˆ ˆ , , , , , , , , 0cm N Ni H c H t
t

µ ξ ξ ξ τ τ τ−
∂ − − − Ψ = ∂ 

  

     
(10) 

The variables of the complete Hamiltonian are separated, so the simplest 
solutions of this equation are products of functions, dependent on different 
variables: 

( ) ( ) ( )0 1 1 1 2 0 int 1 2 1 1 2, , , , , , , , , , , , , , , , ,N N cm N Nt tξ ξ ξ τ τ τ ξ ξ ξ ξ τ τ τ− −Ψ = Ψ Ψ   
(11) 

where the introduced functions are eigenfunctions of the following operators, 
corresponding to the same eigenvalue E: 

( )2
0 0

ˆ , 0cm cmi H c E t
t

µ ξ
∂ − − − Ψ = ∂ 



              
(12) 

and 

( )1 2 1 1 2
ˆ , , , , , , , 0.int int N NH E ξ ξ ξ τ τ τ−

 − Ψ =   

           
(13) 

The eigenvalue E, by definition of the internal Hamiltonian, equals the 
binding energy of system with opposite sign. Thus 2

0c Eµ +  is the reduced, 
slightly smaller, rest energy of the bound system 2

0cµ . Necessarily, the kinetic 
energy operator has to be expressed with the reduced rest energy of system, i.e. 
as 

( )
( )

2

02
0

ˆ .cm
c

H
cµ

= − ∆


                      
(14) 

We go on to further modify the center of mass Schrödinger Equation (12), 
taking into account the relativistic dynamics, by applying the technique 
introduced in [1]. 

It is necessary to modify the kinetic energy operators for all Jacobi variables 
for the introduction of relativistic dynamics into the internal Hamiltonian. The 
natural subject for the application of these ideas is the two-particle system. 

3. Internal Hamiltonian of a Two-Particle System 

The internal Hamiltonian of a two-particle system, whose interaction is defined 
by a local potential, dependent on the radius vector 2 1= −r r r  (here 2r  and 

1r  are radius vectors, defining locations of particles in laboratory system) and 
on internal degrees of freedom of particles 1τ  and 2τ , is  

( ) ( ) ( ) ( )0
0 1 2 1 2

ˆ ˆ ˆ, , , , , .H T Vτ τ µ τ τ= +r r r               (15) 

Here ( )0T̂  is the nonrelativistic kinetic energy operator 

( ) ( ) ( ) ( )2 22 2
0

2 2 2

ˆ1ˆ , ,
2 2

c L
T r

rc r r
θϕ

µ
µ µ

 ∂
= − ∆ = − − 

∂  
r





         
(16) 

with the reduced mass of system ( )1 2 1 2m m m mµ = +  and the orbital mo- 
mentum operator ( )2L̂ θϕ . The eigenvalues of the stationary Schrödinger 
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equation with this Hamiltonian due to symmetries of potential are identified at 
least by such quantum numbers as parity π  and total angular momentum J . 
The simpler is the potential, the larger is the set of exact quantum numbers, 
characterizing the eigenfunction of this Hamiltonian, i.e. the state of quantum 
system. 

The Hamiltonian with relativistic dynamics 

( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ, , , , , ,H T Vτ τ µ τ τ= +r r r                (17) 

is defined with the relativistic kinetic energy operator 

( )
( ) ( )

1 20
2

2

ˆ2 ,ˆ , 1 1 .
T

T c
c

µ
µ µ

µ

−  
 = − −     

r
r

             

(18) 

This Hamiltonian is translationally invariant, describing the relative movement 
of particles in an inertial reference frame, whose origin is at the center of mass of 
system. The eigenfunctions of the Hamiltonian (17), as in the nonrelativistic case, 
can be identified by the same set of exact quantum numbers, because the 
operators ( )0 1 2Ĥ τ τr  and ( )1 2

ˆ , ,H τ τr  share the common set of commuting 
operators. 

However, a new problem appears. In general, the eigenfunctions of the 
nonrelativistic Hamiltonian and the Hamiltonian with relativistic dynamics are 
different due to presence of potential. For a free particle they coincide, but here 
the possibility to define a relation of eigenvalues of these Hamiltonians is not as 
simple. Let us restrict the investigation by applying wave functions, obtained 
solving the nonrelativistic Schrödinger equation. The nonrelativistic energy 
expectation value equals 

( ) ( ) ( ) ( )0 0
1 2

ˆ ˆ, , ,E T Vµ τ τ= +r r
                

(19) 

The corrected value for this wave function is 

( ) ( )1 2
ˆ ˆ, , , .E T Vµ τ τ= +r r

                  
(20) 

For a relativistic kinetic energy expectation value evaluation we will apply 
three different approximations. 

The first approximation is based on a series expansion of the relativistic 
kinetic energy operator: 

( ) ( ) ( )
( ) ( )( )20

0
2

ˆ3 ,
ˆ ˆ, , ,

2

T
T T

c

µ
µ µ

µ
= + +

r
r r 

             
(21) 

where we can successfully evaluate the expectation value of ( ) ( )( )20ˆ ,T µr  and 
therefore the kinetic energy with first order correction 

( ) ( ) ( )( )21 0 0
2

3ˆ ˆ
2

T T T
cµ

= +
                  

(22) 

can be successfully evaluated. This result is precise enough for quantum systems 
with dynamics not far from nonrelativistic. 

The second approximation is  
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( )
( ) 1 2
0

2 2
2

ˆ2
1 1 .

T
T c

c
µ

µ

−  
  = − −  
                    

(23) 

With this approximation, we ensure, according to the main idea of SRT, the 
expectation value of the nonrelativistic kinetic energy to be less than 2 2cµ , 
same as for a free particle. It is the really original result, consistent with the basic 
postulate of SRT stating that the relative velocity of particles cannot be larger 
than speed of light at any interaction. However, this result is only exact in the 
case when the eigenfunctions of the kinetic energy operator are applied for the 
calculation of the expectation value. For a quantum system this approximation 
at a low nonrelativistic kinetic energy gives a lower bound for relativistic kinetic 
energy expectation value due to a relation, valid in an arbitrary basis: 

( )( ) ( )2 20 0ˆ ˆ .T T≥
                      

(24) 

We obtain the third evaluation of relativistic kinetic energy in a given state of 
a quantum system by applying spectral representation of the corresponding 
operator. Both kinetic energy operators have the same set of eigenfunctions. The 
internal Schrödinger equation for the nonrelativistic operator is 

( ) ( ) ( ) ( ) ( )0 0ˆ .kT Tψ ψ=k kr r r                    (25) 

We can rewrite it as 

( ) ( )2 ,kψ ψ∆ = −k kr r                      (26) 

where 
( )

( )

02
2

2

2 kc Tk
c

µ
=

                         
(27) 

and 

( )
( )

( )
3 2

1 e .
2π

iψ ⋅= k r
k r

                     
(28) 

The spectral representation of this operator becomes 
( ) ( ) ( ) ( ) ( )0 0ˆ , d ,kT Tψ ψ +′ ′= ∫ k kr r k r r

                
(29) 

where the kernel of this operator 

( ) ( )2
0 2

2 .
2k

c
T k

cµ
=


                       
(30) 

Due to equivalence of eigenfunctions, the spectral representation of the 
relativistic kinetic energy operator is 

( ) ( ) ( )ˆ , d .kT Tψ ψ +′ ′= ∫ k kr r k r r
                 

(31) 

The kernel of this operator is defined by Equation (18):  
1 22

2 2
21 1 .k

cT c k
c

µ
µ

−     = − −      



                

(32) 

1484 



G. P. Kamuntavičius, G. Kamuntavičius 
 

The expectation value of the nonrelativistic kinetic energy in a given state of 
the internal two-particle Hamiltonian, whose eigenfunction is ( )Ψ r , equals 

( ) ( ) ( ) ( ) ( )0 0ˆd d , ,T T+′ ′ ′= Ψ Ψ∫ ∫r r r r r r
              

(33) 

while the expectation value of the relativistic kinetic energy is 
( ) ( ) ( ) ( )3 ˆd d , .T T+′ ′ ′= Ψ Ψ∫ ∫r r r r r r

               
(34) 

From operator definitions given by Equations ((29), (31) and (28)), alternative 
definitions of expectation values follow: 

( ) ( ) ( ) ( )0 0d kT T+= Ψ Ψ∫ k k k
                  

(35) 

and 
( ) ( ) ( )3 d ,kT T+= Ψ Ψ∫ k k k

                   
(36) 

where ( )Ψ k  is Fourier image of wave function ( )Ψ r : 

( ) ( ) ( )d .ψ +Ψ = Ψ∫ kk r r r
                    

(37) 

4. The Harmonic Oscillator Potential 

One of the best known problems of nonrelativistic quantum mechanics, having 
successful applications, is a system of two particles with a harmonic oscillator 
potential. The internal Schrödinger equation for this system is 

( ) ( )
2

02 2
2

1 ,
22

c
r E

c
µω

µ

 
 − ∆ + Ψ = Ψ
 
 



                
(38) 

where µ  is the reduced mass of the interacting particles. The equation has 
square integrable solutions 

( ) ( ) ( ) ( )2 1 2 2exp 2l l
nlm nl n lmN x x L x Y ϑϕ+Ψ = −r

           
(39) 

only for eigenvalues ( ) ( )0 2 3 2nlE n lω= + + . Here the argument of the radial 
function is x r b= , with ( )b µω=  . 0,1,2,n =   equals the number of 
nodes of the radial function and the normalization constant is  

( )
2

3

2 ! .
3 2nl

nN
b n l

=
Γ + +                     

(40) 

To evaluate the expectation value of the corresponding relativistic kinetic 
energy operator ˆ

nl
T , we require the expectation value of the nonrelativistic 

kinetic energy. According to Virial theorem for a harmonic oscillator potential 
( ) ( )0 0ˆ ˆ2 ,nl nlnl

T E V= =
                   

(41) 

hence 
( )

( )
0

2 2 3 2 .nlE n l
c

β
µ

= + +
                    

(42) 

Here and in the following expressions, for the sake of simplicity and 
comparison with different approximations, we use a dimension-free parameter 
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2 .
c
ωβ

µ
=


                          
(43) 

The first order correction of the nonrelativistic value, defined in Equation (22), 
simplifies due to Virial theorem: 

( )( )
2

20 2 4ˆ ˆ .
2 nlnlnl

T V xω = =  
 

  

Thus, the value with the first order correction taken into account equals 
( )

( )

( ) ( ) ( )

1

2

22

2 3 2

3 2 3 2 2 3 2 2 1 2 .
8

nlE
n l

c

n l n l n n l

β
µ

β

= + +

 + + + + + + + + + 
     

(44) 

The second approximation, defined by Equation (23), gives: 
( )

( ) ( )
2

1 2

2 1 2 3 2 1 2 3 2 2.nlE n l n l
c

β β
µ

−
= − + + − + + +  

        
(45) 

In a nonrelativistic approximation ( )1β  , this expression leads to 
( ) ( )2 0
nl nlE E= . The new result of relativistic kinematics is the existence of a restricted 

set of eigenvalues, satisfying the condition 

12 3 2 and 2 3.n l β
β

+ + < <
                 

(46) 

Finally, for the expectation value of the third approximation we need the 
Fourier image of the eigenfunction, defined by Equation (39). This problem is 
not complicated, since the transformation operator between the Hamiltonians of 
the harmonic oscillator in coordinates and momenta representations is well-known. 
These Hamiltonians, written in dimensionless variables, are correspondingly 

( ) ( )2ˆ ,
2

H ω
= −∆ +xr x

                    
(47) 

( ) ( )2ˆ .
2

H ω
= −∆ +yp y

                    
(48) 

Here b=x r  and b=y p  . The mentioned above transformation 
operator is 

( )
( )

3 2

1 e .
2π

i ⋅x y

                        
(49) 

Therefore, the eigenfunctions of these operators are connected by this 
transformation. The Fourier image of the original function is 

( ) ( ) ( ) ( )2 1 2 2exp 2 ,l l
nlm nl n lmN y y L y Y ϑϕ+Ψ = −p

          
(50) 

where d=y p , d b ωµ= = 
 and ( ), ,y ϑ ϕ=y . The normalization 

constant equals 

( )
2

3

2 ! .
3 2nl

nN
d n l

=
Γ + +                     

(51) 

This wave function with the kernel, defined in Equation (30) produces the 
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expectation value of the nonrelativistic kinetic energy, equal ( )0 2nlE . According 
to the definition we express in Equation (36), the third approximation for 
relativistic kinetic energy equals 

( )

( ) ( ) ( )
3

21 1 21 2 1 2
2 0

! d 1 1 e ,
3 2

l z lnl
n

T n z z z L z
n lc

β
β

µ
−+ − +   = ⋅ − −   Γ + + ∫

   
(52) 

and thus the approximation for total energy is 
( ) ( )

( )
3 3

2 2 2 3 2 2.nl nlE T n l
c c

β
µ µ

= + + +
                 

(53) 

5. The Coulomb Potential 

The system of a charged particle moving in a Coulomb field has many 
interesting applications. We consider a particle with charge e−  (electron or 
muon) moving in a Coulomb well, created by an atomic nucleus, whose mass 
equals M  and charge is Ze . The nonrelativistic Schrödinger equation for this 
system is 

( ) ( ) ( )
2

0
2 0.

2 n nlm
c Z c E r

rc
α

ψ θϕ
µ

 
 ∆ + + =
 
 





             
(54) 

Here µ  is the reduced mass of light particle and atomic nucleus, α  is the 
fine structure constant. The square integrable solutions of this equation: 

( ) ( ) ( ) ( )1 2 1
1exp 2 ,l l

nlm nl n l lmr N x x L x Yψ θϕ ϑϕ+ +
− −= −           (55) 

where 2x r na= , 1, 2,n l l= + +  , 2a c Z cα µ=  ,  

( )
( )

2
2

1 !
,

!nl
n l

N
an n l

− −
=

+                       
(56) 

exists only for eigenvalues  

( )
22

0 .
2n
c ZE

n
µ α = −  

                       
(57) 

Virial theorem for Coulomb potential gives 

( )0ˆ2 , .n nnl nl
V E T E= = −

                  
(58) 

The first order correction, defined by Equation (22), is 
( ) 2 41

2

1 3 3 .
2 2 1 2 4

nlE Z Z n
n n lc
α α

µ
    = − + −     +                  

(59) 

The correction, defined by Equation (23), equals 

( ) 1 22 22

2 1 1.nlE Z Z
n nc
α α

µ

−
    = − − −    

                     
(60) 

Following from this equation, the condition of bound states existence in a 
Coulomb well looks like 

.n Zα>                           (61) 
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For existing stable atomic nuclei 1Zα < , so relativistic kinematics do not 
restrict the number of bound states in a Coulomb well. On the other hand, 
significant relativistic corrections can arise for Hydrogen-like ions of heavy 
atoms. 

Finally, for the evaluation of the correction, defined by Equation (36) we 
require the Fourier image of wave function ( )nlmψ r . Corresponding expre- 
ssions are complex enough, so we will only present results, obtained for the 
ground state function 

( )100 3

e .
π

r a

a
ψ

−

=r
                       

(62) 

The Fourier image of this function is 

( ) ( )
( )

3 2

100 22

2
.

π 1

a

ak
ψ =

 + 

k

                   

(63) 

This function with kernel (30) gives a nonrelativistic kinetic energy, equal 
( ) ( )20 2
10 2E c Zµ α− = . With the relativistic kernel (32), we find the corrected 

energy value to be 
( )

( )
( )( ) ( )

3 21 1 22 210
2 40 2

32 1 1 .
π 1

Z
E x Zx Z

c x
α α α

µ

− = − − −  +
∫

        

(64) 

6. Results 

The introduced method of relativistic corrections of bound state energies of two- 
particle systems with harmonic oscillator potential presents the eigenvalues as 
functions of one dimensionless parameter 2 3β < . Table 1 gives the different 
values of ground state energy, divided by 2cµ , as functions of this parameter— 
nonrelativistic, defined by Equation (42), and three different approximations for 
relativistic dynamics, defined in Equations ((44), (45) and (53)). In the last 
column of Table 1 we have the energy obtained by the traditional method, when 
the nonrelativistic quantum mechanical momentum operator is defined as  

 
Table 1. Different approximations of ground state energies in harmonic oscillator well. 

β 
( ) ( )0
00

2

E
c
β

µ
 

( ) ( )1
00

2

E
c
β

µ
 

( ) ( )2
00

2

E
c
β

µ
 

( ) ( )3
00

2

E
c
β

µ
 

( ) ( )00
2

E
c
β

µ

−

 

0.001 

0.01 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.666 

0.0015 

0.0150 

0.1500 

0.3000 

0.4500 

0.6000 

0.7500 

0.9000 

0.9990 

0.00150 

0.01514 

0.16406 

0.35625 

0.57656 

0.82500 

1.10156 

1.40625 

1.62275 

0.00150 

0.01509 

0.15965 

0.34523 

0.57340 

0.88114 

1.37500 

2.61228 

31.1223 

0.00150 

0.01515 

0.17199 

0.42617 

0.66631 

0.82711 

0.92913 

0.99864 

1.03511 

0.00150 

0.01495 

0.14531 

0.28125 

0.40781 

0.52500 

0.63281 

0.73125 

0.79108 
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corresponding to relativistic momentum, i.e. when the kinetic energy expansion 
2 4

2 4 2 2 2
3 22 8

p pT m c p c mc
m m c

= + − = − +
            

(65) 

is approximated as 
2 4

2 4 2 2 2 0 0
0 3 22 8

p pT m c p c mc
m m c

= + − = − +
            

(66) 

From this energy expression, found in numerous textbooks and basic for 
Klein-Gordon and Dirac equations, it follows that 

2
2 2 2 4 2 4 2 2 2 40

0 1 ,
pE m c m c p c m c
mc

γ
  = = + = +                

(67) 

therefore it is not the completely relativistic expression for energy, but rather a 
crude approximation for the Lorentz factor 

2 2

1

1 v c
γ =

−                         
(68) 

by 2 21 v c+ . Therefore, the accuracy of this presentation does not exceed 

( )22 2v c . Moreover, this approximation results in the absence of relativistic 
momentum and energy dependence of v in the limit v c→ . The corresponding 
expectation value for harmonic oscillator potential, given in the last column of 
Table 1, is 

( )
( )

( ) ( ) ( )

2

22

2 3 2

1 2 3 2 2 3 2 2 1 2 .
8

nlE
n l

c

n l n l n n l

β
µ

β

−

= + +

 − + + + + + + + + 
     

(69) 

The problem is to understand how sensitive to relativistic corrections are the 
energies of different quantum systems, performing vibrational movement. The 
first one among them is nuclear motion in diatomic molecules. The parameter 
β  takes a larger value at a small reduced mass of nuclei, hence the best system 
for the evaluation is the Hydrogen molecule H2. Corresponding reduced mass 
equals half the proton mass. The molecular internal energy is approximately the 
sum of the electromagnetic energy, the vibrational energy ( )1 2v ω+ 

 and the 
rotational energy [7]. The characteristic value of vibration energy ω  for this 
molecule equals approximately 0.5 eV. The parameter β  appears as very small, 
of the order 910− , hence the relativistic corrections for the molecular vibration 
energy are negligible and can hardly be separated from other effects in 
observations. Next is the giant dipole resonance of nuclei; this resonance can be 
explained as the oscillations of protons and neutrons against each other with an 
energy of excitation given approximately by 1 3

1 77 MeVE A∗ −=  [8]. Here A is 
the mass number of the nucleus. The reduced mass of this mode equals 
approximately 470 MeVA⋅ , hence the parameter 4 30.16Aβ −≈ . For nuclei 
with mass number 60A ≈  the parameter β  is of order 310− . 

For the ground state ( )1, 0n l= =  of Hydrogen-like ions, corresponding 
results are present in Table 2. For comparison with experimental data, the  
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Table 2. Ionization potentials of Hydrogen-like ions (eV).  

Z  ( )0
10J  ( )1

10J  ( )2
10J  ( )3

10J  ( )
10J −  Exp  

1 13.6057 13.6030 13.6051 13.6030 13.6066 13.5984 

2 54.4228 54.3793 54.4141 54.3787 54.4373 54.4178 

3 122.4512 122.2313 122.4072 122.2266 122.5246 122.4544 

4 217.6911 216.9955 217.5519 216.9773 217.9229 217.7186 

5 340.1423 338.4442 339.8023 338.3912 340.7084 340.2260 

6 489.8049 486.2838 489.0996 486.1588 490.9787 489.9932 

40 21,769.11 14,813.70 20,271.28 15,924.90 24,087.58 22,236.68 

60 48,980.49 13,768.75 40,584.86 29,189.06 60,717.74 51,515.58 

70 66,667.89 1,433.78 49,936.25 38,807.72 88,412.60 71,574.80 

 
ionization potentials are expressed in electronvolts, equal to the energies with 
opposite sign. Experimental data, taken from [9], is given in the last column. 
Like in Table 1, the second column gives the nonrelativistic result (57), third, 
fourth and fifth-the approximations, defined by (59), (60) and (64) corre- 
spondingly. In the column, marked ( )

10J −  the traditional approach is presented, 
defined by Equation (66) with first order correction of kinetic energy with 
opposite sign. 

Table 2 shows that the nonrelativistic result ( )( )0
10J  is not far of the 

experimental value but requires slight corrections in all cases. The relativistic 
dynamics introduction cannot solve this problem, but is very useful as the first 
step. From our results it is apparent that both first order corrections—one with 
precise relativistic kinetic energy ( )( )1

10J  and second-traditional-with corrected 
kinetic energy expectation value smaller than nonrelativistic one ( )( )10J − —give 
significantly different and in both cases not acceptable results. The two original 
methods of these corrections introduced above—the first one applying Lorentz 
multiplier ( )( )2

10J  and second applying spectral representation of relativistic 
kinetic energy operator ( )( )3

10J  demonstrate the necessity of further investi- 
gation of this problem, taking into account, among other things, the structure of 
atomic nucleus with defined charge and magnetism distributions. 

An interesting conclusion follows from these results about the Hydrogen 
atom ionization potential. As usual, the starting point is the nonrelativistic 
value ( )0

10 13.6057 eVJ =  with the traditional first order correction, predicting 
relativistic kinetic energy smaller than the nonrelativistic one, i.e.  

( )
10 13.6066 eVJ − = . Comparing with the experimental data, this result is worse 

than zero approximation. The possibility of correction in approximation, 
proportional ( )4Zα  is found—it is the so called Darvin term [10], considering 
the proton as a point-like particle. However, the structure of proton plays a 
significant role, as is shown by the proton charge radius measurement in muonic 
Hydrogen [11], giving a significantly different radius in comparison with proton 
radius, predicted by the traditional Hydrogen investigation [12]. Therefore, our 
approach, based on a precise relativistic kinetic energy definition, is more 
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promising for further investigation of this problem. 

7. Conclusions 

Our investigation has shown that successful relativistic dynamics application 
needs Galilei invariant formalism for the description of a quantum system. 
Galilei invariance, basic for relativity, appears as a bridge between relativity and 
quantum mechanics for relativistic quantum systems theory. Internal Hamiltonian 
of the quantum system corresponds to the nonrelativistic dynamics of particles, 
performing mutual movement, when all particles are present in the same inertial 
system. No time coordinate and Lorentz transformations, describing relations 
between movements in different inertial systems, are necessary for these 
particles. The only modification of such a Hamiltonian, taking into account 
relativistic dynamics, is the introduction of the precise relativistic kinetic energy 
operator for every internal spatial variable instead of the corresponding 
nonrelativistic one. These operators, defined in [1] and above, are invariant with 
respect to translations, hence the modified Hamiltonian is Galilei invariant. 
Moreover, it has all symmetries of the nonrelativistic Hamiltonian. Therefore, 
the eigenfunctions of the relativistic Hamiltonian have the same exact quantum 
numbers—like parity, angular, spin and total momenta and so on—as eigen- 
functions of the nonrelativistic internal Hamiltonian. This is because the only 
restrictions for these symmetries are introduced by the complexity of the 
quantum system’s potential energy operator, having the same form in both cases 
because the relativistic mechanism of the interaction of particles does not play a 
role due to stationarity of the quantum system.  

The introduced internal relativistic Hamiltonian in limit of small (in 
comparison with 2 2cµ ) kinetic energies of particles appears as the nonrelativistic 
internal Hamiltonian. Both Hamiltonians for a system of identical particles are 
symmetrical with respect to particles’ spatial coordinates and intrinsic degrees of 
freedom permutations. However, the antisymmetrization of the eigenfunctions of 
these Hamiltonians is problematic, because permutations of particles coordinates 
produce linear transformations of Jacobi variables. Traditional methods of this 
operation are not applicable. It is necessary to apply original methods, whose 
historical overview and the simplest known solution of the problem is present in 
[6]. 

Our investigation has shown that known potentials of particles interactions 
are weak enough to produce the quantum system with significant relativity. As a 
result, the relativity is soft, so it is acceptable to apply the introduced approximate 
methods for correction of nonrelativistic energies of quantum systems bound 
states. 

The really interesting quantum system, whose solution needs more 
sophisticated relativistic effects consideration, is the nucleon. For weakly bound 
states (such as proton and neutron) to exist in a deep confining well, significant 
kinetic energy is necessary, a few times larger than the relativistic limit. 
Therefore, for the solution of this problem, application of relativistic theory is 
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very promising. 
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