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Abstract 
This work represents the development and detailing of works in [1] [2], and 
work is dedicated to the promotion of the results Abels obtained modifying 
zeta functions. The properties of zeta functions are studied; these properties 
lead to new regularities of zeta functions. The choice of a special type of mod-
ified zeta functions allows estimating the Riemann’s zeta function and solving 
Riemann Problem. 
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1. Introduction 

In this work we are studying the properties of modified zeta functions. Rie- 
mann’s zeta function is defined by the Dirichlet’s distribution  
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absolutely and uniformly converging in any finite region of the complex s-plane, 
for which 1 , 0.σ ≥ + >   If 1σ >  the function is represented by the following 
Euler product formula  
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where p is all prime numbers. ( )sς  was firstly introduced by Euler 1737 in [3], 
who decomposed it to the Euler product formula (2). Dirichlet and Chebyshev, 
studying the law of prime numbers distribution, had considered this in [4] . 
However, the most profound properties of the function ( )zς  had only been 
discovered later, when the function had been considered as a function of a 
complex variable. In 1876, Riemann was the first who in [5] that:  

( )sς  allows analytical continuation on the whole z-plane in the following 
form  
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where ( )zΓ -gamma function, 

( ) ( )2
1expnx n xθ π∞

=
= −∑ . 

( )sς  is a regular function for all values of s, except s = 1, where it has a 
simple pole with a deduction equal to 1, and satisfies the following functional 
equation 

( ) ( ) ( ) ( )( ) ( )1 22 2 1 2 1ss s s s sπ ς π ς− −− Γ = Γ − −  

This equation is called the Riemann’s functional equation. 
The Riemann’s zeta function is the most important subject of study and has a 

plenty of interesting generalizations. The role of zeta functions in the Number 
Theory is very significant, and is connected to various fundamental functions in 
the Number Theory as Mobius function, Liouville function, the function of 
quantity of number divisors, the fucntion of quantity of prime number divisors. 
The detailed theory of zeta functions is showed in [6]. The zeta function spreads 
to various disciplines and now the function is mostly applied in quantum 
statistical mechanics and quantum theory of pole [7] [8] [9]. Riemann’s zeta 
function is often introduced in the formulas of quantum statistics. A well-known 
example is the Stefan-Boltzman law of a black body’s radiation. The given 
aspects of the zeta function reveal global necessity of its further investigation.  

We are interested in the analytical properties of the following generalizations 
of zeta functions:  
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where jp  runs through all prime numbers in ascending order. The forms of the 
given function P(s) allow assuming that they possess the same properties as the 
zeta function, but it is not quite obvious, considering  
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as ( ) 1 2Re s > +   we have  
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we see the necessity of analyzing P(s) for a deeper understanding of the 
properties of zeta functions.  

2. Results 

These are the well-known Abel’s results.  
Theorem 1. Let the function ( )xφ  be limited on every finite interval, and 
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Let N  be the set of all natural numbers. 
Corollary 1. Let the function ( ) sx xφ −= , 0, ,Res a b N> ∈  then  
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Corollary 2. Let the function ( ) sx xφ −= , 0, 1,Res a b> = = ∞  then  
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Corollary 3. Let the function ( ) sx xφ −= , 10, ,j jRes p p N+> ∈  then  
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We formulated Abel’s results for the variable s from the complex plane with 
the only condition 0Res >  We note once again that such formulations imply 
an analytic continuation of the zeta- function to the complex plane and we will 
use such formulas for the analytic continuation of the modified zeta-function 

( )mP s . 
For the function ( )mP s , let us apply the results obtained by Abel’s for the 

zeta function representation. For simplicity, we formulate several lemmas. 
Lemma 1. Let  
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from the last equation we obtain:  
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The last lemma allows us to consider ( )P s∆  as an analytic function of the 
complex variable s in the domain ( ) 1Re s > − . 

Corollary 4. Let ( )1 , 0,s Re s< > >    then for the function  
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Proof. According to the corollary conditions we have from last lemma we 
have proof the corollary.  

The last lemma allows us to consider ( )s∆  as an analytic function of the 
complex variable s in the domain ( ) 0Re s > . 

Lemma 2. For the function  
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as ( ) 1Re s >  we have: 
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Proof. Follows from computing of integrals.  
Lemma 3. For the function 
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Proof. Computing the sums , we have  
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The second assertion follows from the properties of the integral. 
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Theorem 2. Let the function 
( ) 1Re s > , then 

( ) ( ) ( )
[ ]( )1

1

1 2
2 d

1

s
m m

s
m

x xmsP s s s s x
s x

ς ς
∞−

+

− −
= − + +

− ∫
          

(14) 

( )( ) ( )1 2 1
2

ss m P s−
∆+ ∆ + + −

                     
 

Proof. Using Corollary 3 we have  
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Using Lemma 1-3 we have  
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Using Lemma 3 we have  
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Simplifying the last expression, we obtain  
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Simplifying the last expression, we obtain  
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Using Lemma 1 we have  
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Using analytic properties functions ( ) ( ) ( ), ,ms s P sς ς ∆  from the last equation 
we obtain ( )P s  as an analytic function of the complex variable s in the domain 

( ) 0.Re s >  
Computing ( )msP s , we obtain  
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From the last equation we obtain the regularity of the function ( )mP s  as 

( )0 1Re s< < .  
Theorem 3. The Riemann’s function has nontrivial zeros only on the line 
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Applying the formula from the theorem 2 
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estimating by the module  
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Estimating the zeta function, potentiating, we obtain 
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According to Theorem 2, ( )mP s  limited for s from the following set  
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finally we obtain:  
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These estimations for ( ) ( ) ( ), , mP s f s P s  prove that function does not 
have zeros on the half-plane ( ) 1 2Re s > +   due to the integral representation 
(3) these results are projected on the half-plane ( ) 1 2Re s < . Due to the 
arbitrariness of the  , we obtain a proof of the Riemann hypothesis. Riemann’s 
hypothesis is proved.  

3. Conclusion 

In this work we obtained the estimation of the Riemann’s zeta function 
logarithm outside of the line Re(s) = 1/2 and outside of the pole s = 1. This work 
accomplishes all the works of the greatest mathematicians, applying their 
immense achievements in this field. Without their effort we could not even 
attempt to solve the problem. 
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