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Abstract 
Agricultural soils can sequester and release large amounts of carbon. Acces-
sibility of soil carbon to microbial attacks depends on biological, chemical, 
and physical protection mechanisms such as organic matter composition and 
particle size, soil aggregation, and chemical protection through the silt-clay- 
organic matter complex. While soil and organic matter are fractal objects 
controlling exposure of reactive surfaces to the environment, soil aggregation 
and biomass production and quality are regulated by agricultural practices. 
Organic matter decomposition in soil is generally described by the classical 
first-order kinetics equations fitted to define distinct carbon pools. By com-
parison, fractal kinetics assigns a coefficient to adjust time-dependent de-
composition rate of total soil carbon to protection mechanisms. Our objec-
tive was to relate fractal parameters of organic matter decomposition to soil 
management systems. Retrieving published data, the decomposition of or-
ganic matter was modeled in a silt loam soil maintained under pasture, an-
nual cropping or bare fallow during 11 years. The classical first-order kinet-
ics model returned quadratic relationships indicating that reactive carbon 
decreased with time. Fractal kinetics rectified the relationships successfully. 
Initial decomposition rate (k1 at t = 1) was 7 × 10−4 for pasture, 1 × 10−4 for 
annual cropping, and 0.5 × 10−4 for bare-soil fallow. Fractal coefficients h 
were 0.71, 0.45, and 0.25 for pasture, annual cropping and fallow, respectively. 
Due to aggregation, physical protection against microbial attacks was highest 
under pasture management, leading to higher carbon sequestration despite 
higher biomass production and “priming” effects. Parameters k1 and h proved 
to be useful indicators for soil quality classification integrating the opposite 
effects of labile carbon decomposition and carbon protection mechanisms that 
regulate the decomposition rate of organic matter with time as driven by soil 
management practices. 
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1. Introduction 

The soil is a huge reservoir of organic carbon approximately three times as large 
as the vegetation of terrestrial ecosystems and twice that of the atmosphere [1]. 
Properly managed soils can mitigate climate change through carbon sequestra-
tion and enhanced soil quality. Organic matter decomposition in soils is gener-
ally modeled by first-order kinetics that assigns rate coefficients to carbon pools 
defined by the model as labile to recalcitrant to decomposition [2] [3] [4] [5] [6]. 
The classical first-order kinetics equation assumes that each reaction rate is con-
stant and that the mixture is homogeneous and fully dispersed [7]. 

However, most reactions in nature are fractal because they occur on low-di- 
mensional heterogeneous surfaces where substrate accessibility, hence reaction 
rate, decreases with time [7] [8] [9]. Soil and organic matter are fractal objects 
[10] [11] that interact with each other [12]. Organic matter is a mixture of ob-
jects of various sizes and biochemical compositions [6] [13]. In batch reactions, 
surface area of particles and substrate reactivity per unit surface are enhanced by 
shredding and grinding, and by agitating the mixture [7]. Fractal kinetics [7] 
provides a means to regulate organic matter decomposition rate because carbon 
accessibility to microbial attacks changes with time due to “priming effect” of la-
bile carbon [14] [15] [16] and to biological, chemical and physical protection 
mechanisms in the soil in situ [12] [17]. Indeed, biochemical composition of or-
ganic particles, organic particle size, soil aggregation and the silt-clay-organic 
matter complex limit surface areas of labile and recalcitrant organic matter mate-
rials. Biomass production and quality and soil aggregation are regulated by agri-
cultural practices. 

A hierarchical soil aggregation model for physical protection of organic matter 
against microbial attacks in a fractal soil system has been conceptualized by [18], 
described numerically by fractal [10] and Euclidean [19] geometry, and illus-
trated by [20]. Plant residues and fungi decompose into fragments and various 
substances, providing a nucleus for the formation of micro-aggregates less than 
250 µm in diameter within macro-aggregates [21]. The micro-aggregates are 
mechanically strong while macro-aggregates may be destroyed by agricultural 
practices. By assigning a power coefficient to time to regulate the carbon de-
composition rate in soils [22] [23] [24] [25], fractal kinetics can quantify the ef-
fect of tillage and crop rotation practices on enhancing or decreasing protection 
mechanisms against organic matter decomposition. 

The aim of this paper was to relate fractal parameters of organic matter de-
composition to agricultural practices regulating carbon sequestration in soils. 



L. E. Parent 
 

113 

2. Material and Methods 
2.1. Fractal Kinetics 

First-order kinetics describes reactant disappearance as follows: 

[ ]A A k t−∂ = ∂                            (1) 

where A is concentration of the reactant remaining at time t and k is the first- 
order rate constant. The analytical solution of Equation (1) is as follows: 

ln
o

A kt
A

 
= − 

 
                           (2) 

where A concentration at time t is expressed as the proportion of initial reactant 
concentration Ao. 

The rate “constant” k for reactions in diffusion-limited heterogeneous systems 
such as fractal objects has been shown both phenomenologically and theoreti-
cally to decrease with time as follows [7]:  

( ) 1
hk t k t−=                             (3) 

where h is a fractal coefficient (0 ≤ h ≤ 1, t ≥ 1) and k1 is rate coefficient at t = 1. 
If 0h → , reaction rate is maximum and kinetics gets closer to classical first-or- 
der Equation (2). Otherwise, the reaction follows fractal kinetics. 

In organic matter decomposition studies, the fractal power coefficient p re-
duces reaction rate over time as follows [11] [22] [23] [24] [25]: 

( ) ( ) ( ) ( )ln ln ln p
o oA A k t t A kt= − = −                  (4) 

where p = 1 − h. The value of h is a measure of protection mechanisms against 
organic matter decomposition, and k1 is maximum reaction rate at t = 1. 

2.2. Computational Example 

A computational example was retrieved from literature [26]. Briefly, a silt loam 
soil maintained under pasture, annual cropping or bare fallow during 11 con-
secutive years was sieved to less than 4 mm, incubated in the laboratory for 98 
days, and monitored for CO2 production. The ( )2total CO totalC C C−  ratio, where 

totalC  is total carbon concentration and 
2COC  is cumulative CO2 released during 

the incubation period, was log-transformed, then related to t for classical fractal 
kinetics or to 1 ht −  for fractal first-order kinetics. The value of h was iterated 
between 0 and 1 using Microsoft Excel until maximum r2 value. 

3. Results and discussion 
3.1. Classical First-Order Kinetics 

The soil under pasture released the largest amount of CO2. The classical first- 
order kinetics showed significantly quadratic trends ( 2

adjustedR  = 0.997 - 0.999) 
across treatments (Figure 1). Therefore, the reaction rates decreased with time, 
indicating that reactive surfaces became less accessible [7]. Classical first-order 
kinetics addresses this problem by splitting the curve into carbon pools (Thuriès  
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Figure 1. First-order kinetics of organic matter decomposition in soil under 
different soil management practices (bold colored lines) showing quadratic re-
lationships (thin black lines). Data retrieved from [26]. 

 
et al., 2001). Because the clay-silt complex was similar across soils, microbial ac-
cess to carbon pools was regulated by organic matter composition and encapsu-
lation within aggregates. The soil under pasture that favored aggregation con-
tained the largest amount of easily decomposable polysaccharides from recent 
plant residues while that under fallow showed smaller carbon content with 
higher concentration of recalcitrant polyphenols [26]. The sand fraction con-
tained more easily biodegradable carbon forms compared to silt or clay. 

3.2. Fractal kinetics 

There were highly significant linear relationships between soil organic matter 
decomposition and 1 ht −  (Table 1). Initial decomposition rate k1 was 14 times 
larger in the soil under pasture compared to bare-soil fallow, indicating large dif-
ferences in labile carbon content due to higher biomass production under pas-
ture. However, the higher was the h value, the smaller was 1

1
hk t − . Soil carbon 

decomposing at reduced rate needs not to be classified into carbon pools because 
fractal coefficient h not only accounts for chemical and physical protection but 
also for the recalcitrance of residual carbon that increases with time. A single to-
tal C pool decomposing at rate 1

1
hk t −  sufficed to describe organic matter de-

composition in a fractal soil. Biochemical composition of organic matter materi-
als provided an explanation for reduced reaction rate. 

Despite “priming” effects by labile polysaccharides [14] [15] [16], carbon se-
questration was highest under pasture management due to high biomass produc-
tion by the sod and physical protection against microbial attacks through soil 
aggregation. In contrast, the h coefficient was lowest in the degraded bare-soil 
fallow where aggregation was low and biochemical carbon protection as poly-
phenols was high. The final result was carbon accumulation under pasture man-
agement compared to carbon depletion in the bare-soil fallow. As expected from 
the theory on carbon sequestration [18] [20] and in conformity with the fractal 
hypothesis [7], CO2 release during organic matter decomposition is accelerated  
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Table 1. Fractal first-order parameters of organic matter decomposition in soil (data re-
trieved from [26]. 

Management practice k1 h r2 

Pasture 7 × 10−4 0.71 0.999 

Annual crop 1 × 10−4 0.45 0.999 

Bare-soil fallow 0.5 × 10−4 0.24 0.999 

 
under conventional tillage that destroys soil aggregates and increases the expo-
sure to microbial attacks of the formerly aggregate-protected organic matter [27]. 
As fractal coefficient decreased and soil particles were dispersed under fallow, 
the course of organic matter decomposition approached that of classical first- 
order kinetics. As fractal coefficient h increased due to soil aggregation, more 
carbon could be sequestered in the soil. The effect of conservation practices [28] 
and crop rotation [4] [29] on carbon sequestration can thus be compared using 
the h parameter. 

Fractal parameters k1 and h could also be used as soil quality indicators linked 
to soil functions like water regulation and partitioning, soil filtering and buffer-
ing, and nutrient storing and cycling [30]. High k1 values reflected high respira-
tion rate and microbial biomass, hence high biological activity. High h values re-
flected high organic carbon accumulation rate, content of particulate organic 
carbon, cation exchange capacity, and aggregation. As shown by k1 and h, bio-
logical activity and aggregation, hence soil quality, were highest in the soil under 
pasture management and lowest in the soil under fallow. 

4. Conclusion 

The classical first-order kinetics that describes the decomposition of carbon 
pools at specific rate constants assumes that the medium is homogeneous and 
agitated. However, the soil is heterogeneous and structured, often showing fractal 
geometry. Fractal kinetics described successfully the course of total carbon de-
composition in a fractal soil. Initial decomposition rate was highest in the pas-
ture soil, which was well supplied with polysaccharides, and lowest in the fallow 
soil enriched in polyphenols. The pasture soil showed the highest h value due to 
higher aggregation that protects organic matter against microbial attacks. The h 
value regulated reaction rate as 1

1
hk t − , allowing organic matter to accumulate in 

the pasture soil despite higher initial decomposition rate compared with annual 
cropping and bare-soil fallow. Fractal parameters reflected soil quality and the 
effect of agricultural practices on soil carbon sequestration and release rates. 
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