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Abstract 
Using ideas based on supersymmetric quantum mechanics, we design canon-
ical transformations of the usual position and momentum to create genera-
lized “Cartesian-like” positions, W, and momenta, Wp , with unit Poisson 
brackets. These are quantized by the usual replacement of the classical , xx p  
by quantum operators, leading to an infinite family of potential “operator ob-
servables”. However, all but one of the resulting operators are not Hermitian 
(formally self-adjoint) in the original position representation. Using either the 
chain rule or Dirac quantization, we show that the resulting operators are 
“quasi-Hermitian” relative to the x-representation and that all are Hermitian 
in the W-representation. Depending on how one treats the Jacobian of the 
canonical transformation in the expression for the classical momentum, Wp , 
quantization yields a) continuous mutually unbiased bases (MUB), b) ortho-
gonal bases (with Dirac delta normalization), c) biorthogonal bases (with Di-
rac delta normalization), d) new W-harmonic oscillators yielding standard 
orthonormal bases (as functions of W) and associated coherent states and 
Wigner distributions. The MUB lead to W-generalized Fourier transform 
kernels whose eigenvectors are the W-harmonic oscillator eigenstates, with 
the spectrum ( )1, i± ± , as well as “W-linear chirps”. As expected, , WW p  sa-

tisfy the uncertainty product relation: 1 2WW p∆ ∆ ≥ , 1= . 
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1. Introduction 

Basis sets are of prime importance in quantum mechanics because they are fun-
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damentally connected to observables. Observables dictate the relevant operators 
in quantum mechanics, which are required to be self-adjoint. Some reasons un-
derlying this are: 1) a basic postulate of quantum mechanics is that the results of 
measurements must be real and the eigenvalues of the relevant operator are the 
only possible results when measuring an observable; 2) the eigenstates of obser-
vables must be complete, spanning the relevant physical Hilbert space of possible 
states (as a result of the requirement that their eigenvalues are the only possible 
results of measurements); 3) the eigenstates can always be arranged to be mu-
tually orthogonal (because measurements lead to an orthogonal projection of the 
state of the system onto an eigenstate of the observable’s operator). The re-
quirement that quantum mechanical operators for observables be self-adjoint is 
sufficient to ensure that the above properties hold, but one can ask “is it also ne-
cessary”? Certainly, an examination of the textbooks and most of the literature 
dealing with quantization of classical mechanics would suggest that it is [1]-[7]. 
However, interesting results have been obtained recently using non-self adjoint 
Hamiltonians (besides those describing meta-stable systems) [8]-[20]. In the 
course of these studies, attention has focused on the Hamiltonian operator and 
systems with discrete spectra. In this paper, we explore systematic quantizations 
that lead to non-self adjoint, but “quasi-Hermitian” operators [8]-[20] that po-
tentially may describe continuous observables similar to generalized “positions” 
and “momenta”. 

In addition, complete sets of functions are also of great importance for the 
computational aspects of quantum mechanics. For most systems of physical in-
terest, exact solutions are not possible and therefore approximations are the 
“order of the day”. A great many of these rely on finding the best possible basis 
set to use in expanding the desired solutions (e.g., both in perturbation theory 
and variational calculations). It follows that one is always interested in finding 
new, more optimal basis sets for applications. This connection between obser-
vables and complete bases in quantum mechanics suggests that one should also 
seek the optimum variables (observables) to describe the system of interest. 

Yet another area where basis sets play an important role is in quantum optics. 
In this case, coherent states (which typically are over-complete, non-orthogonal 
bases) are the center of focus. Especially of interest are those associated with op-
erators that form a Lie algebra (for constructing displacement operators) or that 
are eigenstates of (non-self adjoint) annihilation operators.  

Most recently, the field of quantum computing and quantum cryptography 
has generated interest in finding new groups of basis sets that are “mutually un-
biased” [21] [22] [23] [24]. Although most efforts have concentrated on finite 
dimensional bases, there is also significant interest in discovering continuously 
infinite systems, the prime example of which are the (improper) eigenstates of 
the three self adjoint operators ˆ ˆ ˆ ˆ, ,x xx p x p+ . A fundamental property of x̂  and 
ˆ xp  is that the minimum uncertainty product xx p∆ ∆  is generated by the Gaus-

sian. This result is due to the fact that the minimizing state, minψ , satisfies 

min minˆ ˆ xx pψ ψ∝ . The MUB nature of the eigenstates of the set ˆ ˆ ˆ ˆ, ,x xx p x p+  
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appears to be related to the fact that exact knowledge of ( )xx p  implies infinite 
uncertainty in ( )xp x . This is also related to the fact that [ ] ˆˆ ˆ, 1xx p i= . One sus-
pects that this is a characteristic required of continuous MUB [23]. Indeed, there 
is a number of important types of complete basis sets associated with position 
and momentum and they are relevant in various areas of interest. The position 
and momentum representations are ubiquitous in quantum mechanics. In  

addition, the function 
e
2π

ikx

xx p =  is fundamental not only in quantum me- 

chanics but also in all the sciences, engineering, signal processing, probability 
theory and diffusion processes, medicine, etc. In addition, the harmonic oscilla-
tor (with its symmetric quadratic dependence on the position and momentum 
operators) provides a complete set of eigenstates that are also eigenfunctions of 
the Fourier transform, and the ground state minimizes the product of the posi-
tion and momentum uncertainties (variances). This uncertainty product mini-
mizing state leads to one particular realization of coherent states (there are many 
others, including an infinite variety arising from application of a displacement 
operator (in terms of the position and momentum operators) to any normaliza-
ble “fiducial” state [25]).  

In light of the role played by the position and momentum coordinates in ob-
taining complete bases of various types, it is natural to inquire as to the role that 
is played by canonical transformations of the type , x Wx W p p→ → , such that 
the Poisson bracket satisfies { }, 1WW p = . This will naturally involve how one 
proceeds from classical to quantum mechanics (we shall use the Dirac canonical 
quantization procedure). We find that canonical transformations can be used to 
create new, useful complete bases, which may be orthogonal, biorthogonal or 
MUB. We also find that the new “position” and “momentum” operators lead to 
generalized harmonic oscillator systems. This leads to new coherent states and 
generalized Fourier kernels, along with Wigner distributions. While the paper 
focusses on quantum mechanics, we point out the relevance of some of the re-
sults for certain classical processes. 

2. Classical Dynamical Considerations 

Our approach to the construction of new, complete sets of functions has its 
foundation in the concept of canonically conjugate variables and canonical 
transformations. In this study, we focus on point transformations [26], begin-
ning with the standard canonically conjugate variables, x  and xp . These basic 
variables are characterized by the property that their Poisson bracket equals one. 
Dirac based an approach to quantization in which the canonical variables are re-
placed by appropriate operators, the Poisson bracket is replaced by the commu-
tator of the relevant operators and the scalar “1” is replaced by i  times the 
identity operator [1] [7]. As is well known, the quantum mechanical operators 
ˆ ˆ, xx p  provide the standard, continuous complete sets of orthonormal (under 

the Dirac delta normalization) “eigenvectors”. Adding the eigenstates of the 
combined ˆ ˆ xx p+  operator, these complete basis sets are well known to consti-
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tute a set of mutually unbiased bases (MUB) [21] [22] [23] [24]. It appears that a 
key component needed for this property is that the position and momentum are 
canonically conjugate classical variables, which when quantized, yield a constant 
quantum mechanical commutator. We speculate that this property is a necessary 
(but not sufficient) condition to obtain complete sets of eigenstates that are 
MUBs [23]. There is, of course, a long history of canonical transformations in 
classical dynamics as the means of constructing “natural” generalized, canoni-
cally conjugate coordinates in terms of which the dynamics is the simplest [26] 
[27] [28] [29]. Many examples exist where the natural dynamical variables are 
quite different from the original x  and xp , and their discovery generally re-
flects some fundamental feature of the dynamics. In this paper, we shall explore 
replacing the Cartesian position and momentum by new, canonically conjugate 
variables and then, using Dirac quantization, explore the properties of the re-
sulting quantum mechanical operators and their (improper) eigenstates. In the 
process, we shall explore both manifestly self adjoint and apparently non-self 
adjoint operators. 

To do this, we require some guide as to possible reasonable choices for new 
“displacement or position variables” and their canonically conjugate momenta 
(once the “position-like” variable is decided upon, the conjugate momentum is 
determined by requiring its Poisson bracket with the new “position” be equal to 
1). A hint for choosing such new variables is found in super symmetric quantum 
mechanics (SUSY) [30] [31] [32]. In one dimensional SUSY, the nodeless 
ground state for a system (in the domain x−∞ < < ∞ ) is expressed as 

( ) ( ) ( )0 0 0
0 exp d ,

x
x x W xψ ψ  ′ ′= −  ∫                  (1) 

which has a SUSY ground state energy equal to zero. As discussed in earlier 
work [31], this state minimizes the uncertainty product xW p∆ ∆ . However, the 
commutator of W with the standard momentum operator is proportional to  
d
d
W
x

, which is constant only for W x=  (plus an arbitrary constant that simply  

shifts the energy levels). Thus, in general, xp  and W  are not canonically 
conjugate variables. Equation (1) also implies the relation 

2 2d ˆ ˆ,
d x
W iV W W W p
x

 = − = +  


                    (2) 

between the physical potential and W. It is the fact that ˆ xp  and Ŵ  are not 
canonically conjugate operators that is responsible for the “anharmonicity” of 
the system. However, this relation of W to the potential energy led the SUSY li-
terature to designate W as a “super potential” [30]. Recent work [31] has shown 
that an alternate but profitable way to interpret W is as a “generalized position” 
or “displacement variable”. This is reinforced by the observation that the quin-
tessential example for W is that for the harmonic oscillator: 

( ) .W x x=                            (3) 

This suggests that the general W can be considered a position variable and not 
a potential, super or otherwise. This view has led to the development of new 
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“system adapted Klauder-Skagerstam coherent states” [25] [31]. These new co-
herent states provide a superior basis set (compared to standard Gaussian-based 
coherent states or to a standard harmonic oscillator basis) for computing accu-
rate excited state energies for some polynomial choices of W (which result in 
anharmonic oscillators). More recently, Williams, et al. [33] [34] have shown 
that new one dimensional, generalized harmonic oscillator systems, characte-
rized by the su(1,1) Lie algebra, can be constructed. This work is based on iden-
tifying nx , n being an integer, as a new variable. However, this work did not 
develop the new variable as resulting from a canonical transformation but solely 
from the same SUSY ideas we are exploring here [31]. In addition, their devel-
opment restricted the new variable to be a monomial function of x. 

This suggests that, in addition to introducing the requirement that the new 
variable result from a canonical transformation of x, that a useful family of W’s 
might be polynomials in x, whose lowest and highest powers are odd, and with 
non-negative coefficients (to ensure monotonicity and that the domain remains 
( ),−∞ ∞ ). We therefore restrict ourselves to W’s of the form 

( )
2 1

1
, 0.

J
j

j j
j

W x a x a
+

=

= ≥∑                       (4) 

The coefficients are also restricted such that the coefficient of each even power 
is never larger than the coefficient of the next lower odd power. This is sufficient 
to ensure that the ground state is not only normalizable but that the x W→
transformation is one-to-one and onto (it has a derivative that is non-negative so 
it is a monotonic function and invertible). We remark that the new variable, 
W(x), corresponds to “stretching” the real line. Also, we interpret W as a “Carte-
sian-like” variable in the following sense. The distance (metric) between any two 
points, W1 and W2, is ( )22

2 1S W W= − . This leads to a measure that is the square 
root of the differential metric. The original (classical) canonical variables are 
( ), xx p . We then require that the new, canonically conjugate momentum, Wp , 
be a function of ( ), xx p  such that the Poisson bracket satisfies 

{ }, 1.WW p =                            (5) 

This is easily solved to yield the general classical expression 

( )1

1 1 ,
d d
d d

W xp p g x
W W
x x

α α−≡ +
   
   
   

               (6) 

where ( )g x  is the constant of integration of Equation (5) along a path of con-
stant x. We invoke the simplest assumption of taking the solution with  
( ) 0g x = . We see that the Jacobian of the transformation can be split in infi-

nitely many ways classically since all the quantities commute. (The condition 
Equation (1) remains true for any choice of α.) It is immediately clear, of course, 
that unless 1 2α = , this expression will suffer from the usual issue that when 
quantized by replacing the position and momentum by the standard quantum 
mechanical position and momentum operators, it will typically result in non- 
self-adjoint momentum operators in the x-representation (with respect to the 
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measure “ dx ”). A common procedure to ensure self adjointness is to define a 
new canonical momentum as the arithmetic average 

1 1

1 1 1 1 1 .
2 d d d d

d d d d

W x xp p p
W W W W
x x x x

α α α α− −

 
 
 = +
                
        

       (7) 

Clearly, in the x-representation, this leads to a self-adjoint operator when 
quantized. We also observe that Equation (6) above yields a manifestly self-ad- 
joint momentum operator for the choice 1 2α = , which is also included in Eq-
uation (7). However, all of these definitions of the classical canonical momen-
tum yield a Poisson bracket equal to 1. We now have the classical canonically 
conjugate pair { }, xx p  and an infinity of possible new, canonically  

conjugate variables ( ){ }, WW x p . Due to the d
d
W
x

 factors, it is convenient to  

quantize in the x-representation and choosing to quantize with Equation (6) or 
(7) will result in different quantum operators, whose (improper) eigenstates are 
the subject of our investigations. 

3. Dirac Quantization of the Canonically Conjugate Classical 
Variables 

We now consider the quantization of the new canonically conjugate variables. 
But there are infinitely many equally valid classical expressions for the new ca-
nonical momentum. To illustrate, consider quantizing the choices 0,1α =  for 
Equation (6) by replacing the classical variables by the standard quantum me-
chanical position and momentum operators: 0α = : 

dˆ ,
d d dW

ip
W x x
−

=                           (8) 

and 1α = : 

d 1ˆ .
d d dWp i
x W x

= −                           (9) 

These are clearly not self-adjoint operators in the x-representation. (Indeed, 
Equation (9) is the adjoint of Equation (8).) Therefore, one would normally dis-
card both. However, we note that for all of the infinitely many definitions of the 
canonical momenta (including Equation (7)), their Poisson bracket with W is 
equal to 1 (see Equation (5)). Thus, Equations (6) and (7) both yield the Dirac 
quantization result 

ˆˆ ˆ, 1.WW p i  =                          (10) 

Appealing to Occam’s razor, this immediately implies that the corresponding 
quantum operators in the W-representation are 

dˆ ˆ, .
dWW W p i
W

= = −                       (11) 
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Interestingly, employing the chain rule for derivatives, Equation (8) directly  

yields 
d d

d d d d
i i

W x x W
−

≡ − . So Ŵ  and ˆWp , as given in Equation (8), are ma- 

nifestly self-adjoint operators in the W-representation. In fact, by Equation (8), 
ˆWp  is a quasi-Hermitian operator [8]-[20] relative to the original x-repre-  

sentation momentum operator, i.e., dˆ ˆ
dx W
Wp p
x

=  or ˆ ˆd d .x Wx p W p=  

Furthermore, d
d
W
x

 is a non-negative polynomial and it ensures that the 

measure dd d
d
WW x
x

=  is the square root of the metric. Note that the measure is  

supplied automatically by the canonical transformation. Note further that the 
structure of Equation (11) is identical to the original structure for the operators 
ˆ ˆ, xx p  [23]. Therefore, the minimum uncertainty product condition,  

1 2xx p∆ ∆ = , becomes ( ) ( ) 1 2WW p W x W k∆ ∆ = ∆ ∆ =  for the new “position” 
and momentum”. It is then clear that there exist complete, orthonormal (in the 
Dirac delta function sense) eigenstates of the three operators ˆ ˆˆ ˆ, ,W WW p W p+
which will constitute MUB.Their structure is given by 

( ) ( ) ( )( )d ,
d
WW W W W W x W x
x

δ δ′ ′ ′= − = −            (12) 

( ) ( )e e ,
2π 2π

Wip W iW k W x

WW p = =                     (13) 

( ) ( ) ( )2 22 2e e ,
2π 2π

Wip W iW iW k W x iW x

WW W p
− −

+ = =             (14) 

which are a set of MUB [23]. (The second parts of Equations (12)-(14) are in the 
x-representation and the second parts of Equations (13)-(14) involve requiring 
that ( ) WW k p= . This ensures that the argument of the exponential, Wp W  is 
dimensionless and that the momentum spectrum is also Cartesian-like. That is, 
it has a Cartesian metric and the measure for integration over the momentum is  

( )d
d d

d W
W k

k p
k

= ). Equation (14) is recognized as a linear chirp in W. When us- 

ing the above for quantum cryptography, one can work in the original x-coor- 
dinate representation, adding an additional layer of security because there are 
infinitely many choices for W and each one results in a different x-representa- 
tion MUB. The measure is automatically taken into account through the chain  

rule expression dd d
d
WW x
x

= . We arrive at the result that even though all the  

choices, Equation (6), for the canonically conjugate momentum (except for 
1 2α = ) lead to non-self adjoint (quasi-Hermitian) momentum operators in the 

coordinate representation, by direct application of Dirac quantization to the 
Poisson bracket and under the assumption of greatest simplicity, they all result 
in the same self-adjoint “position” and “momentum” operators in the W-repre- 
sentation. This is also true for the self-adjoint choices, Equation (7), and there-
fore all choices lead to an unique MUB for each possible W. We next explore the 
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interesting issue of self-adjointness, and its lack, in the coordinate representation 
of the new operators. 

4. Lack of Self-Adjoint Property for Canonical Variables Not 
Quantized by Dirac’s Method 

We can quantize the infinite set of canonically conjugate variables that result in 
non-self adjoint operators in the coordinate representation (along with those 
that do result in self-adjoint quantum operators, but, as we shall see, do not di-
rectly yield MUB in the coordinate representation). It is easily shown that the 
commutator of Ŵ  and any of the possible coordinate representation “mo-
mentum operators” equals 1̂i . For example, as Equation (8) stands, it clearly 
results in a momentum operator which is not self-adjoint in the x-representa- 
tion. However, as discussed above, based on the “chain rule” for derivatives, it 
has the precise, self-adjoint form 

dˆ
dWp i
W

= −                       (15) 

in the W-representation. Thus, although Equation (8) is not self-adjoint in the x- 
representation, it is in the W-representation. In fact, this is true for all the possi-
ble choices of Wp , provided that one assumes that the only sensible quantiza-
tion of W  in the W-representation is Ŵ W=  and this, along with Equation 
(10) and Occam’s razor, implies Equation (15). This is evidently self-adjoint, 
but only with respect to the measure dW . This shows that Equation (8) is a 
valid way to quantize systems such that one obtains a self-adjoint momentum 
operator without symmetrizing (albeit with a new measure). It is instructive to 
consider the self-adjoint property of Equation (11) in more detail. It is clear 
that 

( ) ( ) ( ) ( )d dd d .
d d

W W i W W W i W
W W

ψ φ φ ψ
∞ ∞∗ ∗

−∞ −∞

   − = −      ∫ ∫     (16) 

In the x-representation, this equals 

( ) ( ) ( ) ( )d d dd d
d d d d d
W ix x x x x i x
x W x x x
ψ φ ψ φ

∞ ∞∗ ∗

−∞ −∞

 −  = −     
∫ ∫ 

      (17) 

( ) ( )dd
d

x x i x
x

φ ψ
∞ ∗

−∞

 = −  ∫ 

                    (18) 

( ) ( )d dd .
d d d d
W ix x x
x W x x
φ ψ

∞ ∗

−∞

 −
≡  

 
∫ 

               (19) 

Thus, we see explicitly that Equation (8) is self-adjoint under a measure which 
we again stress is automatically dictated by the canonical transformation. This 
suggests that we explore the x-representation adjoints of other choices for the 
canonical momentum. To do this, we treat the general expression, Equation (6) 
since it includes all the obvious ways to split the Jacobian factor. Of course, the 
symmetrized expression, Equation (7) is obviously self-adjoint in the coordinate 
representation. We consider the integral 
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( ) ( )1

d 1d .
dd d

d d

ix x x
xW W

x x

α αφ ψ
∞ ∗

−−∞

−

   
   
   

∫               (20) 

We define 

1 ,
d
d
W
x

α

φ
φ

∗
∗

−=
 
 
 

                        (21) 

,
d
d
W
x

α

ψ
ψ =

 
 
 

                        (22) 

and it immediately follows that 

( ) ( )1

d 1d .
dd d

d d

ix x x
xW W

x x

α αψ φ
∞ ∗

−−∞

−

   
   
   

∫                (23) 

It is obvious that unless 1 2α = , the momentum operator is not self-adjoint 
in the x-representation. This is related to the role of the measure, which arises 
due to the Jacobian of the canonical transformation.  

Our next consideration is to determine whether the operators in Equations  

(6)-(7), are self-adjoint under the measure dd
d
Wx
x

. We only need to treat Equa- 

tion (6) directly since the results will dictate those for Equation (7). We thus 
consider the integral 

( ) ( )1

d 1 1ˆd
d d d

d d

x
WI x x p x
x W W

x x

α α αψ φ
∞ ∗

−−∞

 =  
     

   
   

∫              (24) 

( ) ( )1 1ˆd
d d
d d

xx x p x
W W
x x

α αψ φ
∞ ∗

−−∞
=

   
   
   

∫                 (25) 

( ) ( )1 1ˆd
d d
d d

xx x p x
W W
x x

α αφ ψ
∞ ∗

−−∞
=

   
   
   

∫                (26) 

( ) ( )1

d 1 1ˆd
d d d

d d

x
Wx x p x
x W W

x x

α αφ ψ
∞ ∗

+ −−∞

 =  
     

   
   

∫            (27) 

This shows that unless 0α = , ˆWp  in Equation (6) is not self-adjoint under  

the measure 
dd d
d
WW x
x

 =  
 

. We summarize: 

(1) For Equation (6) with 1 2α =  and Equation (7), ˆWp  is self-adjoint under 
the measure dx  (i.e., in the x-representation). 

(2) For 1 2α ≠ , Equation (6) is not self-adjoint under the measure dx  (i.e., in 
the x-representation). 

(3) For 0α = , Equation (6) is self-adjoint under the measure dW  (i.e., in the 
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W-representation). 
(4) For 0α ≠ , Equation (6) (and also clearly for Equation (7)) is not self-adjoint 

in the W-domain. 
(5) For 0α = , Equation (6) gives rise to continuous MUB for the operators  

d dˆ ˆ, , .
d d

W i W i
W W

− −  

We next show that the role of the measure is to ensure that these non-self ad-
joint (as well as the self-adjoint) choices of momentum operators give rise to 
complete, continuous x-representation, biorthogonal (or orthogonal in the self- 
adjoint cases) basis sets with Dirac delta normalization.  

5. Continuous Biorthogonal Basis Sets for Canonically  
Conjugate, Non-Self Adjoint Operators in the 
x-Representation 

The key to understanding the role of the Jacobian and measure for the improper 
eigenstates of the new, non-self adjoint momentum operators is to evaluate them 
explicitly in the coordinate representation. We treat the general case of Equation 
(6). Thus, we solve the eigenequation 

( ) ( )1

d 1
dd d

d d

W Wp W p
i x p x

xW W
x x

α α φ φ−

 
 −  =
        
    

         (28) 

where Wp  is the eigenvalue. We recognize that, in general, the above momen-
tum operator ( 1 2α ≠ ) is not self-adjoint in the x-representation. However, it 
turns out that when one considers complex eigenvalues, Wp , the new states are 
not normalizable, even in the Dirac delta sense. As a result, we need only con-
sider real eigenvalues for Equation (28). It is easily shown that the solution is 

( ) ( ) ( )

d
d e .

2πW W

iW k W x
p p

W
xx x

α

φ φ

 
 
 = =            (29) 

Here, we again replace the eigenvalue Wp  by ( )W k  since the argument of 
the exponential must be dimensionless and symmetric. In similar fashion, we 
also easily find that the dual eigenvector is 

( ) ( ) ( )

1d
d e .

2πW W

iW k W x
p p

W
xx x

α

φ φ

−

∗

 
 
 =              (30) 

We then see that the eigenstates satisfy the completeness relation 

( ) ( ) ( )
11 dd e .

2π d
W W

W W

i p p W x
p p W W

Wx p p
x

α α

φ φ δ
− +

∞ −

−∞

 = = − 
 ∫       (31) 

Thus, the eigenstates and their duals automatically supply the required factors 
to produce the correct measure, leading to a complete biorthogonal (or ortho-
gonal when 1 2α = ) basis.  
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This is analogous to a situation previously studied by Kouri, et al. [15] where 
they showed that the harmonic oscillator Hamiltonian could be transformed si-
milarly to a non-self adjoint form, leading to eigenstates that belong to a bior-
thogonal complete set. It is also clear that these bases will not be part of any 
MUB because there is always a non-constant-modular factor in the eigenvector 
and/or its dual. Furthermore, even for the self-adjoint choice 1 2α = , there will 
not be an MUB. In particular, we also see that neither of the choices 0α =  or 

1α =  leads to an MUB in the coordinate representation. It follows from this 
that the same is true for the other self-adjoint choice, Equation (7).  

We now determine the x-representation eigenstates of Equation (7) (which 
includes Equation (6) for 1 2α = ) for the general, self-adjoint ˆWp . We con-
sider 

( ) ( )1 1

1 1 1 1 1ˆ ˆ .
2 d d d d

d d d d

W Wx x p W pp p x p x
W W W W
x x x x

α α α α φ φ− −

 
 
 + =
                
        

    (32) 

This is easily seen to give  

( )
d d 1 .

d dd 2 d
d d

W
W W

p
p W p

i i p x
W Wx x
x x

φ
φ φ

−
− =

   
   
   

         (33) 

But 
1 22

2

d d d d ,
d d dd

W W W
x x xx

− −
   = −   
   

         (34) 

yielding the α-independent result 

( )
22

2

d d d .
d d 2 dd
d

W
W W

p
p W p

i i W W p x
W x xx
x

φ
φ φ

−−  + =    
 
 

       (35) 

The operator 
22

2

d d d
d d 2 dd
d

i i W W
W x xx
x

−−  +     
 
 

 is self-adjoint under the measure  

“ dx ”. Equation (35) is readily integrated and yields the final result 

( ) ( ) ( ) ( ) ( )
1 2 1 2d d0 e 0 e .

d d
W

W W W

iW k W xip W
p p p

W Wx
x x

φ φ φ   = =   
   

        (36) 

This is identical, of course, to the result, Equation (30) for the special, self- 
adjoint choice 1 2α = . It is easily seen that the proper normalization is the 
usual ( )0 1 2π

Wpφ = . This demonstrates that the eigenstates of all of the self- 
adjoint ˆWp  are identical, independent of the choice of α. 

6. Non-unitary Transformations and the New Momentum 
Operators 

We recognize that one can always generate MUBs by unitary transformations of 
existing MUBs. However, this doesn’t lead to new MUBs in the present sense. 
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We stress here our new MUBs are not the result of unitary transformations. This 
is clear from the fact that we generate non-self adjoint momentum operators. 
For example, the fact that in Equation (8), the new momentum operator results  

from a one-sided application of the operator 1
d
d
W
x

 
 
 

 to the x-representation  

momentum operator is new and opens up interesting possibilities. Indeed, in 
Equation (6), we again see that the transformation from the old to the new mo-
mentum operator does not correspond to a standard transformation in quantum 
mechanics. In addition, all the α-dependent momentum operators can be related 
to that of Equation (8) via similarity transformations. We define the general si-
milarity transform 

1d dˆ ˆ, .
d d
W WS S
x x

α α−
−   = =   

   
                 (37) 

Then it is easily seen that  

1
1

d d 1ˆ ˆ .
d d dd d
d d d

i iS S
W x xW W
x x x

α α
−

−

− −
=

               

           (38) 

Thus, all the possible expressions, Equation (6) (and Equation (7), since by 
Equation (35), it is independent of α), are equivalent, under a similarity trans-
formation, to Equation (8), which is self-adjoint under the measure  

dd d
d
WW x
x

 =  
 

. The measure is automatically generated by the canonical trans 

formation. We also point out that one could have chosen the constant of inte-
gration, ( )g x  in Equation (6) to ensure that one obtains Equation (8), inde-
pendent of the choice of α . 

7. Generalized Harmonic Oscillators, Generalized Coherent 
States and Generalized Fourier Transforms 

In this Section, we point out that the operators ˆ ˆ, WW p  can also be used to de-
fine a generalized harmonic oscillator with Hamiltonian 

( )2 21ˆ ˆˆ ,
2W WH p W= +                         (39) 

with ˆ ˆ, WW p  given by Equation (11). The eigenstates are given by 

( ) ( )
2

exp ,
2j j j

WW c H Wψ
 

= − 
 

                (40) 

where the coefficients jc  are the usual normalization constants and the func-
tions ( )jH W  are standard Hermite polynomials of the variable W. They are a 
complete, orthonormal basis, so that 

( ) ( ) ( )
0

j j
j

W W W Wψ ψ δ
∞

∗

=

′ ′= −∑                 (41) 

and 
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( ) ( )d .j j jjW W Wψ ψ δ
∞ ∗

′ ′−∞
′ ′ =∫                     (42) 

Just as in the case of the standard harmonic oscillator, where 1 2x k∆ ∆ =  for 
the ground state, the W-harmonic oscillator ground state for a given polynomial 
W(x) will satisfy ( ) ( ) 1 2W x W k∆ ∆ = . Next we note that Equation (39) can be 
factored in terms of the ladder operators 

1 dˆ
d2Wa W
W

 = + 
 

                     (43) 

1 dˆ .
d2Wa W
W

+  = − + 
 

                    (44) 

Thus,  
ˆ ˆ ˆ 1 2W W WH a a+= +                        (45) 

ˆ ˆ 1 2.W Wa a+= −                       (46) 

It follows that one can construct coherent states using the W-displacement op-
erator or as eigenvectors of the lowering operator. The resulting coherent states 
are over-complete and can be used as basis-functions for a variety of calcula-
tions. They also can be used to explore new types of semiclassical approxima-
tions. In addition, one can generate W-generalized Wigner distributions in the 

, WW P  phase space. As for the new MUB, these all may be implemented in the 
coordinate representation with the correct measure guaranteed by the canonical 
transformation. We note that the Heisenberg-Weyl Lie algebra governs the 
W-oscillator, in contrast to the work of Williams, et al. [34].  

Of course, the orthonormal eigenstates of the W-harmonic oscillator are ei-
genstates of the W-momentum eigenstates (interpreted as generalized Fourier 
transform kernels). That is, the ( )j Wψ ′  satisfy the generalized Fourier trans-
form relation 

( ) ( )

d

1 d e .
2π

W

W

p j

ip W
j j W

W W W

W W p

φ ψ

ψ ψ

∞

−∞

∞ −

−∞
= =

∫

∫
             (47) 

In the coordinate representation, this is 

( ) ( ) ( )( ) ( )( )1 dd e ,
d2π

iW k W x
j j

Wx W x W k
x

ψ ψ
∞ −

−∞
=∫         (48) 

and it is in this form that the transformation will be used. We also note that 
time-frequency analyses can be carried out by a windowed generalized Fourier 
transform, with the window being the ground state of the W-harmonic oscilla-
tor, or any other convenient window. Such transformations should be of interest 
for the analysis of chirps. 

Finally, we note that one can also use the W-Gaussian to generate new “min-
imum uncertainty wavelets” and the closely related “Hermite Distributed Ap-
proximating Functionals” that have proved to be extremely useful computational 
tools in a number of areas, as well as for digital signal processing [35]-[41].  
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8. Results and Discussion  

For invertible canonical transformations of , xx p  to Cartesian-like variables  

, WW p , Dirac quantization results in the unique operators dˆ ˆ,
dWW W p i

W
= = − .  

Additionally, simple replacement of the usual position and momentum variables  

by dˆ ˆ,
d

x x p i
x

= = −  in any of the infinitely many classical expressions for  

, WW p  typically leads to non-Hermitian operators. These are normally rejected 
as valid operators but they can all be transformed to the W-representation Her-
mitian operators, ˆ ˆ, WW p . The non-Hermitian x-representation operators yield 
biorthogonal, complete basis sets and the Hermitian cases yield a unique ortho-
normal complete basis set (all with Dirac delta normalization). These non- 
Hermitian operators all are examples of quasi-Hermitian operators. 

We’ve shown that possessing the canonical commutation relation corres-
ponding to a unit Poisson bracket is not sufficient [23] to produce MUB. The 
standard method of defining a self-adjoint momentum operator as the average 
of the corresponding classical expressions satisfies the correct commutation re-
lation but does not lead directly to MUBs. Neither does the symmetric or asym-
metric quantization of the canonical momentum as defined in Equation (6), di-
rectly yield an MUB in the coordinate representation. Rather, it is only in the 
new, W-representation that one obtains an MUB [23]. In addition, for any given 
choice of W, this MUB is unique (as seen when expressed in the x-representa- 
tion) and independent of the particular way in which one arranges the canonical 
momentum prior to quantization! 

In the above study, we restricted ourselves to odd power dominated, non- 
negative coefficient polynomial choices of the generalized position. We ask now 
what happens if we choose only the even powered polynomials. In that case, the 
eigenstates of ˆWp  have exactly the same form as before. However, there are 
now additional, standard, normalizable eigenstates in the 2L  sense for complex 
eigenvalues ( ) ( )real imag real imag

W W Wp p ip W k iW k= + = + , of the form 

( ) ( ) ( ) ( ) ( )exp ,real imag
W x iW k W x W k W xϕ  = −           (49) 

( ) ( ), 0.x imagW x W k→∞→+∞ >                 (50) 

These tend to zero as x → ±∞  and so the eigenstate structure is more com-
plicated. In addition, their modulus is not constant and eigenstates for different 
eigenvalues are not orthogonal. A third important issue is the fact that the do-
main of W with even powers of x is 0 W≤ < ∞ . Thus, the new variable is not 
“Cartesian-like”, since one no longer has the full real line as the domain of the 
new variable but only the half line. The transform is also no longer invertible 
except on the half line, 0 x≤ < ∞ . This is suggestive of a “radial-like” behavior, 
and is a situation which will be studied further, along with more general choices 
of W (e.g., fractional powers of x  and others). 

We also see that it is possible to obtain new, unexpected self-adjoint operators 
by properly accounting for the Jacobian of the canonical transformation. This 
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avoids forcing self-adjointness by symetrization techniques by taking advantage 
of the fact that the chain rule automatically ensures that one particular ordering 
of the classical variables, Equation (8), is manifestly self-adjoint, with the proper 
measure. There is a sense in which this is an obvious point (it is well known that 
there are operators that are self-adjoint under one measure and not another). 
The point is that the change in measure is a natural consequence of our seeking 
to find more natural coordinates to describe the systems of interest. We stress 
that this has already lead us in previous studies to develop new coherent states 
whose convergence properties for excited states are superior to bases that are not 
defined using information about the ground state [31]. Our strategy here is 
simply to use the same ideas that make canonical transformations so useful in 
classical dynamics for the quantum mechanical case. The result is that we now 
have an infinite number of W choices resulting in sets of operators whose ei-
genstates form continuous MUBs, as well as continuous, complete biorthogonal 
and orthogonal basis sets and over-complete coherent states! 

We constructed four distinct types of bases. These include the MUB generated 
by the three operators, { }ˆ ˆˆ ˆ, ,W WW p W p+ . Because these can be implemented in 
the x-representation (with the new measure automatically taken into account), 
these new MUB make possible an added layer of security in applications to 
quantum cryptography. Next we have used the W-representation “position” and 
“momentum” to define the Hamiltonian of a generalized harmonic oscillator, 
resulting in the W-representation orthonormal basis functions. Again, these will 
typically be employed in the x-representation. We have generated new conti-
nuous, complete biorthogonal and orthogonal bases using the x-representation 
of the various ˆ ˆ, WW p  operators. This is despite the fact that the relevant opera-
tors are not self adjoint in the x-representation. We also have used the fact that 
the W-representation harmonic oscillator Hamiltonian can be factored into the 
corresponding raising and lowering operators to generate new coherent states. 
Additionally, we also obtain new generalized Wigner distributions based on the 
W-HO ground states. We note that the eigenstates of ˆWp  (in the x-represen- 
tation) generalize the Fourier transform, so that we have new tools (including 
new windowed, non-linear transforms) to carry out signal processing of non-li- 
near, non-stationary time-frequency signals (e.g., chirps) that are not amenable 
to the standard Fourier transform. The eigenstates of ˆ ˆWW p+  (Equation (14)) 
are clearly linear chirps in the variable W (and therefore highly non-linear chirps 
when expressed as functions of x). 

It is perhaps useful to illustrate the robustness of one realization of the MUB 
in terms of a sparseness of representation condition. The prime example against 
which we compare is the continuous MUB arising from the operator set 
{ }ˆ ˆ ˆ ˆ, ,x xx p x p+ . In this case, we deal with the Fourier transform and recognize 
that the Gaussian, 2exp 2x −  , is invariant under it. Other functions that are 
narrower than the Gaussian (e.g., 6exp 2x −  , corresponding (roughly) to the 
SUSY definition ( ) 5W x x=  or precisely to the W-harmonic oscillator choice of 

( ) 3W x x= ) in the x-representation have much slower decay than the Gaussian 
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after Fourier transforming to the k-representation. This means that their Fourier 
k-domain representation is not sparse. Thus, the Fourier transform is the opti-
mum basis for representing the Gaussian; it gives the sparsest representation 
possible for that function but not for others. In like manner, the W-harmonic 
oscillator choice of 3W x=  leads to 6exp 2x −  , which is invariant under 

the generalized Fourier transform kernel 
3 3

e
2πW

ik x

pφ
−

= . Thus, as expected, we 

have obtained the optimum (sparsest) basis for describing a system having the 
ground state 6exp 2x −  . In addition, we also expect this generalized Fourier 
transform will be well suited for describing other states that are characterized by 
the same “coordinate” W(x) [31]. 

9. Conclusion 

Canonically conjugate transformations lead automatically to quasi-Hermitian 
operators, and in the form of Equation (8), the new momentum operator is au-
tomatically self-adjoint in the new W-representation. Thus, no symmetrization 
is required to obtain the valid operator observables, ˆ ˆ, WW p  and ˆ ˆWW p+ . The 
Jacobian of the canonical transformation automatically supplies the required 
measure for self-adjointness. The uniqueness of the self-adjoint ˆ ˆ, WW p  opera-
tors follows from the facts that: a) Dirac quantization of the Poisson bracket 
gives the same result independent of how the classical momentum is defined and 
b) the form, Equation (8), is “universal” independent of how the classical mo-
mentum is defined since all result from a similarity transformation of Equation 
(8). Finally, canonical quantization is justified because the canonical transforma-
tion is constructed to ensure a Cartesian metric for the new position. Addition-
ally, the spectrum of ˆWp  is structured identically to that of Ŵ . We call such va-
riables “Cartesian-like”. Finally, canonical transformations lead to a rich structure 
of new, complete bases, generalized harmonic oscillators and Fourier kernels. 
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