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Abstract 
The recently proposed data-driven pole placement method is able to make use 
of measurement data to simultaneously identify a state space model and de-
rive pole placement state feedback gain. It can achieve this precisely for sys-
tems that are linear time-invariant and for which noiseless measurement da-
tasets are available. However, for nonlinear systems, and/or when the only 
noisy measurement datasets available contain noise, this approach is unable to 
yield satisfactory results. In this study, we investigated the effect on data-dri- 
ven pole placement performance of introducing a prefilter to reduce the noise 
present in datasets. Using numerical simulations of a self-balancing robot, we 
demonstrated the important role that prefiltering can play in reducing the in-
terference caused by noise. 
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1. Introduction 

In state feedback pole placement, the state feedback gain must be determined for 
a given system such that the closed-loop poles coincide with the desired loca-
tions. This is a well-known problem, and the pole placement methods have been 
extensively discussed in the literature [1] [2] [3] [4]. In standard pole placement 
methods, a state space model is assumed to be given by a system identification 
technique using data from past experiments. Whereas the traditional approach 
combines the identification of the state space model with the standard pole 
placement method; an alternative approach called “data-driven pole placement” 
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has recently been proposed [5]. In this approach, the state space model and pole 
placement feedback gain are identified simultaneously from the set of state 
measurements and control input sequences. The method proposed in [5] is 
based on the data-driven control framework ([6] and references therein) such as 
unfalsified control [7], virtual reference feedback tuning (VRFT) [8] [9], or ficti-
tious reference iterative tuning (FRIT) [10] [11] [12] [13]. In the data-driven 
control framework, where no explicit mathematical plant model is used, a feed-
back controller must be derived that satisfies the prescribed closed-loop perfor-
mance and fits to known experimental data. In contrast with traditional mod-
el-based controller designs, techniques such as controller identification [14] or a 
combination of plant model and controller identification must be applied [15] 
[16]. 

Many studies of data-driven control have focused on output feedback control 
and data-driven state feedback control [11] [12] [13], in which the prescribed 
closed-loop performance is achieved by applying a closed-loop reference transfer 
function. Such methods can be applied to the data-driven pole placement prob-
lem by choosing a reference transfer function with the desired poles. However, 
the zeros of the reference transfer function cannot normally be specified, because 
the zeros of the plant are unknown. In contrast, the data-driven pole placement 
method presented in [5] requires only a state space representation of the closed- 
loop system to specify the prescribed closed-loop performance, as shown in Sec-
tion 2. This avoids the zero assignment issue that arises in the transfer function 
approach used in [5]. 

This data-driven pole placement method can, therefore, be applied to linear 
and time-invariant systems with measurable states. The method is briefly re-
viewed in Section 2. However, the capacity of the data-driven pole placement 
method to handle noise remains an open issue, though in [5], the total least 
square (TLS) method [17] was claimed to be effective. Measurement noise is one 
of the issues which may surely face in practical applications. Therefore, to re-
solve this, we introduced a prefiltering technique that reduces the effect of mea-
surement noise in Section 3. More specifically, a finite impulse response (FIR) 
filter is used to prefilter the data, as this makes them easier to manipulate. In 
Section 4, by using the numerical example of a self-balancing robot, we discuss 
the effect of applying this prefiltering technique, together with the least square 
(LS) and TLS methods, to a self-balancing robot model. We investigate the abili-
ty of the data-driven pole placement method to produce a linearized model us-
ing numerical simulations as in [18]. A nonlinear differential equation was used 
to represent the dynamics of a self-balancing robot there. Moreover, we evaluate 
the effects by two different exciting signals, the random and the chirp exciting 
signal, along with TLS and prefiltering. Finally, we compare all the results for the 
pole placement error and identification error when two exciting signals are ap-
plied.  

Notation: Let A  and B  be m n×  and p q×  matrices, respectively. Then, 
the Kronecker product of A  and B  is a mp nq×  matrix, defined as follow: 



P. E. E. Shwe, S. Yamamoto 
 

141 

11 1

1

,
n

m mn

a B a B
A B

a B a B

 
 ⊗ =  
  



 



                   (1) 

where ( 1, , ,  1, , )ija i m j n= =   is the thij  element of A . The vectorization 
of then stacks the columns into a vector: 

( )
1

vec ,

n

a
A

a

 
 =  
  



                        

(2) 

in which ja  is the thj  column of A . The Frobenius norm of matrix 
m nA R ×∈  is defined as 

2

1 1
.

m n

ijF
i j

A a
= =

= ∑∑
                       

(3) 

2. Data-Driven Pole Placement 

In this section, we briefly review the data-driven pole placement method formu-
lated in [5]. 

Consider a discrete-time linear time-invariant system and static state feedback 

( ) ( ) ( )1x k Ax k Bu k+ = +                     (4) 

( ) ( ) ( )u k Fx k v k= +                       (5) 

where , ,n n n m nA B x× ×∈ ∈ ∈    is the state vector, mu∈  is the input vector, 
m nF ×∈  is the feedback gain, and mv∈  is the external input to the closed 

loop system. 
The data-driven pole placement problem was formulated in [5] as follows: 
Problem 1. We assume that the order of the plant n is known, state n is mea-

surable, pair ( ),A B  is controllable but the exact value is unknown and B  is 
of full rank. Let { }1Λ , , np p= 

 be a self-conjugate set of n complex numbers 
in the unit circle. Given the input and output measurement data sequence

( ) ( )( )0 0,x k u k  of (4), find a state feedback gain F  from the observed data 
( ) ( )( )0 0,x k u k  such that ( ){ } Λ .i A BFλ + =  

In a conventional approach, this problem is solved in two steps: A  and B  
are identified from ( ) ( )( )0 0,x k u k , then F  is derived using the standard pole 
placement algorithms. In contrast, the data-driven pole placement method solves 
the two steps simultaneously. To achieve this, the method uses the equivalency 
between the closed-loop system 

( ) ( ) ( ) ( )1 ,x k A BF x k Bv k+ = + +                  (6) 

with the desired pole placement gain F  and 

( ) ( ) ( )d d d d1 ,x k A x k B v k+ = +                    (7) 

( ) ( )d ,x k Tx k=                        (8) 

where ( )d d,A B  with ( )di iA pλ =  is an appropriate controllable pair. This 
equivalency requires the nonsingular matrix T  to exist. Then, we remove v  
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from (7) by using (5), to obtain 

( ) ( ) ( ) ( )d d d d d1 .x k A x k B u k B Fx k+ = + −               (9) 

Then, using (8), we obtain 

( ) ( ) ( ) ( )d d d1 .Tx k A Tx k B u k B Fx k+ = + −              (10) 

If ( ) ( )( ) ( )0 0, , ,x k u k k i i N= +  satisfies (10), 

0 1 d 0 2 d 0 d 0 ,TX P A TX P B U B FX= + −                 (11) 

where 

( ) ( ) ( )0 0 0 0  1   ,X x i x i x i N= + +  

              
(12) 

( ) ( ) ( )0 0 0 0  1   1 ,U u i u i u i N= + + −  

             
(13) 

1
1 2

1

0
,  .

0
N N

N N

I
P P

I
×

×

   
= =   
                        

(14) 

In [5], Equation (11) is cast into 

1 0 1 2 0 2 d 0 ,
T T

S X P S X P B U
F F
   

+ =   
                    

(15) 

[ ] [ ]1 2 d d0 ,  ,n n mS I S A B×= = −                  (16) 

and 

1 1

,  .m n n n

m m

f t
F T

f t

× ×

   
   = ∈ = ∈   
      

   
                (17) 

Remark 1. The system in (7) can be interpreted as a reference model within 
VRFT (e.g., [8] [9]) and FRIT (e.g., [10] [11] [12] [13]). The idea of eliminating 
v  in (9) is also based on FRIT. In [10] [11] [12], a similar state feedback control 
problem has been discussed within the FRIT framework. To apply these FRIT 
techniques to the data-driven pole placement problem, the desired transfer func-
tion must be specified from u  to x , rather than dx . When precise values for 
( ),A B  are not available, it becomes impossible to specify the zeros of the de-
sired transfer function. 

Remark 2. To obtain the datasets in (12) by applying state feedback in (5) to 
the system in (4), the initial feedback gain F  should be based on ( ),A B . 
Hence, in Problem 1, the exact value of ( ),A B  is assumed to be unknown. 

When applying the property of Kronecker product  
( ) ( )vec vec TMND N M D= ⊗  (see for example Th.2.13 in [19]) to the trans-

pose of (15) to solve (15) for F  and T , a further linear equation is derived, as 
follows: 

,ηΧ = U                           (18) 

where 

[ ] ( )
1 1      ,n m n

n mt t f fη Τ += ∈                   (19) 
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( ) ( ) ( )
1 0 1 2 0 2 ,nN n m nS X P S X PΤ Τ × +Χ = ⊗ + ⊗ ∈            (20) 

( )( )d 0 vec .nN
mB U IΤ= ⊗ ∈U                  (21) 

If T  is nonsingular, the model coefficients can be obtained  
1 1 1

d d d,   .A T A T T B F B T B− − −= − =                 (22) 

3. Prefiltering Noisy Measurement 

When the measurement of x  is contaminated by noise ε , 

( ) ( ) ( )0 .x k x k kε= +                      (23) 

Then, (10) becomes 

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

0

d 0 d 0 d 0

1 1

.

T x k k

A T x k k B u k B F x k k

ε

ε ε

+ − +

= − + − −
        (24) 

Hence, if ( ) ( )( ) ( )00 , , ,k u kx k i i N= +  satisfies the above equation, 

( )
( ) ( )

0 1

d 0 2 d 0 d 0 2 ,

T X E P

A T X E P B U B F X E P

−

= − + − −             (25) 

where 

( ) ( ) ( )1 .E i i i Nε ε ε= + +  

              
 (26) 

Then, the resulting linear equation is given as 

( ) ,ηΧ + ∆Χ = + ∆U U                      (27) 

where the effect of noise ∆Χ  has the same structure as Χ  in (20), then 

( ) ( )T T
1 1 2 2 ,S EP S EP∆Χ = − ⊗ − ⊗                 (28) 

and ∆U  is the equation error. Following [5], we can solve ( )n m nRη +∈  to 
(27) as a TLS problem [17], by minimizing the Frobenius norm  
[ ] F
∆Χ ∆U . It is known that the TLS solution is given as 

12
22

1 V
V

η = −
                         

(29) 

based on the singular value decomposition 

[ ] [ ]
T

1 11 12

2 21
2

2
1

2

0
,

0
V V
V V

Σ   
Χ    Σ  

=


U UU
            

(30) 

where these matrices are partitioned into blocks corresponding to Χ  and U . 
Here, we assume that there exists 0M >  such that  

( )
1

1 0
M

j
i j

M
ε

=

+ ≈∑
                       

(31) 

for all i . This means that when ,N M>  

1 20,  0EP EPΦ ≈ Φ ≈                       (32) 

for the matrix 
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( )1

1 0 0

1 01 ,
0 1

0 0 1

N N M

M
× − +

 
 
 
 
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 
 
 
  



   

 



 

   

                

(33) 

where each column has M  elements of 1. Therefore,  

0 1 d 0 2 d 0 d 0 2TX P A TX P B U B FX P= + −   

                (34) 

where 

0 0 0 0,  .X X U U= Φ = Φ 

                     (35) 

This multiplication by Φ  represents the prefiltering of signals via an thM  
order FIR filter. 

When the systems (4) and (7) are driven by the exciting signal, we have 

( ) ( )0 1 0 2 0    ,X E P A X E P BU− = − +                 (36) 

( )0 0 2 ,U F X E P V= − +                     (37) 

( )d 0 2 ,X T X E P= −                       (38) 

d 1 d d 2 d ,X P A X P B V= +                      (39) 

where 

( ) ( ) ( )d d d d1 ,X x i x i x i N= + +                 (40) 

( ) ( ) ( )1 1 .V v i v i v i N= + + −                  (41) 

By applying Φ  to these systems, we obtain 

0 1 0 2 0 ,X P AX P BUΦ = Φ + Φ                    (42) 

0 0 2 ,U FX P VΦ = Φ + Φ                      (43) 

d 2 0 2 ,X P TX PΦ = Φ                       (44) 

d 1 d d 2 d .X P A X P B VΦ = Φ + Φ                    (45) 

Here, if 0VΦ ≈ , (34) cannot be satisfied. Hence, for all i, 0VΦ ≠ , that is 

( )
1

1 0
M

j
v i j

M =

+ ≠∑                        (46) 

must be satisfied. 

4. Numerical Example: Self-Balancing Robot 

We next applied the data-driven pole placement method described above to the 
model of a self-balancing robot [21] [20] as shown in Figure 1. The robot is 
equipped with right and left wheels driven by direct current (DC) motors whose 
voltages rv  and 1v  can be controlled. Because the motion dynamics can be 
decomposed by the input u , the control input to the robot was represented as 

1 1

2 1

.r

r

u v v
u

u v v
+   

= =   −                        
 (47) 
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Figure 1. (a) Coordinates of the self-balancing robot; (b) photo. 

 
We assume that the pitch angle bθ  and the pitch angular velocity bθ  of the 

body could be measured, as well as the angles rθ  and 1θ  of the right and left 
wheels, and their angular velocities rθ  and 1θ , respectively. We define the 
mean values of the right and left wheel angles rθ  and 1θ , and the yaw angle of 
the body as follows: 

( )w r 1
1 ,
2

θ θ θ= +                        (48) 

( )r 1 ,r
w

φ θ θ= −                        (49) 

where r  is the radius of the wheel and 2w d=  is the distance between the two 
wheels. 

4.1. Equation of Motion 

The equation of motion for the self-balancing robot can be derived as 

( )( ) ( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

2
w w b

1 b 1 b b 12
b b b

2
2 b 2 b b b b 2

sin
cos

2 sin cos ,

t t r t
J t D M l t H u t

t t g l t t

J t t D t M l t t t t H u t

θ θ θ
θ θ

θ θ θ φ

θ φ φ θ θ θ φ

      
+ − =       +           


+ + =

  

  

   

 (50) 

where 

( ) ( ) ( )2 2 2
w r m w b r m b b

1 b 2 2 2
r m b b b r m b

2 2 2 cos ,
2 cos 2

J g J M M r g J M lrJ
g J M lr J g J M l

θθ
θ

 + + + − +
=  

− + + +  
 

( ) ( )
2

2 2 2 2
2 b w r m w b b22 2 sin ,dJ J J g J M d M l

rφθ θ= + + + +  

b w b
1

b w b

2 ,
d d d

D
d d d
+ − 

=  − − 
 ( )

2

2 b w22 ,dD d d
r

= +  

1 v

1 0
,

1 0
H b  

=  − 
 [ ]2 v 0 1 ,dH b

r
=  

2
r t e

b r m
m

: ,
g K Kd g d

R
= +  r t

v
m

: .
g Kb
R

=  

The symbols are explained in Table 1. The parameters used in the simulations 
were taken from [20] [21]. 
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Table 1. Parameters of the self-balancing robot [20] [21]. 

9.81g =  acceleration due to gravity [m/s2] 

b 0.5M =  mass of body [kg] 

w 0.07M =  mass of wheel [kg] 

0.025r =  radius of wheel [m] 
5

w 8.75 10J −= ×  moment of inertia of wheel [kg∙m2] 

2 0.12w d= =  vehicle width [m] 

0.1073l =  distance from wheel center to center of gravity of robot body [m] 
3

b 6.7 10J −= ×  moment of inertia of body (pitch) [kg∙m2] 
46 10Jφ
−= ×  moment of inertia of body (yaw) [kg∙m2] 

4
m 1.3 10J −= ×  moment of inertia of DC motor [kg∙m2] 

m 0.035R =  resistance of DC motor [Ω] 

e 0.02K =  electromotive force constant of DC motor [V∙s/rad] 

t eK K=  torque constant of DC motor [N∙m/A] 

r 30g =  gear ratio 

m 0.0022d =  coefficient of friction between wheel and DC motor 

w 0d =  coefficient of friction between wheel and floor 

4.2. Linear Model and Feedback Gain 

We linearized the equations of motion (50) around equilibrium states w 0θ = , 

b 0θ = , 0φ = , w 0θ = , b 0θ = , 0φ = , and 0u = . Then, under the assump-
tion that ( ) ( )b bsin t tθ θ≈ , ( )bcos 1tθ ≈ , ( )2

bsin 0tθ ≈ , ( )2
b 0tθ ≈ , ( )2 0tφ ≈ , 

and ( ) ( ) ( )b bsin cos 0t t tθ θ φ ≈  , the linearized equations of motion can be de-
rived as 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 ,
a a a

b b

J x t D x t K x t H u t

J x t D x t H u t

+ + =


+ =

 

 

              (51) 

where 

( ) ( )
( ) ( ) ( )w

b
b

: , : ,a

t
x t x t t

t
θ

φ
θ
 

= = 
 

                 (52) 

( ) ( )1 1 2 2 1 b

0 0
0 , 0 , lg .

0 1
J J J J K M  
= = =  − 

            (53) 

By defining the state vector 

( ) ( )
( )

( )
( )
( )
( )

w

b
1

w

b

,a

a

t
x t t

x t
x t t

t

θ
θ
θ
θ

 
    = =      
  







 ( ) ( )
( )

( )
( )2 ,b

b

x t t
x t

x t t
φ
φ

   
= =   
   





        (54) 

the linear state space model can be derived as 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

,

,
c c

c c

x t A x t B u t

x t A x t B u t

= +


= +





                  
(55) 
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where 

2 2 2
1 1 1

1 1

0
,c

I
A

J K J D
×
− −

 
=  − − 

 
2 1

1 1
v 1

0
,1

1
cB

b J

×

−

 
 =   

  −  

 

2 1
2 2

0 1
,

0cA
J D−

 
=  − 

 2 1
v 2

0
.cB db J

r
−

 
 =
 
  

 

Then, the feedback can be independently designed as 

1 1 1 1 2 2 2 2, .u F x v u F x v= + = +                   (56) 

Note that this can be more succinctly represented as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1

2

,  , ,c c

x t
x t A x t B u t u t Fx t x t

x t
 

= + = =  
 

         (57) 

1 4 2 1 4 1 1 1 2

2 4 2 2 1 2 1 4 2

0 0 0
,  ,  .

0 0 0
c c

c c
c c

A B F
A B F

A B F
× × ×

× × ×

     
= = =     

    
        (58) 

When the parameters in Table 1 are used and the sampling period is 
0.1sh = , the discrete-time model after discretizing (55) is 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

1 ,

1 ,

x k A x k B u k

x k A x k B u k

+ = +


+ = +                 
(59) 

where 

1 1

1 0.1719 0.0226 0.0830 0.0641
0 1.1722 0.0113 0.0944 0.0094

, ,
0 3.5363 0.1388 1.0332 0.7131
0 3.5299 0.1386 1.0336 0.1148

A B

   
   −   = =
   
   

−   

 

2 2

1 0.0113 0.0306
, .

0 0.0001 0.3450
A B   

= =   
   

                (60) 

Here, we assume that the exact values of (60) are not available, but that un-
certain values are available: 

1 1

1 0.1897 0.0218 0.0844 0.0648
0 1.1900 0.0115 0.0947 0.0095

, ,
0 3.9115 0.1408 1.0489 0.7115
0 3.9151 0.1407 1.0492 0.1165

A B

   
   −   = =
   
   

−   

 

2 2

1 0.0103 0.0310
, .

0 0.0001 0.3450
A B   

= =   
   

                (61) 

The coefficients can be derived from 1 2,J J , with an assumed uncertainty of 
10%. By applying linear quadratic optimal control theory to (61), the desired 
closed-loop pole locations can be chosen as 

( ) { }5
1 1 1 1 6.0355 10 ,0.5253, 0.5745, 0.7630A B Fλ −+ ∈Λ = × ,     (62) 

( ) { }5
2 2 2 2 6.0426 10 ,0.7835A B Fλ −+ ∈Λ = × ,        (63) 
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and the initial feedback gains needed to obtain datasets for the data-driven pole 
placement as 

[ ] [ ]1 21.5216 124.181 2.3915 18.3089 6.2764 0, .0646 .F F= = − −  (64) 

4.3. Comparison of Methods 

Next, simulations were conducted and comparisons were made from the ob-
tained results when using different methods and exciting signals. 

Measurement noise was prepared with the Gaussian distribution ( )20,N σ , 
where 2 31.0 10σ −= × , 41.0 10−×  and 41.0 10−×  in wθ , bθ , and φ , respec-
tively. This is shown in Figure 2(a). We used the random exciting signal v  
shown in Figure 3(a) and the linear chirp signal ( )v k  shown in Figure 3(b) 
with the uniform distribution ( ) ( )1 0.5,0.5v k U −

 and ( ) ( )2 0.1,0.1v k U −
. 

We set the order of the prefilter Φ  (33) as 6M = . After prefiltering, the 
measurement noise in wθ , bθ , and φ  was reduced, as shown in Figure 2(b). 
The prefiltered exciting signals were shown in Figure 3(b) and Figure 3(d). It 
can be seen that the exciting signals v  were not eliminated by prefilter Φ , but 
that the high-frequency elements were reduced. 

A closed-loop response in the presence of measurement noise by state feed-
back (56), with initial gain (64), is shown in Figure 4. The response to the ran-
dom exciting signal and the chirp exciting signal are shown in Figure 4(a) and 
Figure 4(b), respectively. Of particular note is that the responses of bθ , wθ , 
and bθ  in Figure 4(b) show the high-pass filter-like gain characteristics of the 
transfer function from v  to x . 

For comparison, the dataset for the data-driven pole placement was chosen as
( ) ( )( ){ }0 0 50, ,450

,
k

x k u k
= 

 where 50i =  and 400N = . 
To evaluate the obtained pole placement gain F , we introduced an accuracy 

measurement that takes the largest absolute difference in value between each ei-
genvalue of i i iA B F+   and the corresponding j ip ∈Λ , 

( ) ( ){ }d : max .i j j j ii i iA p pA B Fδλ λ= − ∈Λ+             (65) 

 

 
Figure 2. (a) Measurement noise; (b) Prefiltered measurement noise. 
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Figure 3. Exciting signal v  (a) random, (b) chirp, (c) prefiltered random, (d) prefiltered chirp. 

 

 
Figure 4. Closed-loop response by an initial state feedback via (a) random exciting signal ,v  (b) chirp ex-
citing signal v . 

 
To evaluate the obtained model ( ),A B  , the following identification errors 

were used: 

: , ,i i i i i iA A A B B B∆ = − ∆ = − 

                 (66) 

( ) ( ) ( ){ }: max .i j i j iA A Aδλ λ λ= −                  (67) 

The eigenvalues jλ  were sorted by magnitude using the MATLAB command 
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“sort”. This further sorts elements of equal magnitude by the phase angle on the 
interval ( ]π, π− . The impulse response ( ) ( ) 1

G z zI A B
−

= −    was used to eva-
luate the model obtained, as follows: 

( ) ( )
10 2

,,
0

: ,
i ii ii A BA B

k
G x k x k

=

∆ = −∑  

                (68) 

where ,i iA Bx
 

 and ,i iA Bx  are the impulse responses of ( ) ( ) 1
:i i iG z zI A B

−
= −    

and ( ) ( ) 1:G z zI A B−= − , respectively. 
From the perspective of system control, smaller is better, particularly in the 

case of ( )diAδλ , ( )iAδλ , and iG∆ . The following key results were contras-
tively found in Table 2: 

1) The initial model and feedback gain were affected by uncertainty: The 
model errors and pole placement errors are shown in Table 2 (initial). 

2) The results when using the LS method to solve linear Equation (27) for 
noiseless data are shown in Table 2(a). All errors were reasonably small, 
confirming that the data-driven method performs well when the measure-
ment data ( ) ( )( )0 0,x k u k

 
are noiseless. 

3) The results when using the LS method to solve linear Equation (27) for 
noisy data are shown in Table 2(b). All errors became larger when noise was 
added, suggesting that LS analysis is inadequate when the measurement data 
are contaminated by noise. 

4) The results when using the TLS method to solve linear Equation (27) are 
shown in Table 2(c). The errors were significantly smaller than those re-
ported in [5], using the LS method. 

5) The results when applying prefiltering (PF) and using the TLS method to  
 

Table 2. Comparison of errors. 

 (initial) (a) (b) (c) (d) (e) 

noise - noiseless noisy noisy noisy noisy 

method - LS LS TLS TLS + PF TLS + PF 

exciting sig. - Random Random Random Random Chirp 

 
( )1dAδλ  0.2426 0.0007 0.4597 0.1367 0.0466 1.2530 

1A∆  

1B∆  

0.5317 

0.0025 

0.0016 

0.0000 

36.295 

0.3400 

1.6678 

0.0481 

1.8763 

0.0415 

17.246 

0.2932 

( )1Aδλ  

1G∆  

0.0511 

42.333 

0.0000 

0.0082 

0.3920 

629.67 

0.0194 

44.718 

0.0177 

29.324 

0.4695 

106.04 

 
( )2dAδλ  0.0029 0.0000 0.0092 0.0024 0.0007 0.0017 

2A∆  

2B∆  

0.0001 

0.0004 

0.0000 

0.0000 

0.0288 

0.0031 

0.0064 

0.0002 

0.0005 

0.0002 

0.0007 

0.0002 

( )2Aδλ  

2G∆  

0.0001 

0.0036 

0.0000 

0.0002 

0.0090 

0.0525 

0.0012 

0.0073 

0.0004 

0.0019 

0.0001 

0.0019 
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Figure 5. Comparison of pole locations (“+” indicates the desired poles, “.” those ob-
tained by the random exciting signal and “o” those obtained by the chirp exciting signal.). 

 
solve linear Equation (27) are shown in Table 2(d). The prefilter further re-
duced the errors, in particular, the pole placement error ( )d1Aδλ  and the 
impulse response error 1G∆ . 

6) The results when applying PF and using the TLS method to solve the li-
near Equation (27), but with v  as the chirp signal, are shown in Table 2(e). 
No significant improvement in error rates was found with respect to 2A  
when using the chirp exciting signal. However, the errors with respect to 1A  
became significantly worse than when a random exciting signal was used. This 
was assumed to be because 1A  has an unstable eigenvalue of 1.7838. We 
conclude that a random exciting signal is more appropriate than a chirp ex-
citing signal when using data-driven methods. 
Finally, we compare the pole locations obtained as shown in Figure 5. As can be 

seen, a better performance was achieved when using the random exciting signal. 

5. Conclusion 

In this study, we evaluated the different approaches reducing the effect of mea-
surement noise in data-driven pole placement methods for deriving a state space 
model and pole placement state feedback. Using numerical simulations of a 
self-balancing robot, which is a nonlinear system, we demonstrated the important 
role that prefiltering can play in reducing the interference caused by noise. Again 
using numerical simulation, we compared the use of two exciting signals: a ran-
dom signal and a chirp signal. The use of a random exciting signal was found to 
be more effective with our proposed method. Further developments are needed in 
the methods used to cope with noise. A method such as that used in [9] may be 
appropriate for use in practical applications where noise is present, and adaptive 
control based on real-time updating [22] is a future promising approach. 
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