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Abstract 
In this paper, we investigate the Gross-Pitaevskii (GP) equation which de-
scribes the propagation of an electron plasma wave packet with a large wave-
length and small amplitude in a medium with a parabolic density and con-
stant interactional damping by the Covariant Prolongation Structure Theory. 
As a result, we obtain general forms of Lax-Pair representations. In addition, 
some hidden structural symmetries that govern the dynamics of the GP equa-
tion such as ( )SL 2,R , ( )SL 2,C , Virasoro algebra, ( )SU 1,1  and ( )SU 2  
are unearthed. Using the Riccati form of the linear eigenvalue problem, infi-
nite number of conservation laws of the GP equation is explicitly constructed 
and the exact analytical soliton solutions are obtained by employing the sim-
ple and straightforward Hirota’s bilinear method.  
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1. Introduction 

Nonlinear evolution equations (NLEEs) have been studied in diverse areas in 
physics and applied mathematics such as plasma physics, nonlinear optical fibers, 
condensed matter etc [1] [2] [3]. The inhomogeneous nonlinear Schrödinger 
equation among those (NLEEs) describes the propagation of an electron plasma 
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wave packet with a large wavelength and small amplitude in a medium with a 
parabolic density and constant interactional damping [4] [5]. 

As it is known, the investigation of integrability of certain kinds of (NLEEs) 
by many researchers has generated a great deals of attention over the past years 
and now many methods to analyze the complete integrability of nonlinear 
evolution equations are developed. Among them, Wahlquist and Estabrook’s 
prolongation technique [6]-[23] is a powerful and systematic method to test the 
integrability of the physically important nonlinear evolution equations. By virtue 
of these techniques, Morris [23] has analyzed the multi-component nonlinear 
Schrödinger equations. 

In 1980’s, based upon the nonlinear connection theory proposed by Lu et al. 
[24] Guo et al. [25] [26] [27] have proposed a covariant geometry theory for the 
prolongation structure of the nonlinear evolution equation. 

Since the experimental realization of the Bose-Einstein condensate (BEC) for 
rubidium and sodium [28] [29], study on the properties of the BEC systems has 
attracted peoples attention [30] [31]. The BECs have also been observed in 
certain atomic gases such as the lithium, hydrogen, helium and potassium atomic 
gases [32] [33]. For a cigar-shaped BEC at a relatively low density, when the energy 
of the two-body interaction is much less than the kinetic energy in the transverse 
direction, the BEC system can be treated as quasi-one-dimensional [34] [35]. In 
the following paper, we plan to investigate the following Gross-Pitaevskii equation 
in the Bose-Einstein condensate [36] [37] by the covariant prolongation structure 
theory:  

( )22 2 22 0,t xxiq q q q i x x qµ β α β+ + + − + =
            

(1) 

where ( ),q x t  represents the mean-field wave function of the Bose-Einstein 
condensate; x  and t  are the normalized distance and retarded time, res- 
pectively; α  and β  are all the real numbers; µ  is the nonlinearity para- 
meter; iβ  is the gain ( )0β <  or loss ( )0β >  term; xα−  represents the 
linear external potential, while 2 2xβ  accounts for the harmonic external 
potential. 

In soliton theory and other fields of science and engineering, the language of 
technical computing played a very important role in analytically dealing with 
large amounts of complicated and tedious algebraic calculations [38] [39]. In this 
paper, we will employ symbolic computation to study the integrability aspects 
and relevant soliton structures of Gross-Pitaevskii equation in the Bose-Einstein 
condensate [36] [37]. 

However, to our knowledge, for Equation (1), Lax-Pair, Conservation laws, 
multiple soliton solutions via Hirota’s method and symbolic computation have 
not been discussed yet. Motivated by the above, a Lax-Pair based on the 
generators of some hidden structural symmetries governed the dynamics of the 
(GP) equation will be got in section 3. In section 4, an infinite sequence of 
conservation laws of Equation (1) are obtained. In addition, in section 5 we 
present the exact one and two soliton solutions of the Gross-Pitaevskii Equation 
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in the Bose-Einstein condensate. Finally, the conclusion will be addressed in 
section 6. 

2. Covariant Theory for Prolongation Structure of Nonlinear  
Evolution Equations 

For a given ( )1 1+ -dimensional nonlinear evolution equation with two 
independent variables x  and t , we can introduce a set of new variables  

{ } { }1 2 3 3, , , , , , , ,n nX x x x x x t x x= =   and define a set of 2-forms { }jI σ=   

such that it constitutes a differential closed ideal, which lead to the ( )1 1+
-dimensional nonlinear evolution equation if the ideal is restricted on the solution 
space ( ) ( ){ }3, , , , , ,nS x t x x t x x t=  . 

Now we take X  as the base space, { } { }1, , iY y y y= =   named prolongation 
variables as the fiber space and G  as the structure group generated by the 
prolongation algebra g . We can consider a principle bundle ( ),P X G  and the 
bundle ( ), , ,E X Y G P  associated with P . Define the local cross-section on E , 

: X Eτ → , and its covariant derivatives:  

( ) ( ) ( )d , d d d ,i i i r i a i r
r r ay X y x y X y xω λ= + Γ = + Γ            (2) 

where i  is the dimension of the representation space of the prolongation 
algebra, ( )a

r XΓ  are the coefficients of the connection on the principal bundle 
P  and ( )i

a yλ  are the coefficients of the generators of the prolongation 
algebra g . 

Then we introduce the following connection 1-forms:  

( ) ( ) ( ) ( ) ( )d d ,
a
ki i r i a b c i r

k kr a cb r k ar

y
L L x y C x y y x

x
λ

λ λ λ
 ∂

= = + Γ 
∂          

(3) 

a
cbC  are the structure constants of the prolongation algebra g . Using the 

induced connection i
krL , we can define the following covariant exterior 

derivative:  

1 1d d d ,
2 2

i i i j a i r s i i j k
j rs a jk aD L F x x Mω ω ω λ λ ω ω∗ = + ∧ = − ∧ + ∧

      
(4) 

where a
rsF  and i

jkM  are the curvature coefficients on P  and the torsion 
coefficients in the fiber space Y , respectively, and given by  

( ) ( ) ( ) ( ) ( ) ,
a a
r sa b c a

rs r s cbs r

X X
F X X X C

x x
∂Γ ∂Γ

= − + Γ Γ
∂ ∂

 

( ) ( ) ( ) ( ) ( ) .
i i
a ai a a

jk j kk j

y y
M Y y y

y y
λ λ

λ λ
∂ ∂

= −
∂ ∂               

(5) 

Requiring { }1, , ,j iI σ ω ω′ =   is an extended closed ideal, we may derive the 
following equation from Equation (4) 

( )1 d d ,
2

a i r s i k l i i l
rs a lk lF x x M f δ

δλ ω ω σ η ω∧ + ∧ = + ∧
          

(6) 

where ifδ  and i
lη  are the zero and one forms on the base manifold X , 

respectively. Equation (6) can decomposed into the following equations:  
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( ) ( ) ( )1 1d d , ,
2 2

a i r s i i k l i l
rs a lk lF X y x x f M Yδ

δλ σ ω ω η ω∧ = ∧ = ∧
     

(7) 

Equation (7) is called the fundamental equation of the prolongation structure 
[26] [27]. In general, we may completely determine the prolongation structure of 
a given nonlinear system when the solution of the one fundamental equation can 
be found. 

3. Covariant Prolongation Structure of Gross-Pitaevskii  
Equation in the Bose-Einstein Condensate 

In order to express Equation (1) in differential forms, we add the conjugate 
equation of Equation (1) to Equation (1) and obtain the following system :  

( )22 2 22 0,t xxiq q q q i x x qµ β α β∗ ∗ ∗ ∗− + + + − − + =  

( )22 2 22 0.t xxiq q q q i x x qµ β α β+ + + − + =
             

(8) 

We define the independent variables as  

{ } { }1 2 3 4 5 6, , , , , , , , , ,x xX x t q q q q x x x x x x∗ ∗= = . The Gross-Pitaevskii equation can 
then be expressed in the following set of two-forms given by [26] [27]  

1
3 2 4 1 2d d d d ,x x x x xσ = ∧ − ∧  

( )2 2 2 2
1 3 4 2 3 5 1 1 3 1 2d d d d 2 d d ,x x i x x i x x i x x x x xσ µ β α β = ∧ − ∧ − + − + ∧   

3
5 2 6 1 2d d d d ,x x x x xσ = ∧ − ∧  

( )4 2 2 2
1 5 6 2 3 5 1 1 5 1 2d d d d 2 d d ,x x i x x i x x i x x x x xσ µ β α β = − ∧ − ∧ − + − − + ∧   

(9) 

where the letter d  denotes the exterior derivative and the symbol ∧  
represents the exterior product. In order to ensure complete equivalence 
between the forms (9) and the Gross-Pitaevskii Equation (8), the ideal I  must 
be closed, i.e., dI I⊂ . In this closed ideal any local surface element which 
annuls the jσ  also annuls their exterior derivatives d jσ . In order to establish 
the prolongation structure, we extend the above ideal by adding to it a 
connection 1-forms, defined by [26] [27]  

( ) ( )d d ,l l a l r
r ay X y xω λ= + Γ                   (10) 

where { }1 2 3 4 5 6, , , , ,X x x x x x x= , and ly  are the prolongation variable. For 
some suitably chosen prolongation variables and imposing the closed condition 
of the extended ideal { }1, , ,j lI σ ω ω′ =   under covariant exterior derivative, it 
leads to the covariant fundamental equations. 

Substituting the above two forms 
1, ,4

j
j

σ
= 

 into the fundamental equation 

Equation (7), we have [26] [27] 

( )
( )

2 2 2
1,2 4 2,3 6 2,5 3 5 1 1 3 1,3

2 2 2
3 5 1 1 5 1,5

2

2 0,

l l l l

l

F x F x F i x x i x x x F

i x x i x x x F

µ β α β

µ β α β

 − − + + − + 
 − + − − + = 

 

( )2,4 1,3 2,6 1,5 1,4 1,6 ,0, 0, 0, 0, , 4,5,6 .l l l l l l l
r sF iF F iF F F F r s− = + = = = = =  (11) 

Then, substituting the first equation of Equation (5) into Equation (11), we 
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have the following over-determined difference equations  
1 2 3 1 2 3
1 1 1 1 1 1

4 4 4 6 6 6

0, 0, 0, 0, 0, 0,
x x x x x x
∂Γ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ

= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

 

1 1 2 2 3 3
2 1 2 1 2 1

4 3 4 3 4 3

0, 0, 0,i i i
x x x x x x

∂Γ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ
+ = + = + =

∂ ∂ ∂ ∂ ∂ ∂
 

1 1 2 2 3 3
2 1 2 1 2 1

6 5 6 5 6 5

0, 0, 0,i i i
x x x x x x

∂Γ ∂Γ ∂Γ ∂Γ ∂Γ ∂Γ
− = − = − =

∂ ∂ ∂ ∂ ∂ ∂
 

( )

( )

1 1 1 1
2 3 1 21 2 2 2

4 6 1 2 3 2
2 1 3 5

1
2 2 2 1

3 5 1 1 3
3

1
2 2 2 1

3 5 1 1 5
5

2 2

2

2 0,

x x
x x x x

i x x i x x x
x

i x x i x x x
x

µ β α β

µ β α β

∂Γ ∂Γ ∂Γ ∂Γ
− − − + Γ Γ − Γ Γ

∂ ∂ ∂ ∂

∂Γ + + − +  ∂

∂Γ − + − − + =  ∂

 

( )

( )

2 2 2 2
1 2 2 11 2 2 2

4 6 1 2 1 2
2 1 3 5

2
2 2 2 1

3 5 1 1 3
3

2
2 2 2 1

3 5 1 1 5
5

2

2 0,

x x
x x x x

i x x i x x x
x

i x x i x x x
x

µ β α β

µ β α β

∂Γ ∂Γ ∂Γ ∂Γ
− − − + Γ Γ −Γ Γ

∂ ∂ ∂ ∂

∂Γ + + − +  ∂

∂Γ − + − − + =  ∂

 

( )

( )

3 3 3 3
1 3 3 11 2 2 2

4 6 1 2 1 2
2 1 3 5

3
2 2 2 1

3 5 1 1 3
3

3
2 2 2 1

3 5 1 1 5
5

2

2 0.

x x
x x x x

i x x i x x x
x

i x x i x x x
x

µ β α β

µ β α β

∂Γ ∂Γ ∂Γ ∂Γ
− − − −Γ Γ + Γ Γ

∂ ∂ ∂ ∂

∂Γ + + − +  ∂

∂Γ − + − − + =  ∂            

(12) 

Solving the over-determined difference equations Equation (12), we obtain 
the following solutions  

( )1
1 22 exp 2 ,

2
i i xα

λ β
β

−
Γ = − −  

( )2 2
1 3 1exp 2 ,x i xµ βΓ = −  

( )3 2
1 5 1exp 2 ,x i xµ βΓ = −  

( ) ( )
2

1 2
2 2 1 2 3 54 exp 2 4 exp 2 2 ,

4
i x i x x i x xα

λ β βλ β µ
β

 
Γ = − + − + − + 

 
 

( ) ( )2 2
2 3 3 2 1 3 4 12 exp 2 exp 2 ,

2
x x x x x i x i xαµ

µλ β µβ µ β
β

 
Γ = + − − + − 

 
 

( ) ( )3 2
2 5 5 2 1 5 6 12 exp 2 exp 2 ,

2
x x x x x i x i xαµ

µλ β µβ µ β
β

 −
Γ = − − + + 

     
(13) 

with λ  as the hidden spectral parameter and the other components are zero. 
Let us use the two dimensional linear representation of ( )SL 2,R  [22] [23] 
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given by,  

1 1 2 2 2 3 1
1 2 1 2

1 1 , , .
2 2

X Y Y X Y X Y
Y Y Y Y
∂ ∂ ∂ ∂

= − + = − = −
∂ ∂ ∂ ∂       

(14) 

Setting the transformation ( )i
m m

i

X Y
Y

λ
∂

=
∂

, which leads to  

1 2 1 2 1 2
1 1 1 2 2 2 2 3 3 1

1 1, , , 0, 0, ,
2 2

Y Y Y Yλ λ λ λ λ λ= − = = − = = = −
    

(15) 

we therefore derive the following Lax-Pairs, given by  
2 1 3
1 1 1 0 1 1 ,xY T T T Y− = − Γ + Γ + Γ   

2 2 3
2 1 1 0 2 1 ,tY T T T Y− = − Γ + Γ + Γ                   

(16) 

where 
1, ,1i iT

=− 

 represent the generators of the ( )SL 2,R -symmetry [22] [23]. 
On the other hand, by selecting the matrix representation of a generators of a 
( )SL 2,C  symmetry, the Lax-representation associated to such an algebra is 

then given by  
1

2 31
1 1 ,

2xY e h e Y− +

 Γ
= Γ + + Γ 
 

 

1
2 32
2 2 ,

2tY e h e Y− +

 Γ
= Γ + + Γ 
                    

(17) 

where ( e± , h ) are the generators of ( )SL 2,C  Lie algebra [8]. 
Besides the previous symmetries, we select the generators of the ( )SU 1,1 - 

symmetry [23] and we obtain the following Lax-representation  

( ) ( )1 2 3 2 3
1 1 1 1 2 1 1 3 ,xY T T T Y = Γ + Γ + Γ + Γ −Γ   

( ) ( )1 2 3 2 3
2 1 2 2 2 2 2 3 ,tY T T T Y = Γ + Γ + Γ + Γ −Γ               (18) 

where 
1, ,3i iT
= 

 are the generators of ( )SU 1,1  Lie algebra [23]. 
Another Lax-representation can be derived in the form  

( ) ( )2 3 2 3 1
1 1 1 1 1 2 1 3 ,xY i T T T Y = Γ + Γ − Γ −Γ + Γ   

( ) ( )2 3 2 3 1
2 2 1 2 2 2 2 3 ,tY i T T T Y = Γ + Γ − Γ −Γ + Γ              

(19) 

and  

( )2 1 1 0 3 1
1 1 1 ,xY T T T Y−= −Γ + Γ + Γ  

( )2 1 1 0 3 1
2 1 2 ,tY T T T Y−= −Γ + Γ + Γ

                 
(20) 

where 
1, ,3i iT
= 

 and 
1, ,1

i
i

T
=− 

 are the generators of a ( )SU 2 -symmetry [22] 
[23] and centreless Virasoro Lie algebra [9] [10]. 

From the previous discussion, it appears that the dynamics of the the Gross- 
Pitaevskii (GP) equation modeled by Equation (1), are basically governed by 
internal structural symmetries, including the Virasoro algebra, ( )SL 2,C , ( )SU 2 , 

( )SU 1,1  and ( )SL 2,R . Such symmetries have some physical implications. For 
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example, the ( )SU 1,1 -symmetries show that the system (1) possesses some 
conserved quantities that are rotationally and hyperbolically invariant, respectively. 
Thus, we have shown that Eqution (1) is Lax integrable by giving its corresponding 
Lax-Pair Equations (16)-(20). 

4. Conservation Laws of the Gross-Pitaevskii Equation  
in the Bose-Einstein Condensate  

In the following, we will prove the existence of infinitely-many conservation 
laws, which further verifies the integrability of Equation (1). 

By means of the one dimensional linear representation of ( )SL 2,R , we 
derive the Riccati equations  

3 1 2 2
1 1 1xY Y Y= Γ −Γ −Γ  

3 1 2 2
2 2 2 .tY Y Y= Γ −Γ −Γ                      (21) 

Then setting [40],  

( )1 2 3 4 5
1 0 1 2 3 4 5 ,Y Y Y Y Y Y Y Yρ ρ ρ ρ ρ ρ ζ ρ− − − − −
−= + + + + + + + =

 

( ) ( )2
3 1 2exp 2 , exp 2 ,

4
Q x i x xα

β ζ λ β
β

= − = + −
          

(22) 

and substituting it into Equation (21), then comparing the coefficient of kρ , we 
have  

( )
( )

( )
( )
( )

( )

1 1

1, 0 1

2
0, 1 1 0

1, 2 1 2 0 1

2
2, 3 1 1 3 0 2

, 1 1
0

2 : 2 0,

1: 2 2 ,

0 : 2 2 ,

1: 2 2 ,

2 : 2 2 2 ,

: 2 2 ,

x

x

x

x

j

j x j m j m
m

k Y i QY

k Y Y i QY

k Y Q Y i QY QY

k Y iY Q Y Y Y Y

k Y iY Q Y Y Y Y Y

k j Y i QY Y Q Y Y

µ

µ

µ µ µ

µ

µ

µ µ

− −

− −

−

−

−

− + −
=

= − =

= = −

= = − + − −

= − = − +

= − = − + +

 
= = − −  

 
∑





          

(23) 

from which we obtain  

( ) ( )2 2 2 2 3
1 0 1

2 1 1, , ,
2x x xx

iY Y Q Q Y Q Q Q Q Q
Q i

µ
µ µ µ

− − −
−

 = = = + + 
  

( )

,
0

1
1

.
2 2

j

j x m j m
m

j

Y Q Y Y
Y

i QY

µ

µ

−
=

+
−

 
+  

 =
−

∑

                  
(24) 

From the compatibility condition, the infinitely-many conservation laws for 
Equation (1) can be expressed as [41]  

, 1, ,j jD F
j

x t
∂ ∂

= = − ∞
∂ ∂



                   
(25) 

where the conserved density jD  and the conserved flow jF  are the following  

( ) ( ) 2
1 0 1 0 1 02 2 , 2 2 ,x xD QY i Q Qx Y D QY i Q Qx Y i QQµ µ µβ µ µ µβ µ− −= + − = + − +   

( ) ( )1 2 1 12 2 , 2 2 , 2, ,x j j x jD QY i Q Qx Y D QY i Q Qx Y jµ µ µβ µ µ µβ+= + − = + − = +∞  
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, 1, , .j jF QY jµ= = − +∞                   (26) 

Using the vanishing boundary condition, we can give the three constants of 
motions from the obtained conservation laws,  

1 0 1d d d constant.D t D t D t
+∞ +∞ +∞

−−∞ −∞ −∞
= = =∫ ∫ ∫              

(27) 

5. Exact multisoliton solutions of the Gross-Pitaevskii  
Equation in the Bose-Einstein Condensate 

In order to derive the analytical soliton solutions to Equation (1), we will employ 
the Hirota bilinear method [42] [43] [44], which is an efficient and direct 
approach to construct soliton solutions to nonlinear evolution equations via the 
bilinear forms from the dependent variables transformation. 

To get the bilinear forms for Equation (1) we introduce the dependent 
variable transformation 

( ) ( )
( ) ( )1 2 2

1 2 1
1 2

,
, exp 2

,
g x x

q x x i x
f x x

β=
                

(28) 

where ( )1 2,g x x  is the complex differentiable function, and ( )1 2,f x x  is a real 
one. Substituting relation (28) into Equation (1), the bilinear equations of 
Equation (1) turns out to be in the following forms  

( )
2 1 1

2
1 1D 2 D 2 D 0,x x xi i x i x g fβ β α + + − + ⋅ =   

1

2 2D 2 ,x f f g gµ⋅ = ⋅ 

                     
(29) 

where D  denotes the Hirota’s derivative [42] [43] [44]. 
To construct the soliton solutions of Equation (1), we expand ( )1 2,g x x  and 
( )1 2,f x x  with respect to a formal expansion parameter   as 

2 4 2
2 4 21 ,i

if f f f= + + + + +     
3 2 1

1 3 2 1 .i
ig g g g+
+= + + + +                    (30) 

where ( )2 1 1 2,ig x x+  is the complex differentiable function, and ( )2 1 2,if x x  is a 
real one 

To derive the one-soliton solutions to Equation (1), we truncate expressions 
Equation (30) as 1g g=   and 2

21f f= +  , setting 1=  and substituting then 
into Bilinear forms Equation (29). We obtain the one-soliton solutions to 
Equation (1) as 

( )
( ) ( )

( )

1 1 1 2
1 2 1 1 1 2

1

1
1 1 2

1 1

1, exp 2
2 2 2

1sech 2 2ln
2

A iq x x x x
A

A
x

ξ ξ
θ θ β β

µ
µ

θ θ β
ξ ξ

+  = − + −  
  

× + + +  
+   







       

(31) 

where  

( ) ( )

( ) ( )

2

1 2 2 1 22

2

2 2

, exp 2 2
2 4

exp 4 exp 2
4 2

j j

j j

x x x x x
i i

x x
i

α αθ ξ β β
β β
ξ αξ

β β
β β

  
= + − + −  
   

+ − − −
       

(32) 
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Figure 1. The one-soliton solution via expression (31) with parameters 5α = ; 1β = ; 1 1 5iξ = + ; 
2,5µ = ; 1 1A = .  

 
it is depicted in Figure 1. 

Similarly, in order to derive the two-soliton solutions, we can choose  

( ) ( )1 1 1 2 2exp exp ,g A Aθ θ= +  

( ) ( ) ( ) ( )1 2 1 2
2 1 1 1 1 1 2 2 2 1 2 2 2exp exp exp exp ,f B B B Bθ θ θ θ θ θ θ θ

∗ ∗ ∗ ∗∗ ∗ ∗ ∗= + + + + + + +  

( ) ( ) ( )
( ) ( ) ( )

1 2 1
3 11 1 1 11 1 2 12 1 2 1

2 1 2
12 1 2 2 22 2 1 22 2 2

exp 2 exp 2 exp

exp exp 2 exp 2 ,

g C C C

C C C

θ θ θ η θ θ θ

θ θ θ θ θ θ θ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= + + + + + +

+ + + + + + +
 

( ) ( ) ( )
( )

1 1 1 1 2 2
4 11 1 1 22 2 1 11 1 2

2 2
22 2 2

exp 2 2 exp 2 2 exp 2 2

exp 2 2 ,

f D D D

D

θ θ θ θ θ θ

θ θ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗

= + + + + +

+ +
 

(33) 

where  

( )
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1 1
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m mm
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m nM
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θ θ

∗
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−∗

+∗

= 
= = −  = = +
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, ,
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mnp m n npm n pp

mn
mnp
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C

m nM
θ θ
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∗
− −

+

+ = 
= −  = = 





 

( ) ( ) ( )
( ) ( )

2 2 2 1 1 1

1 1 1

2

, , , , , ,

, , , 12 2 ,

mnp m x n x p x m x n x p x

m x n x p x

M i

i i x

θ θ θ θ θ θ θ

β θ θ θ β α

∗ ∗

∗

= +
+ + − 



   

 

 

( )2

, ,

1, , 2
, .

1, 2

p pl
pl mn n

mn p
m m x p x

p lC CD
m nB θ θ

∗ ∗
∗

∗ ∗

= = 
= −  = = +





           

(34) 

The two-soliton solutions to Equation (1) is written as  

( )
( )

2
1

1 3

1 2
2 4

exp
2

, .
1

i xg g
q x x

f f

β 
+  

 =
+ +                 

(35) 
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Figure 2. The two-soliton solutions via expression (35) with parameters (a) 0.59α = ; 0.98β = − ; 

1 0.45 0.3iξ = − − ; 2 0.18 0.2iξ = + ; 1.5µ = ; 1 1A i= − + ; 2 1A i= + , (b) 0.59α = ; 0.98β = − ; 1 0.45 0.3iξ = − − ; 

2 0.18 0.2iξ = + ; 1.19µ = ; 1 0.78 7.9A i= − + ; 2 0.65 0.2A i= − + .  
 

and the corresponding depiction is shown in Figure 2. 
If one and two-soliton solutions are calculated, then it is possible to generate 

the multi-soliton solution in the same way.  

6. Conclusion 

Throughout the present paper, we investigated the prolongation structure of the 
Gross-Pitaevskii equation which describes the propagation of an electron plasma 
wave packet with a large wavelength and small amplitude in a medium with a 
parabolic density and constant interactional damping from the viewpoint of 
covariant prolongation structure. As a result, we have unearthed some hidden 
structural symmetries governing the dynamics of the Gross-Pitaevskii equation 
such as ( )SL 2,R , ( )SL 2,C , Virasoro algebra, ( )SU 1,1  and ( )SU 2 . Such 
symmetries have some physical implications. For example, the ( )SU 1,1
-symmetries show that the system (1) possesses some conserved quantities that 
are rotationally and hyperbolically invariant, respectively. Thus, we have shown 
that Equation (1) is Lax integrable by giving its corresponding Lax-Pair 
Equations (16)-(20). In addition, infinite number of conservation Laws, one and 
two soliton solutions using Hirota bilinear method have been constructed. The 
prolongation structure analysis performed in the present study to the system (1) 
has revealed an infinite number of conserved quantities which stand as strong 
proof of integrability of this equation.  
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