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Abstract 
 
The purpose of this paper is to introduce second order (K, F)-pseudoconvex and second order strongly (K, F)- 
pseudoconvex functions which are a generalization of cone-pseudoconvex and strongly cone-pseudoconvex 
functions. A pair of second order symmetric dual multiobjective nonlinear programs is formulated by using 
the considered functions. Furthermore, the weak, strong and converse duality theorems for this pair are es-
tablished. Finally, a self duality theorem is given.  
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1. Introduction 
 
Duality is an important concept in the study of nonlinear 
programming. Symmetric duality in nonlinear program-
ming in which the dual of the dual is the primal was first 
introduced by Dorn [1]. Subsequently Dantzig et al. [2] 
established symmetric duality results for convex/concave 
functions with nonnegative orthant as the cone. The sym- 
metric duality result was generalized by Bazaraa and 
Goode [3] to arbitrary cones. Kim et al. [4] formulated a 
pair of multiobjective symmetric dual programs for pseu- 
doinvex functions and arbitrary cones. The weak, strong, 
converse and self duality theorems were established for 
that pair of dual models.  

The study of second order duality is significant due to 
the computational advantage over first order duality as it 
provides tighter bounds for the value of the objective 
function when approximations are used (see Hou and 
Yang [5], Yang et al. [6,7], Yang et al. [8]).  

Hou and Yang [5] introduced a pair of second order 
symmetric dual non-differentiable programs and second 
order F-pseudoconvex and proved the weak and strong 
duality theorems for these second order symmetric dual 
programs under the F-pseudoconvex assumption. Suneja 
et al. [9] formulated a pair of multiobjective symmetric 
dual programs over arbitrary cones for cone-convex func- 
tions. The weak, strong, converse and self-duality theo-

rems were proved for these programs. Yang et al. [6] 
formulated a pair of Wolf type non-differentiable second 
order symmetric primal and dual problems in mathemati- 
cal programming. The weak and strong duality theorems 
were established under second order F-convexity assump- 
tions. Symmetric minimax mixed integer primal and dual 
problems were also investigated. Khurana [10] intro-
duced cone-pseudoinvex and strongly cone-pseudoinvex 
functions, and formulated a pair of Mond-Weir type 
symmetric dual multiobjective programs over arbitrary 
cones. The duality theorems and the self-dual theorem 
were established under these functions. Yang et al. [8] 
proved the weak, strong and converse duality theorems 
under F-convexity conditions for a pair of second order 
symmetric dual programs. Yang et al. [7] established 
various duality results for nonlinear programming with 
cone constraints and its four dual models introduced by 
Chandra and Abha [11].  

In this paper, we present new definitions dealing with 
second order (K, F)-pseudoconvex and second order 
strongly (K, F)-pseudoconvex functions which are a gen-
eralized of cone-pseudoconvex and strongly cone-pseu- 
doconvex functions. We suggest a pair of multiobjective 
nonlinear second order symmetric dual programs. More- 
over, we establish the duality theorems using the above 
generalization of cone-pseudoconvex functions. Finally, 
a self-duality theorem is given by assuming the skew- 
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symmetric of the functions. 
 
2. Notations and Definitions 
 
The following conventions for vectors in Rn will be used: 

, 1,2, ,i ix y x y i n    
, 1, 2, ,

 
,i ix y x y i  ≦ ≦ n

1,2, ,
 

i ix y x y i n   ≦ ,  but x y . 
A general multiobjective nonlinear programming 

problem can be expressed in the form: 

(P):         1 2min , , , m f x f x f x f x   

  0, 1, 2, ,n
j subject to x X x R g x j k    ≦  

where : and :n m n k .f R R g R R   
Definition 1. A point x X  is said to be an efficient 

(or a Pareto optimal) solution of problem (P) if there 
exists no other x X  such that     ,f x f x   

    , i if x f≦ x 1,  but 2, ,i m    .f x f x  
Recall the following three definitions aiming to give 

the desired definition (i.e., Definition 5). 
Definition 2. [5,7,8] A functional  

: n nF X X R R X R   
 

 is sublinear in its third 
component if, for all , ,x u X

  , ; , ;
X 


 

1)  1 2 1 2 1 2, ; , nF x u a a F x u a≦ F x  u a a a R  ; 
and 

2)    , ; , ; ,nF x u a F x u a a R R       0, ≧ . 
For notational convenience, we write 

   , , ;x uF a F x u a . 

Let K be a closed convex pointed cone in  with mR
int K   and : n mf R R  be a differentiable func-
tion.  

Definition 3. [4,10,12] The polar cone *K  of K is 
defined as  

 * 0 .m TK z R x z x K   ≧  

Definition 4. [5] The function f is said to be second- 
order F-pseudoconvex at  if u X  , nx p X R  , 

   

     

, 0

1
.

2

x u u uu

T
uu

F f u f u p

f x f u p f u p

   

   

≧

 

f is second-order F-pseudoconcave if  is second-order 
F-pseudoconvex. 

f

Now, we are in position to give our definitions of sec-
ond-order (K, F)-pseudoconvex functions and second- 
order strongly (K, F)-pseudoconvex functions.  

Definition 5. The function f is said to be second-order 
(K, F)-pseudoconvex at  if u X  , ,nx p X R   

   

     

, int

1
int ;

2

x u u uu

T
uu

F f u f u p K

f x f u p f u p K

     
        

 

and the function f  is said to be second-order strongly 
(K, F)-pseudoconvex at u X  if  , ,nx p X R    

   

     

, int

1
.

2

x u u uu

T
uu

F f u f u p K

f x f u p f u p K

     

    
 

f is second-order (K, F)-pseudoconcave if f  is second- 
order (K, F)-pseudoconvex and f is second-order strongly 
(K, F)-pseudoconcave if f  is second-order strongly 
(K, F)-pseudoconvex. 

Remark 1. If p = 0 and       , ,x uF f u x u f u    
where  , ,n nX R: X X R    the second-order 
strongly (K, F)-pseudoconvex functions and second-order 
(K, F)-pseudoconvex functions reduce to strongly K- 
pseudoinvex functions and K-pseudoinvex functions de-
fined by Khurana [10]. 

Remark 2. Every second-order strongly (K, F)-pseu- 
doconvex function is second-order (K, F)-pseudoconvex 
but converse is not necessarily true as can be seen from 
the following example. 

Example 1. Let  

 

   2

, 4 , 0
2

, , 1x

x
K x y x y x

f x x x e p

,
     
 

   

≦ ≦
 

and  

   3
, .x uF A A x u   

It can be seen that  f x  is second-order (K, F)-pseu- 
doconvex at u 0 but  f x  is not second-order strongly 
(K, F)-pseudoconvex at u 0 because for x 1 

   , intx u u uuF f u f u p K       

and  

     1
.

2
T

uuf x f u p f u p K     

The following example show that a function which is 
second-order strongly (K, F)-pseudoconvex but not sec-
ond-order F-pseudoconvex where K is a closed convex 
cone. 

Example 2. Let  

  
   2 2

, , ,

3 , , 1

K x y y x y x x

f x x x x p

 

   

≧ ≧ ≧0 ,
 

and  

   3
, .x uF A A x u   
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Then  f x  is second-order strongly (K, F)-pseudoco- 
nvex at u 0. However,  f x  is not F-pseudoconvex 
at u 0, because for x 3, 

   , 0x u u uuF f u f u p      

but 

     1

1
.

2
T

uuf x f u p f u p    

We formulate the following multiobjective nonlinear 
symmetric dual problems: 

(SP):      1
min , ,

2
T T

yyf x y p f x y p   

      *
2, ,T T

y yy ,subject to f x y f x y p C        

(1) 

      , ,T T T
y yyy f x y f x y p    ≧0,   (2) 

*
1,K x C   . 

(SD):     1
max , ,

2
T T

uuf u v r f u v r   

      *
1, ,T T

u uu ,subject to f u v f u v r C   

0,

 (3) 

     ( , ,T T T
u uuu f u v f u v r   ≦   (4) 

*
2,K v C  

m

, 

where : n lf R R R   is a thrice differentiable func-
tion of x and y. C1 and C2 are closed convex cones- with 
nonempty interiors in Rn and Rl respectively. For exam-
ple, the nonnegative orthant  0nx R x ≧  is a convex 
cone).  and  are positive polar cones of C1 and 
C2, respectively. K is a closed convex pointed cone in Rm 
such that 

*
1C *

2C

int K   and *K  is its positive polar cone. 
  ,T

y f x y  and yy    , T f x y
   ,


T
  are the gradient 

and the Hessian matrix of f x y  with respect to y, 
respectively. 

Similarly,   ,T
u f x y  and   ,T

uu f x y  are 
the gradient and the Hessian matrix of    ,T f x y  
with respect to u, respectively. 

Observe that if  then (SP) and (SD) be-
comes (P) and (D) given by Khurana [8], respectively.  

0,p r 

 
3. Symmetric Duality 
 
Now, we establish the symmetric duality theorems for 
the problems (SP) and (SD) as follows. 

Theorem 1. (Weak duality). Let ( , , , )x y p  be feasible 
solution for the problem (SP) and ( , , , )u v r  be feasible 
solution for the problem (SD). Suppose there exist sub-
linear functionals : nF X X R  R   nX R  and 

 : lG Y Y R R    lY R  satisfying:  

 ,
T

1 ,x uF a a u  1C a C            (5) 

 ,
Tb y  2 .C b C v yG b

(., )

2           (6) 

Furthermore, assume that either 
1) f v

(., )
 is second-order (K, F)-pseudoconvex at u 

and f v

(., )

 is second-order (K, G)-pseudoconcave at y; 
or 

2) f v
(.,

 is second-order strongly (K, F)-pseudoco- 
nvex at u and )f v  is second-order strongly (K, G)- 
pseudoconcave at y. 

Then 

    

    

1
, ,

2
1

2

T T
uu

T T
yy

r f

, , int

f u v u v r

f x y f x y p K  p





 


 

Proof: Suppose the contrary, i.e., 

    

    

1
, ,

2
1

, , int
2

f u v u v rT T
uu

T T
yy

r f

f x y f x y p K  p





 


    (7) 

Since ( , , , )x y p  is a feasible solution for the prob-
lem (SP) and ( , ,u v , )r  is a feasible solution for the 
problem (SD), we have:  

By the dual constraint (3), the vector  
     ,T T

u uua f o v f u  ,v r     belongs to , 
and so by (5) we get from (4) 

*
1C

     

     
, , ,

, ,

T T
x u u uu

T T T
u uu

F f u v f u v r

u f u v f u v r

 

 

   
    ≧ ≧0.

 

This gives 

     , , ,T T
x u u uu int .F f u v f u v r K        (*) 

In a similar fashion, 

     , , ,T T
v y y yyG f x y f x y p    ≧0  

for the vector  

     , ,T T
y yyb f x y f x  y p       

in  and so  *
2 ,C

     , , ,T T
v y y yyG f x y f x y p       int K. (**) 

(1) Since the function (., )f v  is second-order (K, F)- 
pseudoconvex at u, relation (*) implies to  

      1
, , , in

2
T T

uu tf x v f u v r f u v r K       
. (8) 

Similarly from (1) and (6), where  

Copyright © 2011 SciRes.                                                                                  AM 
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C
      *

2, ,T T
y yyb f x y f x y p      , 

we get  

      , , ,T T
v y y yyG f x y f x y p      int .K

  

(**) 

interiors in Rm and Rk, respectively, we will make use the 
following proposition which gives generalized form of 
Fritz-John optimality conditions established by suneja et 
al. [9] for a point to be a weak minimum point of the 
following multiobjective nonlinear programming prob-
lem: 

(MONLP):         1 2min , , , mK f x f x f x f x    Also, since the function  is second-order (K, G)- 
pseudoconcave at y (i.e.,  is second-order (K, G)- 
pseudoconvex at y), we have  

( ,.)f x
( ,.)f x

 
       1 2, ,...,

n

k

subject to x X x R G x

g x g x g x Q

   

  
 

      1
, , , in

2
T T

yy tf x v f x y p f x y p K    
. (9) 

Definition 6. [6,8] A point x X  is said to be a 
weak minimum point of (MONLP) if for every x X , 
    intf x f x K  . 

Adding (8) and (9), we get  

    

    

1
, ,

2
1

, ) , int ,
2

T T
uu

T T
yy

f u v r f u v r

f x y p f x y p K





 

   
 

Proposition. [9]. If x X  is a weak minimum point 
of (MONLP), then there exist K  , Q    not 
both zero such that  

      0 ,
T T

f x G x x x x    C       ≧  
this contradicts (7). Hence, the result follows for (1). 

  0.T G x    (2) From (*) and since the function  is sec-
ond-order strongly (K, F)-pseudoconvex at u, we get  

(., )f v

      1
, , ,

2
T T

uuf x v f u v r f u v r K    



.  (10)  

Theorem 2. (Strong duality). Let  , , ,x y p  be a 
weak minimum point for the problem (SP): fix    
and r r  in the problem (SD). Assume that 

1) the matrix    ,T
yy f x y  is nonsingular, Also, from (**) and since the function  is sec-

ond-order strongly (K, G)-pseudoconcave at y (i.e., 
 is second-order strongly (K, G)-pseudoconvex 

at y), we get  

( ,.)f x

( ,.)f x
2) the set   , , 1,2, ,y if x y i m    is linearly in-

dependent, 

3)      , ,T T
y yyf x y f x y p   0    ,  

      1
, , ,

2
T T

yyf x y f x v p f x y p K    
. (11) then  , , , 0x y p r    is feasible solution for the 

problem (SD) and the objective values of the problems 
(SP) and (SD) are equal.  Adding (10) and (11), we get  

     

    

1
, ,

2
1

, ,
2

T T
uu

T T
yy

f u v r f u v r

f x y p f x y p K





  

    ,

 

Furthermore, under the assumptions of Theorem 1, 
 , , , 0x y p r    is a weak maximum point of the 
problem (SD). 

Proof: Since  , , ,x y p  is a weak minimum point 
for the problem (SP), by the Fritz-John conditions of the 
above proposition, there exist K   , ,  2 2C C

 
0  ,  , , 0    , such that for each 1x C , K  , 

,  0p≧

this contradicts (7). Hence, the result follows for (2). 
Therefore, the proof is completed. 
For the closed convex cones K and Q with nonempty  

 

            

              

       

    

1
, , ,

2

1
, , )

2

1
, ,

2

,

T
TT T T

x xy x yy

T
T T T T

y yy y yy

T
T

y yy

T T
yy

f x y y f x y y p f x y p x x

f x y y p f x y y p f x y p y y

y f x y y p f x y p

y p f x y

       

         

      

   

             
   

                
   

           
   

   

,

  0p p    ≧

 (12) 

     , ,T T T
y yyf x y f x y p    0                           (13) 
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     , ,T T T
y yyy f x y f x y p     0   (14) 

Substituting 1x x C  , 2y y C   and p p  in 
the inequality (12), we have 

 

       

     

*1
, ,

2

1
, ,

2

T
T

y yy

T
T

y yy

y f x y y p f x y p

y f x y y p f x y p

       

    

            
   

           
   

≧0

0,

K

 

this can be written in the following form 

          1
, , , 0

2
T T T T T

y yy yyy f x y f x y p p f x y p             .             (15) 

Subtract (14) from (13), we have  

       , ,
T T T

y yyy f x y f x y p         0,  

 
then Equation (15) becomes  

  ,T T
yyp f x y p  0          (16) 

Similarly, if x x , y y , and    in Equation 
(12), we get 

    , 0
T T

yyy p f x y        

using condition (1), we get 

y p    .               (17) 

We claim that 0  . Indeed, if 0  , then (17) 
implies  

y  .                 (18) 

Therefore, equality (12) becomes 

 

         

     

, , 0

, , 0

T T T
y yy

T T T
y yy ,

pf x y f x y P y y y R

f x y f x y P

  

  

     

     

≦ 
 

 
and from the condition (3), we have 

0                   (19) 

Therefore, (18) becomes 

0                   (20) 

Hence, , which contradicts the assump-
tion . Therefore, 

 , , 0   
, , 0   0   and Equation (16) 

take the form   , 0T Tp f x y p yy  and since 
  ,T

yy f x y  is nonsingular (condition (1)) we get  

0p                   (21) 

So, Equation (17) becomes 

y                  (22) 

Substituting from Equations (21), (22) and x x  in 
the inequality (12), we get  

     

   

, 0

, 0.

T p
y

T

y

f x y y y y R

f x y

 

 

       

   

≧
 

And since  ,y

                     (23) 

Using (21), (22) and (23) in (12), we have 

    
   1

, 0,

, 0

T
x

x

f x y x x K

f x y x x x C

    

   

≧

≧
      (24) 

As 1  is closed convex cone, C 1 1,x x C x C      
hence from (24) and K  , we get  

   1

f x y  is linearly independent (con-
dition (2)), we get  

, 0T T
xx f x y C x  ≧  and by using (21), we 

get 

      1, , 0T T T
x xx ,x f x y f x y p x C     ≧    

this implies that 

      1, ,T T
x xx .f x y f x y p C      

Similarly, by letting 0x   in (24) we have  

     , , 0T T T
x xxx f x y f x y p    ≦ .  

Thus  , , , 0x y p   is feasible solution for the prob-
lem (SD) and the values of the objective function for the 
problems (SP) and (SD) are same at  , , , 0x y p  . 
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We will now show that  , , , 0u v r   is a weak 
maximum point for the problem (SD).  

Suppose not, then there exists a feasible solution  
 , , , 0u v r   such that 

    

    

1
,

2
1

, ,
2

T T
uu

T T
yy

f u v r f u v r,

int ,f x y p f x y p K





 

   
 

which contradicts the weak duality theorem. 
Theorem 3. (Converse duality). Let  , , ,u v r  be a 

weak maximum point for the problem (SD). Fix   , 
p p  in the problem (SP). Assume that 

1) the matrix   ,T
uu f u v  is nonsingular, 

2) the set   , , 1,2, ,u if u v i m    is linearly in-
dependent, 

3)      , ,T T
u uuf u v f u v r     0 ,  

then  , , , 0u v r    is feasible solution for the problem 
(SP) and the objective values of the problems (SP) and 
(SD) are equal.  

Furthermore, under the assumptions of Theorem 1, 
 , , , 0x y p  



 is a weak minimum point for the prob-
lem (SP). 

The proof follows on the same lines of Theorem 2. 
 
4. Self Duality 
 
A nonlinear programming problem is said to be self-dual 
if, when the dual is recast in the form of the primal, the 
new problem so obtained is the same as the primal prob-
lem. 

Now we establish the self-duality of the problem (SP). 
So, we assume that , n l   , ,f x y f y x 

C C
 (i.e., 

f is skew-symmetric) and 1 2 , . p r
The dual problem (SD) may be rewritten as a miniza-

tion form: 

(SD)’:     1
min , ,

2
T T

uuf u v r f u v r    

      1, ,T T
u uu ,subject to f u v f u v r C      

     , ,T T T
uuu f u v f u v r   ≦0,  

2, .K v C    

Since    , , ,f u v f v u      , ,u vf u v f v u  
,

 
and uu   , vvf u v f v u   , the above dual problem 
(SD)’ reduces to 

(SD)”:     1
min , ,

2
T T

vvf v u r f v u r   

      1, ,T T
v vv

     , ,T T T
v vvu f v u f v u r    ≧0,  

2, .K v C    

Therefore, this dual problem (SD)’ is formally identi-
cal to the primal problem (SP), that is, the objective and 
constraint functions of the problems (SP) and (SD)” are 
identical. Hence, this problem is self dual. Consequently, 
the feasibility point  , , , 0x y p r    for the primal 
problem (SP) implies the feasibility point  , , ,y x   

0p r   for the dual problem (SD) and vice versa. 
Theorem 4. (Self duality). Under the assumptions of 

the weak duality theorem and the point  , , , 0x y p   
is a weak minimum point for the problem (SP), we as-
sume that 

1) the primal problem (SP) is self dual, 

2) the matrix    ,T
yy f x y  is nonsingular,  

3) the set   , , 1, 2, ,y if x y i m    is linearly in-
dependent, 

4)      , ,T T
y yyf x y f x y p   0    , 

then  , , , 0x y p   is a weak minimum point and a 
weak maximum point, respectively for both the problems 
(SP) and (SD) and the common optimal value is zero. 

Proof: From the strong duality theorem  , , , 0x y p   
is a weak maximum point for the problem (SD) and the 
optimal values of the problems (SP) and (SD) are identi-
cal. By using the self duality, we have  , , , 0x y p   is 
feasible for both problems (SP) and (SD) and using the 
theorems 1-3, we get that it is optimal for both the prob-
lems (SP) and (SD). 

To show that the common optimal value is zero, since 
f is skew symmetric, we have  

   
   

, ,

, ,yy xx

f x y f x y ,

.f x y f x y

 

  
 

Hence,  

    

    

    

1
, ,

2
1

, ,
2

1
, ,

2

T T
yy

T T
xx

T T
yy

f x y p f x y p

,

f y x p f y x p

f x y p f x y p







 

  

   

 

and so 

    

    

1
, ,

2
1

, ,
2

T T
yy

T T
xx

f x y p f x y p

f y x p f y x p





 

0.   
 

 
5. Conclusions 

,subject to f v u f v u r C     

  

 
A pair of symmetric dual programs has been formulated 
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by considering the optimization with respect to an arbi-
trary cone under the assumptions of second order (K, F)- 
pseudoconvex and second order strongly (K, F)-pseu- 
doconvex functions. The results may be further general-
ized by relaxing the condition of cone-pseudoconvex 
functions to cone-pseudobonvex functions.  
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