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Abstract 
The paper presents a mathematical model for analyzing the threshold of sta-
bility for rotating machines, where the rotor is linked to the stator by roller 
bearings, bearing housings and end-shields and where the stator feet are 
mounted on a soft foundation. The internal (rotating) damping of the rotor is 
the only source of instability, which is considered in the paper. After the ma-
thematical coherences of the multibody model are described, a procedure is 
presented for deriving the threshold of stability. Additionally, a numerical 
example is shown, where the threshold of stability is calculated for different 
boundary conditions. It could be demonstrated, that the stiffness of the foun-
dation—even if the foundation stiffness is isotropic—can help stabilizing this 
kind of vibration system in the same way as orthotropic bearing stiffness or 
orthotropic bearing housing and end-shield stiffness for a rigid foundation. 
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1. Introduction 

When designing rotating machines, it is important to calculate the vibration be-
havior and to consider the influence of the foundation [1]-[9]. Beside the forced 
vibrations—due to e.g. unbalance—also self-excited vibrations have to be consi-
dered. There are many effects, which cause self-excited vibrations, e.g. not equal 
cross-coupling stiffness coefficient in the oil film of sleeve bearings, steam exci-
tations in steam turbines, electromagnetic field damping effects in induction 
motors, and internal (rotating) damping of the rotor shaft, referring to [3] [4] 
[5] and [8]. When designing rotating machines, it is important to know, at 
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which rotor speed the threshold of rotor stability is reached. If this rotor speed is 
exceeded, self-excited vibrations are caused, occurring with a natural frequency 
of the system. This threshold of stability can be pushed to higher rotor speeds, if 
external damping is added to the rotor, e.g. by squeeze film dampers. But also 
orthotropic bearing and/or orthotropic support stiffness help to increase the 
threshold of stability, referring to [1] [2] [3] and [5]. The aim of the paper is now 
to derive a vibration model for a special kind of rotating machine, where the ro-
tor is linked to the stator by roller bearings, bearing housings and end-shields 
and where the stator feet are mounted on a soft foundation, so that the centre of 
gravity of the stator is displaced by the height h from the foundation (Figure 1). 
A soft foundation may be realized by e.g. rubber elements, where the machine is 
mounted, or by a steel frame foundation, because steel frame foundations are 
often very flexible, because of economically reasons. Therefore, in the model not 
only the rotor, the bearings and the support of the bearings are considered, but 
also the mass and inertia of the stator at its centre of gravity, and the foundation 
under the machine feet. 

2. Vibration Model 

The vibration model is a simplified model, which describes the movement in the 
yz-plane (Figure 2). The model is generally based on the model in [9], but mod-
ified especially for rotating machines with roller bearings instead of sleeve bear-
ings. The model covers a wide range of rotating machines, and not only electric-
al machines. Therefore no electromagnetism is here considered, contrarily to [9], 
where electromagnetic field damping is in the focus. However, the most impor-
tant difference to [9] is that in this paper here not forced vibrations are analyzed 
but self-exciting vibrations due to instability, caused by internal (rotating) 
damping of the rotor shaft. 

The vibrations system consists of two main masses, the rotor mass wm , which 
is concentrated as a lumped mass in the middle between the two bearings, and 
the stator mass sm , which is concentrated in the centre of gravity S of the stator 
with the mass inertia sθ . 
 

 
Figure 1. Special kind of rotating machine with rotor, roller bearings, bearing housings, 
end-shields and stator, mounted on a soft foundation. 
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Figure 2. Vibration model. 

 
Beside these two main masses, two additionally masses are considered, the 

mass of the shaft journal vm  and the mass of the bearing housing bm , mostly 
to avoid zeros at the main diagonal of the mass matrix. The rotor has the rotor 
stiffness c and the internal damping id  and rotates with the rotary angular 
frequency Ω. The rotor is connected to the end-shields by bearing housings and 
roller bearings, which suppose to be equal for each machine side. Many methods 
and strategies are described in literature to derive the stiffness of roller bearings, 
e.g. [10]-[20]. In this paper, a simplified bearing model is used, where the stiff-
ness of the roller bearings is described by the roller bearing stiffness matrix rC , 
with the vertical bearing stiffness crz and horizontal bearing stiffness ryc . Cross 
coupling coefficients of the roller bearings are neglected as well as damping of 
the roller bearings. The stiffness and damping of the bearing housing and end- 
shields is described by the bearing housing and end-shield stiffness and damping 
matrix bC  and bD , which also suppose to be equal for each machine side. The 
stator structure is here assumed to be very stiff, compared to the foundation 
stiffness, so the stator structure can be modeled rigid. The stator feet - FL (left 
side) and FR (right side) - are connected to the ground by the foundation stiff-
ness and damping matrix fC  and fD , which are also assumed to be equal for 
the right side and left side of the machine. When deriving the damping coeffi-
cients, it has to be considered, that the natural vibration of the critical mode oc-
curs with the angular natural frequency stabω  at the threshold of stability, 
which is the rotary angular frequency stabΩ . Therefore, the whirling angular 
frequency Fω  of the rotor becomes stabω , at the rotary angular frequency of 

stabΩ = Ω : 
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The internal material damping of the rotor id  can be described by the stiff-
ness of the rotor c and mechanical loss factor tan iδ  of the rotor, depending on 
the whirling angular frequency Fω , referring to [3]: 

( ) tan i
i F

F

cd δω
ω
⋅

=                       (2) 

The same approach is deduced for the damping coefficients of the bearing 
housing end end-shield and of the foundation: 

( ) ( )
tantan ; by bbz b

bz F by F
F F

ccd d
δδω ω

ω ω
⋅⋅

= =            (3) 

( ) ( )
tan tan

;fz f fy f
fz F fy F

F F

c c
d d

δ δ
ω ω

ω ω
⋅⋅

= =            (4) 

With the stiffness of the bearing housing end end-shield bzc  and byc  and 
the stiffness of the foundation at each machine side (left and right side) fzc  and 

fyc  and the loss factor of the bearing housing and end-shield tan bδ  and of the 
foundation tan fδ . 

3. Mathematical Model 

To get the threshold of stability, it is necessary to derive the homogenous diffe-
rential equation by separating the vibration system into four single systems: a) 
rotor mass system, b) journal system, c) bearing house system and d) stator mass 
system (Figure 3). 
 

 
Figure 3. Vibration system cut free into subsystems. 
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The displacements of the stator mass (zs, ys, ϕs) is small, compared to the di-
mensions of the machine (h, b, Ψ), therefore following linearization is possible: 

; ;fL s s fR s s fL fR s sz z b z z b y y y hϕ ϕ ϕ⋅= − = + ⋅ = = − ⋅          (5) 

The homogenous differential equation system can be derived by analyzing the 
equilibrium of at each single system: 
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The internal (rotating) damping id  of the rotor in conjunction with the ro-
tary angular frequency Ω  leads here to an anti-symmetric stiffness matrix, 
which causes instability, when the threshold of stability is exceeded ( stabΩ > Ω ). 
The limit of vibration stability stabΩ  can be calculated, when increasing the ro-
tary angular frequency Ω , and analyzing the eigenvalues. If a real part of one 
eigenvalue gets zero, the limit of vibration stability is reached. Increasing the ro-
tary angular frequency Ω  furthermore will cause a positive real part and the 
vibration system gets instable. Using the state-space formulation 

� �
1 1

h h

h h
− −

    
= ⋅    − ⋅ − ⋅    

x xA

q qI
q qM C M D
�

�

�
��

���
�

�������

0
              (11) 

the eigenvalues can be derived. With the formulation ˆ e tλ⋅= ⋅x x , the eigenva-
lues are calculated by: 

[ ]det 0λ− ⋅ =A I                       (12) 

At the threshold of stability the eigenvalue λ  of the critical mode gets: 

stab stabjλ λ ω= = ± ⋅                      (13) 

The real part of the critical eigenvalue stabλ  is zero and the whirling angular 
frequency Fω  is then identical to stabω , while the rotor is rotating with stabΩ . 
Considering, that the coefficients id , bzd , byd , fzd , fyd  are depending on 
the whirling angular frequency Fω , an iterative solution has to be deduced, ac-
cording to Figure 4. 

 

 
Figure 4. Flow diagram to derive the threshold of stability. 
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First, a start value of the whirling angular frequency ,0F stabω ω=  has to be es-
timated. This can be done e.g. by following estimation, which is based on a 
ridged mounted machine, without external damping and with the assumption 
that ry rzc c<  and by bzc c<  and that the first natural angular frequency ,0yω  
is here the whirling angular frequency at the threshold of rotor stability: 

,0 ,0
1with : 1 1 1

2 2

total
stab y total

w

ry by

c c
m

c c c

ω ω= = =
+ +

         (14) 

With this assumption the damping coefficients id , bzd , byd , fzd , fyd  can 
be derived, and therefore also the threshold of stability and the natural angular 
frequency, leading to ,1stabΩ  and ,1stabω . With this new angular whirling fre-
quency ,1F stabω ω=  the damping coefficients id , bzd , byd , fzd , fyd  are 
calculated again, leading to a new threshold of stability ,2stabΩ  and a new natu-
ral angular frequency ,2stabω . If the ratio ,2 ,1 ,1stab stab stabω ω ω−  is less than Δ  - 
an arbitrarily chosen value -the calculation is finished and ,2stab stabΩ = Ω  and 

,2stab stabω ω= . If the ration is larger as the chosen value Δ , a loop has to be run 
through till the ratio is less than Δ . 

4. Numerical Example 

Based on the mathematical derivation, a numerical example is shown, where the 
threshold of stability is analyzed. 

4.1. Boundary Conditions 

The rotating machine consists of a rotor, roller bearings, bearing housings, 
end-shields and a stator (Figure 1), which is mounted on a welded steel frame 
foundation. The data of the rotating machine, roller bearings and foundation is 
shown in Table 1. 

4.2. Analysis of Natural Vibrations and Threshold of Stability 

In Figure 5 the real part and the imaginary part of the eigenvalues are presented, 
depending on the rotor speed. 

It can be shown, that at a rotor speed of about 26130 rpm the real part 3α  
becomes zero and therefore the threshold of stability is reached. The corres-
ponding natural angular frequency is 3 394.3 rad sω = , which is equal to the 
whirling angular frequency F stabω ω=  at the limit of stability of the critical 
mode, which is here mode 3. Increasing the rotor speed above 26130 rpm, leads 
to instability of the vibration system. 

Figure 6 shows the different mode shapes at the threshold of stability 
( 26130 rpmstabn = ). Because of the clarity, only the orbits of the rotor mass, 
stator mass and machine feet are shown, and not the orbits of the shaft journal 
points and the bearing housing points. As it can be seen, all eigenvalues of the 
mode shapes have negative real parts, except mode 3, where the real part 3α  is  
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Table 1. Data of rotating machine, roller bearings and foundation. 

Machine data Description Value 

 Mass of the stator 3900 kgsm =  

 Mass inertia of the stator at x-axis 2530 kg msxθ = ⋅  

 Mass of the rotor 930 kgwm =  

 Mass of the rotor shaft journal 5 kgvm =  

 Mass of the bearing housing 20 kgbm =  

 Height of the centre of gravity 450 mmh =  

 Distance between motor feet 2 850 mmb =  

 Stiffness of the rotor 8 21.72 10 kg sc = ×  

 Horizontal stiffness of bearing housing and end shield 8 27.0 10 kg sbyc = ×  

 Vertical stiffness of bearing housing and end shield 8 27.0 10 kg sbzc = ×  

 Mechanical loss factor of bearing housing and end shield tan 0.04bδ =  

 Mechanical loss factor of the rotor tan 0.03iδ =  

Bearing data Description Value 

 Bearing type Ball bearing; Type 6220 C3 

 Horizontal stiffness of the roller bearing 8 22.0 10 kg sryc = ×  

 Vertical stiffness of the roller bearing 8 22.0 10 kg srzc = ×  

Foundation data Description Value 

 Type of foundation Welded steel frame foundation 

 Vertical stiffness of the foundation at each motor side 8 21.5 10 kg sfzc = ×  

 Horizontal stiffness of the foundation at each motor side 8 21.0 10 kg sfyc = ×  

 Mechanical loss factor of the foundation tan 0.04fδ =  

 
zero. When increasing the rotor speed furthermore, this real part 3α  gets posi-
tive. Therefore mode 3 is the critical mode shape. 

4.3. Variation of Single Parameters 

Now different cases are investigated, and the threshold of stability stabn  is cal-
culated as well as the natural angular frequency stabω  at the threshold of stabil-
ity (Table 2). 

Table 2 shows, that neglecting the damping of the bearing housings and end 
shields (case b) only decreases here the threshold of stability stabn  marginal 
(−1.07%). Without foundation damping (case c) a clearly reduction of stabn  is 
obvious (−4.82%). A strong reduction occurs, if the foundation would be rigid 
(cases d). Here the threshold of stability occurs already at a rotor speed of 3840 
rpm, which means a reduction of −85.3%. 
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Figure 5. Eigenvalues, depending on the rotor speed and threshold of stability. 
 

If then the bearing stiffness would be changed from isotropic ( 2.0rz ryc c= =
8 210 kg s× ) to orthotropic ( rz ryc c≠ ; 8 21.5 10 kg sryc = ×  and 2.5rzc =
8 210 kg s× ), the threshold of stability can be increased again up to 13020 rpm 

(case e). 

4.4. Arbitrarily Variation of Foundation Stiffness 

In this section, the influence of the foundation stiffness on the threshold of sta-
bility stabn  and on the whirling angular frequency stabω  is analyzed. 

Therefore, the foundation stiffness is variated from the rated values in Table 1 
with factors between 0.2 and 5, which means, that the foundation stiffness is va-
riated in a range between 7 22 10 kg s×  and 8 27.5 10 kg s×  (Figure 7). 
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Figure 6. Mode shapes at the threshold of stability with nstab = 26130 rpm. 
 
Table 2. Threshold of stabilty for different cases. 

Case Description stabω  [rad/s] stabn  [rpm] ∆ of stabn  to a) [%] 

a) Basic Data (Data Table 2) 394.26 26130 0 

b) 
Data Table 2 with 0by bzd d= =  
(No damping of the bearing housings and end shields) 

393.75 25850 −1.07 

c) 
Data Table 2 with 0fy fzd d= =  
(No damping of the foundation) 

391.20 24870 −4.82 

d) 
Data Table 2 with fy fzc c= → ∞  
(Infinitely stiff foundation) 

344.85 3840 −85.3 

e) 
Data Table 2 with fy fzc c= → ∞  and 8 21.5 10 kg sryc = × ; 8 22.5 10 kg srzc = ×  
(Infinitely stiff foundation and orthotropic bearing stiffness) 

340.69 13020 −50.2 
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Figure 7. Influence of the foundation stiffness on (a) the limit of stability nstab and on (b) 
the whirling angular frequency ωstab. 

4.5. Arbitrarily Variation of Bearing Stiffness for the Soft 
Foundation 

Now, the influence of bearing stiffness is analyzed for the rated soft foundation 
(Table 1). Therefore, the bearing stiffness is variated from the rated values in 
Table 1 by ±50%, which means that the bearing stiffness is variated in a range 
between 8 21 10 kg s×  and 8 23 10 kg s× , also considering orthotropic bearing 
stiffness ( rz ryc c≠ ) (Figure 8). 
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Figure 8. Influence of the bearing stiffness on (a) the limit of stability nstab and on (b) the 
whirling angular frequency ωstab, for the rated soft foundation (Table 1). 

4.6. Arbitrarily Variation of Bearing Housing and End-Shield 
Stiffness for the Soft Foundation 

In this section, the influence of bearing housing and end-shield stiffness is ana-
lyzed, for the rated soft foundation (Table 1). Therefore, the bearing housing 
and end-shield stiffness is variated from the rated values in Table 1 also by ±50%, 
which means that the bearing housing and end-shields stiffness is variated in a 
range between 8 23.5 10 kg s×  and 9 21.05 10 kg s× , also considering ortho-
tropic bearing housing and end-shield stiffness ( bz byc c≠ ) (Figure 9). 
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Figure 9. Influence of the bearing housing and end-shield stiffness on (a) the limit of sta-
bility nstab and on (b) the whirling angular frequency ωstab, for the rated soft foundation 
(Table 1). 

4.7. Arbitrarily Variation of Bearing Stiffness for a Rigid 
Foundation 

Here, the influence of the bearing stiffness is analyzed again, but now for a rigid 
foundation ( fz fyc c= →∞ ). Therefore, the bearing stiffness is again variated in a 
range between 8 21.0 10 kg s×  and 8 23.0 10 kg s×  (Figure 10). 

4.8. Arbitrarily Variation of Bearing Housing and End-Shield 
Stiffness for a Rigid Foundation 

In this section, the influence of bearing housing and end-shield stiffness is ana-
lyzed again, but for a rigid soft foundation ( fz fyc c= →∞ ). Therefore, the 
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Figure 10. Influence of the bearing stiffness on (a) the limit of stability nstab and on (b) the 
whirling angular frequency ωstab, for a rigid foundation. 

 
bearing housing and end-shield stiffness is again variated in a range between 

8 23.5 10 kg s×  and 9 21.05 10 kg s×  (Figure 11). 

4.9. Discussions of the Results 

In section 4.4 - 4.8 (Figures 7-11) the influence of the foundation stiffness, the 
bearing stiffness and the bearing housing and end-shield stiffness on the thre-
shold of stability stabn  and on the whirling angular frequency stabω  is analyzed. 
Figure 10 shows, that for a rigid foundation, the threshold of stability can be in-
creased clearly, if orthotropic bearing stiffness ( rz ryc c≠ ) exists, which is also  
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Figure 11. Influence of the bearing housing and end-shield stiffness on (a) the limit of 
stability nstab and on (b) the whirling angular frequency ωstab, for a rigid foundation. 
 
described in literature ([3] [4] [5] and [8]). In this paper the bearing stiffness is 
variated in the range of ±50%, leading to a maximum threshold of stability of 
about 29,000 rpm. The same effect is caused, if the bearing housing and end- 
shield stiffness gets orthotropic ( bz byc c≠ ), which can be seen in Figure 11. Here 
the stiffness is also variated in the range of ±50%, but only leading to a maximum 
threshold of stability of about 9900 rpm. The reason is, that both stiffness, bear-
ing stiffness and bearing housing and end-shield stiffness are connected in series, 
and the rated bearing stiffness is much lower than the rated bearing housing and 
end-shield stiffness ( 8 2 8 22.0 10 kg s 7.0 10 kg srz ry bz byc c c c= = × < = = × ). 

The innovation of the paper is now, that it can be demonstrated (Figure 7), 
that the threshold of stability can also be increased by a soft foundation, even if 
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the foundation stiffness is isotropic ( fz fyc c= ). The reason is the kind of rotating 
machine, with a stator, mounted with its feet on a soft foundation, so that the 
centre of gravity of the stator is displaced by the height h from the foundation 
(Figure 1). This leads to different mode shapes (Figure 6), which cause a similar 
effect on the threshold of stability as orthotropic bearing stiffness or orthotropic 
bearing housing and end-shield stiffness, for a rigid foundation. 

In this example, the threshold of stability could be increased even to maxi-
mum of about 143000 rpm, at a foundation stiffness of 8 25.14 10 kg sfzc = ×  
and 8 27.5 10 kg sfyc = ×  (Figure 7). Increasing the foundation stiffness fur-
thermore in the considered range, leads to a decrease of the threshold of stability, 
which can be seen in Figure 7. If the foundation stiffness would be increased to 
infinite, the threshold of stability would drop to 3840 rpm (Table 2; case d). But 
it has to be considered here, that a boundary condition of the model is, that the 
stiffness of the stator structure is much higher than the foundation stiffness, so 
that the stator structure is assumed to be rigid. As a rough estimation: Up to a 
foundation stiffness of about 8 25.0 10 kg sfzc ≤ ×  and 8 25.0 10 kg sfyc ≤ × , 
this boundary condition is acceptable for this example, above this values the elas-
ticity of the stator structure has to be considered. The influence of bearing stiff-
ness and bearing housing and end-shield stiffness on the threshold of stability 
for the rated soft foundation is also demonstrated in Figure 8 and Figure 9. In 
Figure 8 the maximum threshold of stability of about 65200 rpm is reached at a 
bearing stiffness of 8 23.0 10 kg srzc = ×  and 8 21.0 10 kg sryc = × . In Figure 9 the 
maximum threshold of stability of about 37800 rpm is reached at a bearing hous-
ing and end-shield stiffness of 9 21.05 10 kg sbzc = ×  and 8 23.5 10 kg sbyc = × . 
Most of the calculated thresholds of stability are fare above the limit of the roller 
bearings and fare above the limit, what the rotor structure would stand. Addi-
tionally it has to be noticed, that with increasing rotor speed, higher bending 
modes of the rotor become more and more important and therefore also the gy-
roscopic effect. But of course, this analysis helps to estimate, whether within the 
rotor speed limits of the roller bearing and of the rotor structure an instability 
would occur or not, if higher bending modes of the rotor and gyroscopic effects 
can be neglected. 

5. Conclusion 

The paper presents a mathematical model especially for analyzing the threshold 
of stability for a special kind of rotating machines, consisting of a rotor, stator, 
end-shields, bearing housings and roller bearings, mounted on a soft foundation, 
so that the centre of gravity of the stator is displaced by the height h from the 
foundation (Figure 1). After the mathematical coherences of the model have 
been described, a procedure was presented for deriving the threshold of stability. 
Additionally, a numerical example was shown, where the threshold of stability 
was calculated for different boundary conditions. The influence of the stiffness 
of the foundation, of the bearings and of the bearing housings and end-shields 
was demonstrated, as well as the influence of the damping of the foundation and 
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the damping of the bearing housings and end-shields on the threshold of stabili-
ty. The main task and the innovation of the paper are to demonstrate that for 
this kind of rotating machines, the stiffness of the soft foundation—even if the 
foundation stiffness is isotropic—can help stabilizing the vibration system and 
therefore leading to a similar effect as orthotropic bearing stiffness or orthotrop-
ic bearing housing and end-shield stiffness for a rigid foundation. Of course, the 
presented model is a simplified model of the system, but the conclusions and the 
procedure for deriving the threshold of stability can also be applied in a finite 
element analysis. As a future work, experimental validation of the presented 
theory may be deduced, based e.g. on a small induction motor, to demonstrate 
the stabilization influence of the foundation. 
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