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Abstract 
In this work we create a connection between AFS (Axiomatic Fuzzy Sets) 
fuzzy logic systems and Zadeh algebra. Beginning with simple concepts we 
construct fuzzy logic concepts. Simple concepts can be interpreted semanti-
cally. The membership functions of fuzzy concepts form chains which satisfy 
Zadeh algebra axioms. These chains are based on important relationship con-
dition (1) represented in the introduction where the binary relation mR  of a 
simple concept m is defined more general in Definition 2.10. Then every 
chain of membership functions forms a Zadeh algebra. It demands a lot of 
preliminaries before we obtain this desired result.  
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1. Introduction 

Starting with simple concepts such as “young people” or “tall people” it is 
possible to form AFS logic system ( )( , , ,EM ′∨ ∧ . The elements are fuzzy 
concepts constructed by simple concepts. Notice that ( ), ,EM ∨ ∧  is a comple- 
tely distributive lattice and is called the EI  (expanding one set M) algebra over 
M . So the AFS logic system is a completely distributive lattice equipped with 
the logical negation ' . Let X  be a non-empty set. For any EMζ ∈ , let 

[ ]: 0,1Xζµ →  be a membership function of the concept ζ . Moreover, we 
assume that all the elements ζµ  in the set { }| EMζµ ζ ∈  satisfy the three 
conditions, Definition 2.17. Consider a binary relation R X Xζ ∈ ×  of the 
concept ζ . For example, for any two persons x  and y , ( ),x y Rζ∈  if and 
only if 

( ) ( ){ }, | , , x yR x y x y X X age ageζ = ∈ × ≥  

where ζ  is a fuzzy concept “old”. The exact definition is represented in 
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Definition 2.10. In Section 2 all the results are known and can be found from [1]. 
Also the used examples are there. For Zadeh algebra axioms we refer to [2]. In 
Section 3 it is proved new results. But all the preliminaries represented in Section 
2 are necessary to know for understanding these results and their proofs. The 
crucial condition is 

( ) ( ), ,m mx z R y x R∈ ⇒ ∈                      (1) 

for simple concepts m  and for all the pairs ( ),x z  and ( ),y x  in X X× . In 
fact, the condition determines a chain ( ) EMζζ

∈
, Lemma 3.1 (c). Let 

[ ]{ }| : 0,1Xζ ζµ µ →  

be a set of membership functions of the concept ζ  of the AFS fuzzy logic 
system ( ), , ,EM ′∨ ∧ . According to Proposition 3.4 a chain ( ) EMζ ζ

µ
∈

 corres- 
ponding to the chain ( ) EMζζ

∈
 satisfies the seven Zadeh algebra axioms and 

then forms some Zadeh algebra, Proposition 3.5. These are the two main results. 
Observing that by Lemma 3.1 (a) the condition (1) implies the condition (2) 
needed in Proposition 3.4. 

( ) ( ), ,m mx z R y z R∈ ⇒ ∈                      (2) 

In the conclusion it is illustrated the research motivation and contribution of 
this paper. 

2. Preliminaries 
2.1. Lattices 

In this subsection we refer to [3], pages 1, 2, 6, 8, 9, 10, 119 and [1], pages 61-64, 
67, 77. 

Definition 2.1. A partially ordered set or a poset is a set in which a binary 
relation ≤  is defined satisfying the following conditions (P1)-(P3): 

(P1) For all x , x x≤ .  
(P2) If x y≤  and y x≤ , then x y= .  
(P3) x y≤  and y z≤ , then x z≤ .  
Let 
(P4) Given x  and y , either x y≤  or y x≤ .  
A poset which satisfies (P4) is said to be linearly ordered and is called a chain. 
Let X  be a subset of a poset P . Denote the least upper bound of X  by 

l.u.b. i.e. sup X  and the greatest lower bound of X  by g.l.b. i.e. inf X . 
Definition 2.2. A lattice L  is a poset P  where any two of whose elements 

x  and y  have g.l.b. or a meet denoted by x y∧ , and l.u.b. or a join denoted 
by x y∨ . A lattice L  is complete if each of its subsets has l.u.b. and g.l.b. in 
L .  

It is clear that any nonvoid complete lattice contains a least element 0 and a 
greatest element 1.  

In any lattice L  (or a poset), the operations ∧  and ∨  satisfy the 
following laws, whenever the expressions are refered to exist: 
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(L1) x x x∧ = , x x x∨ =   
(L2) x y y x∧ = ∧ , x y y x∨ = ∨   
(L3) ( ) ( )x y z x y z∧ ∧ = ∧ ∧ , ( ) ( )x y z x y z∨ ∨ = ∨ ∨   
(L4) ( ) ( )x x y x x y x∧ ∨ = ∨ ∧ =   
Conversely, any system L  with the two binary operations satisfying (L1) - 

(L4) is a lattice. 
Moreover, x y≤  is equivalent to each of the conditions  

andx y x x y y∧ = ∨ =  

If a poset P  (or a lattice) has an 0, then 0 0x∧ =  and 0 x x∨ =  for all 
x P∈ . If P  has a universal upper bound I , then x I x∧ =  and x I I∨ =  
for all x P∈ . 

Definition 2.3. A lattice L  is distributive if and only if the conditions  

( ) ( ) ( )x y z x y x z∧ ∨ = ∧ ∨ ∧  

( ) ( ) ( )x y z x y x z∨ ∧ = ∨ ∧ ∨  

hold in L . In fact, these conditions are equivalent if they are valid. 
Definition 2.4. [1], pages 77, 116 or [3], page 119 
Let L  be a complete lattice. Then L  is called a completely distributive 

lattice if it satisfies the extended distributive laws: for any family  

{ }| ,ij ia L i I j J∈ ∈ ∈  where I  and iJ  are non-empty indexing sets, the 
following equations are valid 

( )
i i

i I

ij if i
i I j J f J i I

a a
∈

∈ ∈ ∈ ∈∏

   =   
  

∧ ∨ ∨ ∧  

( )
i i

i I

ij if i
i I j J f J i I

a a
∈

∈ ∈ ∈ ∈∏

   =   
  

∨ ∧ ∧ ∨  

2.2. A Survey to Simple Concepts and Their Operations 

In this subsection we approach to simple concepts and their operations because 
it is necessary to form the idea what do simple concepts mean. The exact 
definition will be represented in Definition 2.13. All these are based on [1], pages 
113,114. 

Consider the set of four people 1 2 3 4, , ,x x x x  and a simple concept “hair 
colour”. By intuition, we may set: 1x  has “hair black” with number 6 and 

2 3 4, ,x x x  with numbers 4,6,3. So, the numbers imply the order 4 2 3 1x x x x> > =  
which can be interpreted as follows: Moving from right to left, the relationship 
states how strongly the hair colour resembles black colour. More exactly, 

i jx x>  means that the hair of ix  is closer to the black colour than the colour 
of the hair which jx  has. 

Let M  be a set of fuzzy or Boolean concepts on the set X . For each 
m M∈  we associate to a single feature. For example 1m : “old people” is a fuzzy 
concept but 2m : “male” is a Boolean concept. In fact, M  is a set of simple 
concepts. In general let A M⊆  and denote by m A m

∈∏  a conjugation of the 
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concepts m  on A . Correspondingly m A m
∈∑  means a disjunction.  

Example 2.5. Let 1m : “old people”, 2m : “male”, 3m : “tall people”. Then 

1 2m m : “old males” and 1 3m m+ : “old or tall people”. Further,  

1 2 2 3 1 2 3m m m m m m m+ + : “old or tall males”. However, 1 2 2 3m m m m+  means the 
same. This is because for any person x  the degree of x  belonging to the fuzzy 
concept represented by 1 2 3m m m  is always less than or equal to the degree of x  
belonging to the fuzzy concept represented by 1 2m m  or 2 3m m . Therefore the 
former 1 2 3m m m  is including in both of the latter ones 1 2m m  or 2 3m m . 

2.3. AFS Fuzzy Logic System 

All the definitions and the propositions with their proofs are represented in [1], 
pages 115-123. For a moment we give up the assumption that M  consists only 
of simple concepts. Let M  be a non-empty set. The set EM   is defined by 

| , , is any non-empty indexing set
i

i
i I m A

EM m A M i I I
∈ ∈

   = ⊆ ∈      
∑ ∏  

where the elements of EM   are expressed semantically with “equivalent to”, 
“or” (disjunction) and “and” (conjunction). 

Definition 2.6. Let M be a non-empty set. A binary relation R on EM   is 
defined as follows: for  

( )
ii I m Am

∈ ∈∑ ∏ , ( )jj J m B m EM
∈ ∈

∈∑ ∏  ,  

( ) ( )i ji I j Jm A m Bm R m
∈ ∈∈ ∈

   ⇔      ∑ ∑∏ ∏  

(1) iA∀ , i I∈ , hB∃ , h J∈  such that i hA B⊇ , 
(2) jB∀ , j J∈ , kA∃ , k I∈  such that j kB A⊇ . 
R  is an equivalence relation and we define EM  as the quotient set 

EM R .  
Proposition 2.7. Let M  be a non-empty set. Then ( ), ,EM ∨ ∧  forms a 

completely distributive lattice under the binary compositions ∨  and ∧  
defined as follows: for any 

( ) ( ), ,
i ji I j Jm A m Bm m EM

∈ ∈∈ ∈
∈∑ ∑∏ ∏  

i j k i ji I j J k I J i I j Jm A m B m C m A m B
m m m m m

∈ ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈

        
∨ = +                        

∑ ∑ ∑ ∑ ∑∏ ∏ ∏ ∏ ∏�


 

,i j i ji I j J i I j Jm A m B m A B
m m m

∈ ∈ ∈ ∈∈ ∈ ∈ ∪

    
∧ =              

∑ ∑ ∑∏ ∏ ∏  

where the disjoint union I J  means that every element in I  and every 
element in J  are always regarded as different elements in I J . Therefore 
for any k I J∈  , k kC A=  if k I∈ , and k kC B=  if k J∈ .  

The proof of the proposition can be found from [1]. 
To be a distributive lattice means that for any , , EMγ ζ η ∈  
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( ) ( ) ( )γ ζ η γ ζ γ η∧ ∨ = ∧ ∨ ∧  

( ) ( ) ( )γ ζ η γ ζ γ η∨ ∧ = ∨ ∧ ∨  

A completely distributive lattice is defined in Definition 2.4. Because 
( ), ,EM ∨ ∧  is such a lattice it guarantees the existance of the EM  elements 

( )
ii I m Am

∈ ∈∑ ∏  and ( )jj J m B m
∈ ∈∑ ∏ . We can also define the order in 

( ), ,EM ∨ ∧  as follows: 

, , , such that .
i j

j k j k
i I j Jm A m B

m m B j J A k I B A
∈ ∈∈ ∈

  
≥ ⇔ ∀ ∈ ∃ ∈ ⊇        

∑ ∑∏ ∏  

Further, as a (distributive) completely lattice ( ), ,EM ∨ ∧  is also a complete 
lattice. 

The lattice ( ), ,EM ∨ ∧  is called the EI  (expanding one set M ) algebra 
over M . 

Proposition 2.8. Let M  be a set and :g M M→  be a map satisfying 
( )( )g g m m=  for all m M∈ . If the operator :g EM EM→  is defined as 

follows 

( ) ( )
i ii

g

i I m A i Ii I m Am A
m g m g m

∈ ∈ ∈∈ ∈∈

     
= =             

∑ ∑∏ ∧ ∨ ∧  

Then for any , EMα β ∈ , g  has the following properties: 
(1) ( )ggα α= ,  
(2) ( )g g gα β α β∨ = ∧ , ( )g g gα β α β∧ = ∨ ,  
(3) g gα β α β≤ ⇒ ≥   
Therefore the operator g  is an order reversing involution in the EI  

algebra ( ), ,EM ∨ ∧ .  
The operator g  defines the negation m′  of the concept m : ( )m g m′ = . 

Then ( )( ) ( )( )m g m g g m m′′′ = = = . 

Let ( )
ii I m Am EMζ

∈ ∈
= ∈∑ ∏ . Then  

i ii I m A i I m A
m mζ

∈ ∈ ∈ ∈

  
′ ′ ′= =   

   
∑∧ ∨ ∧  

stands for the logical negation of ζ . ( ), , ,EM '∨ ∧  is called an AFS fuzzy logic 
system. 

Example 2.9. Let 1m : “old people”, 2m : “tall people”, 3m : “males”. Then 

1 3 2 1 3 2m m m m m mζ = + = ∨  

( ) ( ) ( )
( ) ( )

1 3 2 1 3 2 1 3 2

1 2 3 2 1 2 3 2.

m m m m m m m m m

m m m m m m m m

ζ ′ ′′ ′ ′ ′= + = ∧ ∨ = ∨ ∧

′ ′ ′ ′ ′ ′ ′ ′= ∧ ∨ ∧ = +
 

where ζ : “old males or tall people” and ζ ′ : “not old and not tall people or not 
tall males”. 

The AFS fuzzy logic system ( ), , ,EM '∨ ∧  can be regarded as a completely 
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distributive lattice. It is also a complete lattice. But this lattice is equipped with 
the logical negation. 

We conclude that the complexity of human concepts is a direct result of the 
combinations of a few relatively simple concepts. In fact, some suitable simple 
concepts play the same role as used in linear vector spaces and we can regard 
them as a “basis”. 

2.4. Relations, Simple and Complex Concepts 

For this subsection we refer to [1], pages 124, 125. 
Definition 2.10. Let ζ  be any concept on the universe of discourse X . 

R X Xζ ⊂ ×  is called the binary relation of the concept ζ  if Rζ  satisfies: 
( ), , ,x y X x y Rζ∈ ∈  if and only if x belongs to concept ζ  at some extent or x  

is a member of ζ  and the degree of x  belonging to ζ  is larger or equal to 
that of y , or x  belongs to concept ζ  at some degree and y  does not at 
all.  

Example 2.11. Let fuzzy concept ζ : “old” and  

( ) ( ){ }, | , , x yR x y x y X X age ageζ = ∈ × ≥  

Therefore ( ),x x Rζ∈  means that x belongs to ζ  at some degree and that 
( ),x x Rζ∉  means that x  does not belong to ζ  at all. If for the two persons 
x  and y , 30xage =  and 20yage =  then ( ),x y Rζ∈  but ( ),y x Rζ∉ . 

Example 2.12. Let fuzzy concept ζ : “hair black” and define Rζ  in the 
corresponding way as above. By human intuition, we assume that for the three 
persons , 1, 2,3ix i =  the degree of ζ  is the following: 

1 2 3x x xblack black black> >  
but the fourth person 4x  has no hairs. Then ( ) ( ) ( )1 2 1 3 2 3, , , , ,x x x x x x Rζ∈  and 
( )4 4,x x Rζ∉  but ( )4,ix x Rζ∈ . See Definition 2.13 (2).  

Definition 2.13. Let X  be a set and R  be a binary relation on X . R  is 
called a sub-preference relation on X  if for , , ,x y z X x y∈ ≠ , R  satisfies the 
following conditions: 

(1) if ( ),x y R∈ , then ( ),x x R∈ ,  
(2) if ( ),x x R∈  and ( ),y y R∉ , then ( ),x y R∈ ,  
(3) if ( ),x y R∈  and ( ),y z R∈ , then ( ),x z R∈ ,  
(4) if ( ),x x R∈  and ( ),y y R∈ , then either ( ),x y R∈  or ( ),y x R∈ .  
We define that a concept ζ  on X  is simple if Rζ  is a sub-preference 

relation on X . Otherwise ζ  is called a complex concept on X . 
Example 2.14. Let ζ : “old people”. The concept is simple. For example if for 

the persons 1 2 3, ,x x x  we have 
1 2 3x x xage age age> >  Rζ  is a sub-preference 

relation on the set { }1 2 3, ,x x x  where Rζ  is the binary relation defined in 
Example 2.11. Observe that the latter of the assumptions of (2) in Definition 2.13 
is not valid and so the condition (2) is valid. In general it is known that all 
elements belonging to a simple concept at some degree are comparable and are 
arranged in a linear order, that is, they form a chain. In above we can think 
shortly that 1 2 3x x x> > .  

Further, there exists a pair of different elements belonging to a complex 
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concept at some degree such that their degrees in this complex concept are 
incomparable. 

Example 2.15. The set X  consists of disjoint sets Y : “males” and Z : 
“females”. The concept ζ : “beautiful” is simple on Y  and on Z : 

( ) ( ){ }1 21 2 1 2, | , , x xR x x x x Y Y b bζ = ∈ × ≥  

( ) ( ){ }1 21 2 1 2, | , , y yR y y y y Z Z b bζ = ∈ × ≥  

However, if we apply ζ  to the whole set X  it is a complex concept because 
the degrees of the elements x X∈  and y X∈  may be incomparable: 

If x Y∈  and y Z∈ , then ( ),x y Rζ∉  and If y Y∈  and x Z∈ , then 
( ),y x Rζ∉  In this case ( ),x x Rζ∈  and ( ),y y Rζ∈  implies that both 
( ),x y Rζ∉  and ( ),y x Rζ∉ . The condition (4) in Definition 2.13 is not 
satisfied and so ζ  is a complex concept.  

2.5. The AFS Fuzzy Logic and Coherence Membership Functions 

For introduction to characteristic and membership functions we refer to [4], 
page 255, and [5], pages 12-18. Definitions 2.16 and 2.17 can be found from [1], 
pages 128, 130. We first become acquainted with concepts fuzzy sets and 
membership functions. 

Let X ≠ ∅  and x X∈ , A X⊂ . Define a characteristic function for the set 
A  as follows: 

{ }
1,

: 0,1
0, otherwiseA A

x A
f X f

∈
→ = 


 

Consider an extended case ( )0 1Af x≤ ≤ , that is, ( )0 1Af x< <  is also 
possible. We call for the set A X⊂  

(a) a crisp set, if its characteristic function is { }: 0,1Af X → ,  
(b) a fuzzy set, if its extended characteristic function or a membership 

function is [ ]: 0,1A Xµ → .  
Therefore for every element x X∈  there is a membership degree ( ) [ ]0,1A xµ ∈ . 

The set of pairs 

( )( ){ }, |AA x x x Xµ= ∈  

determines completely the fuzzy set A . The characteristic function of a crisp set 
A  is a special case of a membership function [ ]: 0,1A Xµ → . 

Definition 2.16. [1] Let X , M  be sets and 2M  be the power set of M . 
Let : 2MX Xτ × → . ( ), ,M Xτ  is called an AFS structure if τ  satisfies the 
following axioms: 

(1) ( ) ( ) ( )1 2 1 2 1 1, , , ,x x X X x x x xτ τ∀ ∈ × ⊆ ,  
(2) ( ) ( ) ( ) ( ) ( )1 2 2 3 1 2 2 3 1 3, , , , , , ,x x x x X X x x x x x xτ τ τ∀ ∈ × ∩ ⊆ .  

We again return to the case that M  is a set of simple concepts. 
Let X  be a set of objects and M  be a set of simple concepts on X . 
: 2MX Xτ × →  is defined as follows: for any ( ),x y X X∈ ×  
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( ) ( ){ }, | , , 2M
mx y m m M x y Rτ = ∈ ∈ ∈  

where mR  is the binary relation of simple concepts m M∈  defined in 
Definition 2.10 (it was defined more general than for simple concepts). 

It is proved in [1] that ( ), ,M Xτ  is an AFS structure. 
Definition 2.17. [1] Let ( ), ,M Xτ  be an AFS structure of a data set X . For 

,x X A M∈ ⊆ , the set ( )A x Xτ ⊆  is defined as follows: 

( ) ( ){ }| , ,A x y y X x y Aτ τ= ∈ ⊇  

For EMζ ∈ , let [ ]: 0,1Xζµ →  be the membership function of the concept 
ζ . ( ){ }|x EMζµ ζ ∈  is called a set of coherence membership functions of the 
AFS fuzzy logic system ( ), , ,EM '∨ ∧  and the AFS structure ( ), ,M Xτ , if the 
following conditions are satisfied: 

(1) For , EMα β ∈ , if α β≤  in lattice ( ), , ,EM '∨ ∧ , then ( ) ( )x xα βµ µ≤  
for any x X∈ .  

(2) For ( ),
ii I m Ax X m EMη

∈ ∈
∈ = ∈∑ ∏ , if ( )iA xτ = ∅  for all i I∈  then  

( ) 0xηµ = .  

(3) For , , , m Ax y X A M m EMη
∈

∈ ⊆ = ∈∏ , if ( ) ( )A x A yτ τ⊆ , then  
( ) ( )x yη ηµ µ≤ ; if ( )A x Xτ =  then ( ) 1xηµ = .  

Remark: It is important to see that M  consists of simple elements m . 

2.6. Zadeh Algebra 

We refer to [2]. 
Definition 2.18. Suppose that ( ), ,L ∨ ∧  is a complete distributive lattice. Let 

{ }| :XL X Lµ µ= →  be the set of all functions from X  to L . Assume that 
the lattice operations the least upper bound ∨  and the greatest lower bound 
∧  on L  are extended pointwise for the functions on XL . Further, define the 
extreme constant functions X L→ , : x ⊥�0  and : x�1  for all x X∈ , 
where ⊥  and   are the least and the greatest elements of L , respectively. A 
unary operation η  on L  satisfies the involution property for any a L∈ , and 
η  is extended pointwise for the functions on XL , i.e., ( )( )η η µ µ=  for any 

XLµ∈ . Then ( ), , , , ,XZ L η= ∨ ∧ 0 1  is called Zadeh algebra if it satiesfies the 
following conditions: 

(Z1) The operations ∨  and ∧  are commutative on XL .  
(Z2) The operations ∨  and ∧  are associative on XL .  
(Z3) The operations ∨  and ∧  are distributive on XL .  
(Z4) The neutral elements of the operations ∨  and ∧  are 0  and 1 , 

respectively, i.e., for all XLµ∈  and for all x X∈ , ( )( ) ( )x xµ µ∨ =0  and 
( )( ) ( )x xµ µ∧ =1 .  

(Z5) For any function XLµ∈  and for all x X∈ , there exists ( ) XLη µ ∈  
such that ( )( ) ( ) ( )( ) ( )( ) ( )x x x x xη η µ η= ≤ ≤ =1 0 0 1 , i.e., η  is order revers- 
ing.  

(Z6) ≠0 1 .  
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(Z7) Zadeh algebra fulfils the Kleene condition: for any function , XLµ ν ∈  
and for any ,x y X∈ , ( ) ( ) ( ) ( )x x y yµ µ ν ν∧¬ ≤ ∨¬ , where µ¬  and ν¬  
are the logical negations of µ  and ν , respectively. 

3. Connection between Coherence Membership Functions  
of the AFS Fuzzy Logic System ( )EM ', , ,∨ ∧   
and Zadeh Algebra 

Lemma 3.1. Let ( )
ii I m Am

∈ ∈∑ ∏  and ( )jj J m B m
∈ ∈∑ ∏  be elements in EM  

where concepts m  are simple and let X  be a non-empty set. If every relation 
mR X X⊂ ×  satisfies the condition 

( ) ( ), ,m mx z R y x R∈ ⇒ ∈                      (1) 

for pairs ( ),x z  and ( ),y x X X∈ × , then 
(a) ( ) ( ), ,m mx z R y z R∈ ⇒ ∈   
(b) there exists kA  in the set { }|iA i I∈  such that k jA B⊆  for every jB , 

that is,  

i ji I j Jm A m B
m m

∈ ∈∈ ∈

  
≥         

∑ ∑∏ ∏  

(c) Let ( )
ii I m Amα

∈ ∈
=∑ ∏ , ( )jj J m B mβ

∈ ∈
=∑ ∏ , ( ) ,V m C m

ννδ
∈ ∈

= ∑ ∏ �  be 

the elements in EM  such that the condition (a) is satisfied for all pairs 
( ) ( ), , , ,α β β δ � . Then α β δ≥ ≥ ≥� .  

Proof. Assume that the condition (1) holds. 
(a) Let ( ), mx z R∈ . Then ( ), my x R∈ . Because m  is simple, mR  is a sub- 

preference relation and by Definition 2.13 (3) it is transitive. This implies that 
( ), my z R∈  and (a) is valid.  

(b) Let  

( ) ( ){ }, | ,i mx z m A x z Rτ = ∈ ∈  

( ) ( ){ }, | ,j my x m B y x Rτ = ∈ ∈  

Because m  is simple ( ),x yτ  and ( ),y zτ  are defined. 
Because ( ) ( ), ,m mx z R y x R∈ ⇒ ∈  we conclude that ( ) ( ), ,x z y xτ τ⊆  and 

so there exists kA  in the set { }|iA i I∈  such that for every jB  is k jA B⊆ . If 
there exists rB  which does not contain kA  then r iB A⊇∪  does not hold. 
This is a contradiction. According to discussion after Proposition 2.7 we have  

i ji I j Jm A m B
m m

∈ ∈∈ ∈

  
≥         

∑ ∑∏ ∏  

(c) Consider a pair ( ),β δ , where ( )jj J m B mβ
∈ ∈

=∑ ∏  and  

( )
vv V m C mδ

∈ ∈
=∑ ∏ . We will prove that β δ≥ , that is, 
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j vj J v Vm B m C
m m

∈ ∈∈ ∈

   
≥        

∑ ∑∏ ∏  

if ( ) ( ), ,m my w R v y R∈ ⇒ ∈  (condition (1)).  
Repeating the proof of (b) we obtain the following: Let  

( ) ( ){ }, | ,j my w m B y w Rτ = ∈ ∈ , ( ) ( ){ }, | ,v mv y m C v y Rτ = ∈ ∈  

Then ( ) ( ), ,y w v yτ τ⊆  and there exists lB  in the set { }|jB j J∈  such 
that l vB C⊆  for all vC . This proves β δ≥ . In the same way we can prove that 
α β≥  for a pair ( ),α β  and then we conclude that α β δ≥ ≥ ≥�        □ 

Lemma 3.2. Let ( )
ii I m Am EMζ

∈ ∈
= ∈∑ ∏ . If the condition 

( ) ( ), ,m mx z R y x R∈ ⇒ ∈  

holds for every simple concept im A∈  then 

( ) ( )x yζ ζµ µ≤  

where [ ]: 0,1Xζµ →  is the membership function of the concept ζ .  
Proof. Let m M∈  be simple concepts and 

( ) ( ){ }, | ,i mx z m A x z Rτ = ∈ ∈  

( ) ( ){ }| ,i iA x z X x z Aτ τ= ∈ ⊇  

Assume that the condition  

( ) ( ), ,m mx z R y x R∈ ⇒ ∈  

holds for every im A∈ . By Lemma 3.1 (a)  

( ) ( ), ,m mx z R y z R∈ ⇒ ∈  

also holds. Then ( ) ( ), ,x z y zτ τ⊆  and so 

( ) ( ), ,i iA x z A y zτ τ⊆ ⇒ ⊆  

It follows that ( ) ( )i iA x A yτ τ⊆ .  
Let 

ii m Amζ
∈

=∏ . These iζ  exist because EM  is a completely lattice. By 
Definition 2.17 (3) ( ) ( )

i i
x yζ ζµ µ≤  for every i I∈  where [ ]: 0,1

i
Xζµ →  is 

a membership function. Let ( ) sup
i i I ii I m A mζ ζ∈∈ ∈

= =∑ ∏ . Also ζ  exists and 
we obtain ( ) ( )x yζ ζµ µ≤                                           □ 

Lemma 3.3. Assume that the binary relations mR X X⊂ ×  of simple 
concepts m  satisfy the condition  

( ) ( ), ,m mx z R y x R∈ ⇒ ∈  

for pairs ( ) ( ), , ,x z y x X X∈ × . 

Let ( )jj J m B mα
∈ ∈

=∑ ∏  and ( )
ii I m Amβ

∈ ∈
=∑ ∏  be elements in EM . 

Then α β≤  and membership functions αµ  and βµ  satisfy the Kleene 
condition  

( ) ( ) ( ) ( )x x y yα α β βµ µ µ µ∧¬ ≤ ∨¬  

Proof. By Lemma 3.1 (b), α β≤ . On the other hand, by Lemma 3.2 
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( ) ( )x yβ βµ µ≤  

Because α β≤ , by Definition 2.17 (1), ( ) ( )x xα βµ µ≤ . We obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )y y y x x x xβ β β β α α αµ µ µ µ µ µ µ∨¬ ≥ ≥ ≥ ≥ ∧¬        □ 

Proposition 3.4. Let  

[ ] [ ]{ }0,1 | : 0,1X Xζ ζµ µ= →  

be a set of membership functions of the AFS fuzzy logic system ( ), , ,EM ′∨ ∧ . 
The EM  elements ζ  are of the form 

ii I m A
mζ

∈ ∈

 
=   

 
∑ ∏  

Let mR  be binary relations of simple concepts m . If the condition 

( ) ( ), ,m mx z R y z R∈ ⇒ ∈  

is valid for every simple concept ,im A i I∈ ∈  and , ,x y z X∈  then the mem- 
bership functions ζµ  satisfy the conditions (Z1) - (Z7) of Zadeh algebra in 
Definition 2.18.  

Proof. We verify the Zadeh algebra axioms: The first three axioms (Z1) - (Z3) 
are clear.  

(Z1) The operations ∨  and ∧  are commutative on [ ]0,1 X .  

( ) ( ) ( ) ( )
1 2 2 1

x x x xζ ζ ζ ζµ µ µ µ∨ = ∨  

( ) ( ) ( ) ( )
1 2 2 1

x x x xζ ζ ζ ζµ µ µ µ∧ = ∧  

(Z2) The operations ∨  and ∧  are associative on [ ]0,1 X .  
(Z3) The operations ∨  and ∧  are distributive on [ ]0,1 X .  
(Z4) The neutral elements of the operations ∨  and ∧  are [ ]0 : 0,1Xµ → , 
( )0 0xµ ≡  and [ ]1 : 0,1Xµ → , ( )1 1xµ ≡ . 

( ) ( ) ( ) ( ) ( )( )0 00x x x x xζ ζ ζ ζµ µ µ µ µ µ= ∨ = ∨ = ∨  

( ) ( ) ( ) ( ) ( )( )1 11x x x x xζ ζ ζ ζµ µ µ µ µ µ= ∧ = ∧ = ∧  

(Z5) For any [ ]: 0,1Xζµ →  and for all x X∈  there exists a unary opera- 
tion  

[ ] [ ] ( ) ( ): 0,1 0,1 ,X X
gζ ζη η µ µ→ =  

where the operation :g EM EM→  is defined by 

( )
ii

g

i Ii I i Am A
m g m

∈∈ ∈∈

    
=          

∑ ∑∏ ∧  

Let m M∈  be simple concepts. Observe that we need this assumption for 
Definition 2.17 used bellow: in Definition 2.16 and Definition 2.17 the definition 
of ( ),x yτ  demands m  to be simple. According to Proposition 2.8 g  is an 
order reversing involution and ( )( )g g m m=  but in this case m  need not be 
simple. We obtain 

( )( ) ( )( ) ( )( )g g gζ ζζ ζη η µ η µ µ µ= = =  
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Therefore η  is an involution. Here ζ  is not necessary simple. 
Let α β≤  be elements in EM , and since g  is order reversing, ( ) ( )g gα β≥ . 

Using Definition 2.17 (1) it is ( ) ( ) ( ) ( )g gx xα βµ µ≤ . Therefore 

( ) ( ) ( ) ( )g gα βα βη µ µ µ η µ= ≥ =  

and η  is order reversing. 
(Z6) ( ) ( )0 1x xµ µ≠  for all x X∈   
(Z7) The Kleene condition. For any function [ ], 0,1 Xβ α ∈  and for any 

,x y X∈  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )y y y x x x xβ β β β α α αµ µ µ µ µ µ µ∨¬ ≥ ≥ ≥ ≥ ∧¬  

which is proved in Lemma 3.3.                                       □ 
Proposition 3.5. Let  

[ ] [ ]{ }0,1 | : 0,1X Xζ ζµ µ= →  

be a set of membership functions ξµ  of the AFS fuzzy logic system 
( ), , ,EM ′∨ ∧ . The EM  elements ζ  are of the form 

ii I m A
mζ

∈ ∈

 
=   

 
∑ ∏  

Let mR  be binary relations of simple concepts m . If the condition 

( ) ( ), ,m mx z R y x R∈ ⇒ ∈  

is valid for every simple concept ,im A i I∈ ∈  and , ,x y z X∈  then 
(a) Functions ζµ  form a chain corresponding to the chain ( ) EMζζ

∈
. 

(b) Any chain ( ) EMζ ζ
µ

∈
 constitutes some Zadeh algebra [ ]( )0 10,1 , , , , ,X η µ µ∨ ∧ . 

Proof. We conclude 
(a) By Lemma 3.1 the elements ζ  forms a chain ( ) EMζζ

∈
. By Definition 

2.17 (1) 
k lk l ζ ζζ ζ µ µ≤ ⇒ ≤ .  

(b) Lemma 3.1 (a) implies that 

( ) ( ), ,m mx z R y z R∈ ⇒ ∈  

and in Proposition 3.4 it is proved that every chain ( ) EMζ ζ
µ

∈
 satisfies (Z1) - 

(Z7).                                                            □ 

4. Conclutions 

Simple concepts form chains. The elements of any chain form a “basis” in AFS 
fuzzy logic system ( ), , ,EM ′∨ ∧  with operations disjunction ∨ , conjunction 
∧  and the logical negation. The elements are of the form ( )

ii I m Am
∈ ∈∑ ∏  

where simple concepts im A∈  are defined in Definition 2.13 and operations in 
( ), , ,EM ′∨ ∧  are defined in Proposition 2.7. ( ), ,EM ∨ ∧  is a completely 
distributive lattice. By means of the binary relations mR X X∈ ×  defined in 
Definition 2.10 we construct the condition ( ) ( ), ,m mx z R y x R∈ ⇒ ∈  which 
implies the condition ( ) ( ), ,m mx z R y z R∈ ⇒ ∈ . Here X  is a non-empty set 
and , ,x y z  on X  and m  are simple concepts. Then the conditions consti- 
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tute the two things: first, the membership functions [ ]: 0,1Xζµ →  of the fuzzy 
concepts ζ  form chains ( ) EMζ ζ

µ
∈

 in ( ), , ,EM ′∨ ∧ ; second, every chain 

( ) EMζ ζ
µ

∈
 forms a Zadeh algebra. These results are represented in Propositions 

3.4 and 3.5 and we can use them as starting points to continue theoretical 
considerations. The other way to continue the investigations is to utilize directly 
the conditions above: there are two kinds of successive events. The first one 
implies the second one or they have no connection. In the latter case the second 
event only follows the first one although they are independent of each other. In 
the first case it is possible to apply to the conditions (above) (1) or (2) repre- 
sented in the introduction.  

In Example 2.1, [2], the set [ ]{ }| : 0,1Xµ µ →  of membership functions 
forms a Zadeh algebra. More exactly, if [ ]0,1I =  then ( ), ,I ∨ ∧  is a complete 
distributive lattice. Further, [ ]{ }| : 0,1XI Xµ µ= →  is the set of membership 
functions. The operations ∨  and ∧  are extended pointwise on XI . Now 

{ }, , , , ,XZ I= ∨ ∧ ¬ 0 1  is a Zadeh algebra with ( ) 0x =0 , ( ) 1x =1 , and the 
logical negation of µ  is ( ) ( )( )1x xµ µ¬ = − . In this paper we have considered 
more general membership functions and constructed Zadeh algebras. 
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