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Abstract 
From our standpoint, a school teacher should be acquainted, in a deeper way, 
with the content of teaching themes which are on school curricula. In case of 
primary teachers and their preparation for teaching mathematics, they should 
have a solid knowledge of the properties of the system N of natural numbers 
and an understanding of its position as being a basis upon which all other 
number systems are built. Up to some degree, these teachers should also be 
acquainted with further extensions of number systems going along the line as 
it is done in school: natural—positive rational—integer—rational—real num-
bers. These extensions are enlightened by Peacock’s principle of invariance of 
the form—a rule derived for natural numbers, when expressed in general 
form (as a literal relation) continues to hold true in all extended systems. In 
Section 2 of this survey, a precise terminology is fixed which is needed for the 
study of the system N and in particular, for making a difference between syn-
tactic and semantic concepts. The Cantor principle which expresses the de-
pendence of conception of number on perception of set is also formulated and 
largely exploited in this paper. In Section 3, several rules are derived when 
different expressions denoting two different groupings of elements of a set are 
equated. Forgetting that the variables are bound to N, all these rules also ex-
press the properties of the extended number systems, as well as they are alge-
braic laws or their derivatives. At the end, discovering of rules of correspon-
dence of sequences given by a number of their initial terms is considered as a 
type of exercises which help the development of the idea of variable. Some 
cases of finding formulae for sums of consecutive natural numbers are also 
included. This paper is intended to be a paradigmatic example how a mathe-
matical content has to be elaborated to serve best the school teachers to dee-
pen their knowledge of subject matter. 
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1. Introduction 

The students at the institutions where primary school teachers are educated 
usually have on their curricula: a course of mathematics and a course of didac-
tics of mathematics. The main aim of the latter of these courses is a clear pres-
entation of the ways how teaching themes of primary school mathematics are 
elaborated to serve best the learner. But the ideas what should be the content of 
the former course vary considerably from country to country (and from institu-
tion to institution). Some of those ideas could be rather idealistic, for example, 
when the content contains elements of differential and integral calculus, ele-
ments of abstract algebra, etc. and when it is supposed that further and further 
learning of mathematics at upper levels deepens the knowledge of these students, 
but, in reality, it usually burdens them too much. We find that the content of 
this course has to be subordinate to the needs of the course of didactics of ma-
thematics and one of its central themes should be “Repetition of School Mathe-
matics”. 

Though the title of the above theme connotes a repetition, it does not mean 
that the same things (school math content) should be treated in exactly the same 
way as they are presented in the classroom. Actually, this content should be ex-
posed in a deeper way, much beyond its didactical transformations found in 
school books. As the concepts synthesized in primary mathematics are devel-
oped further at the proximate stages of learning in the upper classes of elemen-
tary school, primary mathematics together with this further development is the 
school mathematics that is the subject of this repetition. To be more precise, the 
content that we have in mind should contain a clear and deeper exposition of 
extensions of number systems up along the way as it is done in school: N, (natu-
ral numbers); Q+ (positive rationals); Z (integers); Q (rationals); R (reals). These 
extensions are enlightened by Peacock’s principle of the permanence of form 
([1] [2]). This principle says that a rule derived for the natural numbers, when 
expressed in general form (as a literal relation) continues to hold true in all ex-
tended systems. Therefore, we see that the starting point is the system N, which 
is also teaching and learning theme of primary mathematics. (A primary teacher 
is often directed wrongly to upper classes math, there to learn properties of 
arithmetic operations, though all such properties are carried over from the sys-
tem N to its further extensions. Thus, a thorough acquaintance with the proper-
ties of operations in N is essential for both primary and all math teachers).  

We also note that in this survey we will use some terms and concepts from 
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secondary school math courses which these students have had, before they 
enrolled educational institutions, where they are trained. (That range of know-
ledge should, of course, be included in math course for which this survey is also 
sketched). 

2. Expressions and Relations in the System N of  
Natural Numbers 

The natural numbers are the basis from which all other number systems are 
built. On the one hand, there were mathematicians, called Naturalists, (among 
them the great classical mathematician Henri Poincaré, (1854-1912), the Ger-
man mathematician Leopold Kronecker, (1823-1891), etc.) who considered the 
natural numbers to be a direct product of the human mind. A very well-known 
Cronecker’s saying “God made the integers, all else is the work of man” ex-
presses their point of view in a nice symbolic way. On the other hand, the so 
called Formalists considered the natural numbers to be constructions executed 
on the logical basis. We take here the system of natural numbers in the way it is 
established throughout learning in school, avoiding all formal constructions. 

In the set theory, two sets have the same number of elements when there ex-
ists a 1 – 1 and onto mapping from one of these sets onto the other. As the col-
lections of visible things in the surrounding world (together with their pictorial 
representations) consist the phenomenology upon which the ideas of natural 
numbers are formed, we will call this type of collections of objects, the sets at the 
sensory level. Operations with this type of sets are expressed by the use of natu-
ral language (without using the syntactic signs of set theory). 

G. Cantor in his paper ([3]), expressed the set-number dependence, which we 
modify slightly to also express the dependence of conception of number on per-
ception of set. 

Cantor principle of invariance of number. Starting with perception of a set A 
of visible objects and abstracting (forgetting): 

(i) The nature of these objects, 
and 
(ii) Any kind of their organization. 
an abstract idea A  of number results. 
Cantor uses two bars over the letter denoting a set to emphasize two above 

abstractions. Let us also add that under an organization of elements we under-
stand any way how they can be ordered, arranged, grouped, etc. 

Dealing with sets at sensory level and performing the activities of abstracting 
(governed by the Cantor principle), in the course of learning arithmetic in 
school, first the individual concepts of numbers 1, 2, ∙∙∙, 10 are formed on the ba-
sis of counting as an ordered reciting of number names up to 10. Then, the block 
N20 of numbers up to 20 is established together with the operations of addition 
and subtraction and the relation “is less than”. This block is, then, extended to 
the block N100 of numbers up to 100, within which the permanent meaning of 
multiplication and division is established. Further extensions are the block N1000 
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of numbers up to 1000 and, ultimately, the system N of all natural numbers. Let 
us note that “establish” is the proper word for activities of forming concepts at 
the level of primary school, when they are learnt in the contact with series of 
examples (rather than by definitions). 

2.1. Numerical Expressions 

The simplest numerical expressions are decimal notations for natural numbers. 
For example, 2, 34, 258, 2017, etc., are such simple expressions. Next, the sums, 
as for example, 2 + 7, 21 + 8, 231 + 75, etc., the differences, as for example, 7 – 5, 
18 – 13, 4825 – 794, etc., the products, as for example, 6 × 8, 31 × 52, 665 × 2337, 
etc., the quotients, as for example, 16:4, 125:25, 7020:90, etc. are also expressions. 
In general, expressions are sums, differences products and quotients of the al-
ready formed expressions which are put in the parentheses. For example when 
the components of the product are the sums 4 + 8 and 12 + 9, composing a new 
expression we write (4 + 8) × (12 + 9). When an expression is just decimal nota-
tion for a number, then it is not put in parentheses and also, as a matter of con-
vention, products and quotients of two expressions are not put in parentheses. 
For example, we write. (9 – 5) × 7 instead of (9 – 5) × (7), (7 + 8) – (2 + 5) × (9 – 
7) instead of (7 + 8) – ((2 + 5) × (9 – 7)), etc. 

The value of an expression is the number which it stands for. Very different 
expressions can represent one and the same number. But the most informative 
of them all is the decimal notation of that number. That is why, when we say 
“find the value of an expression”, we think of finding the decimal notation for 
that expression. 

Parentheses are understood as the command “first do what is in parentheses”. 
For example, when calculating the value of the expressions 20 – (16 – 7), 3 × 7 + 
32:8, etc. we proceed in the following way: 20 – (16 – 7) = 20 – 9 = 11, 3 × 7 + 
32:8 = 21 + 4 = 35, (in this example parentheses are omitted but the command is 
not forgotten), etc.  

Let us now consider a number of examples: 
(a) (3 + 5) × 8, (b) (7 – 4) × (8 + 3), (c) (7 + 17): 6, (d) 84: (5 + 7). 
To express clearly the order in which operations are performed, expressions 

are decomposed in the form of a jotting called the tree of an expression. 
(a) The expression (3 + 5) × 8 is seen as the product of expressions 3 + 5 and 

8, while 3 + 5 is the sum of 3 and 5. This decomposition is represented by the 
following diagram. 
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which is its tree. 
(b) The expression (7 − 4) × (8 + 3) is the product of the difference 7 – 4 and 

the sum 8 + 3 and its tree is: 
 

 
 

(c) The expression (7 + 17):6 is the quotient of 7 + 17 and 6. Its tree is: 
 

 
 

(d) Similarly, the tree of the expression 84:(5 + 7) is: 
 

 
 

The expressions are just jottings and some of them do not have their value in 
N. For example, such are the expressions: 

4 – 7, 13:5, 83 – 84, 411:412, 3548:5746, etc. (and let you yourself add more 
such examples). The reader should differentiate between syntactic concepts, as 
they are digits, decimal notations, sums, differences, products and quotients and 
expressions in general and semantic concepts, as they are numbers, values of ex-
pressions, etc. 

2.2. Expressions with a Variable 

It was François Viète (1540-1603), who introduced the concept of variable in 
mathematics. According to him a variable is a letter denoting not only one 
number but a whole species of numbers. In analogy with Grecian logistica nu-
merosa, he called his new algebra logistica speciosa. Thus, a variable in a set is a 
letter denoting any element of that set and consequently, a variable in the set N 
of all natural numbers is a letter denoting any natural number. When a letter, 
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say x, is added to the simplest expressions in N, combining expression with the 
operational signs, all jottings obtained in that way are called expressions with a 
variable (say with x). 

Examples of expressions with the variable x are: 
(a) 3x + 2, (b) 7x – 23, (c) 15 – x, (d) 15: x, etc. 
(Let us recall that between a number and the letter x, the multiplication sign is 

not written. We write 7x, 15x, etc. understanding that 7, 15, etc. are multipli-
cands and x is the multiplier. We also include zero in the set N (as it is done in 
school arithmetic)). 

Now let us consider the above examples. 
(a) When x takes its values 0, 1, 2, 3, and so onwards the expression 3x + 2 al-

so takes its values 3 × 0 + 2, 3 × 1 + 2, 3 × 2 + 2, 3 × 3 + 2 and so onwards. This 
dependence of the value of the expression 3x + 2 on the values of x is 
represented by the following table: 
 

x 0 1 2 3 ∙∙∙ 

3x + 2 2 5 8 11 ∙∙∙ 

 
Ellipses in this table indicate that something is omitted, in the first row all 

natural numbers from 4 on are omitted and in the second row the values of the 
expression 2x + 3 for those numbers are omitted. 

(b) When x takes the values 0, 1, 2, and 3, the expression 7x – 23 does not have 
its value in N. Dependence of the value of 7x – 23 on the values 4, 5, 6, ... of the 
variable x is represented by the table: 
 

x 4 5 6 7 ∙∙∙ 

7x − 23 5 12 19 26 ∙∙∙ 

 
(c) The expression 15 – x has its value in N only when x takes one of the fol-

lowing values 0, 1, 2, ∙∙∙, 15. The table of this expression is 
 

x 0 1 2 ∙∙∙ 15 

15 − x 15 14 13 ∙∙∙ 0 

 
(d) The expression 15:x has its value in N, for those values of x for which 15:x 

is a natural number. Those values are the factors of 15:1, 3, 5 and 15. In this case, 
the table is: 
 

x 1 3 5 15 

15:x 15 5 3 1 

 
When an expression with the variable x in N is given, then each of the natural 

numbers is a value for x, but for some of these numbers the value of the expres-
sion is a natural number and for some others is not. The set of all natural num-
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bers for which an expression has its value in N is called the domain of definition 
of that expression. For the above examples, their domains of definition are: 

(a) N, (b) {4, 5, 6, ∙∙∙}, (c) {0, 1, 2, ∙∙∙, 15}, (d) {1, 3, 5, 15}. 

2.3. Relations in the system N  

When the values of two numerical expressions are equated, then the equals sign 
is used to relate them. For example, we write 

8 + 7 = 15, 21 – 9 = 12, 4 × 8 = 30 + 2, 63: 9 = 7, etc. 
or 

8 + 7 = 16, 21 – 9 = 11, 4 × 8 = 30 + 4, 63: 9 = 8, etc. 
The jottings when two numerical expressions are related by the equals sign are 

called equalities. Some equalities may be true, as those in the first row above, 
some others may be false, as those in the second row above.  

When between two numerical expressions one of the two signs: <, (less than) 
or >, (greater than) is written, then such jottings are called inequalities. Exam-
ples of inequalities are: 

3 + 5 < 4 + 5, 12 – 5 > 12 – 6, 7 × 8 > 7 × 7, 30: 10 < 30:5, etc.  
or 

3 + 8 < 1 + 8, 12 – 5 > 12 – 4, 7 × 8 > 8 × 8, 30: 5 < 30:5, etc. 
Inequalities in the first row above are true and those in the second row above 

are false. 
When a statement, as the examples of equalities and inequalities, is logically 

evaluated as being true or false, then it is called a proposition. 
When one or both of expressions related by the equals sign contain a variable, 

then such a jotting is called an equation. For examples, the jottings: 
(a) x + 7 = 15, (b) 3x = 15, (c) 15 – x = 12, (d) 20 – x = 21 – x, (e) 20 – x = x – 

21, etc. are equations. The domain of definition of an equation is the set of val-
ues of the variable x for which the both sides of the equation are defined (have 
their values in N). 

(a) The expression x + 7 has a value in N for all values of x and 15 is a con-
stant not dependent on x. Hence, the domain of definition of this equation is the 
set N.  

(b) The expression 3x has for its domain of definition the set N and 15 is a 
constant. Thus, this equation has the set N for its domain of definition.  

(c) The domain of definition of 15 – x is the set {0, 1, 2, ∙∙∙, 15} and therefore, 
this set is also the domain of definition of this equation. 

(d) The domains of definition of 20 – x and 21 – x are the sets {0, 1, 2, ∙∙∙, 20} 
and {0, 1, 2, ∙∙∙, 21}, respectively. Thus, the domain of definition of this equation 
is {0, 1, 2, ∙∙∙, 20}.  

(e) The expression 20 – x is defined when x takes the values in the set {0, 1, 2, 
∙∙∙, 20} and the expression x – 21 when x takes the values in {21, 22, 23, ∙∙∙}. We 
see that there is no value of x for which both these expressions are defined. Thus, 
the domain of definition of this equation is the empty set ∅ , i.e. this equation is 
not defined in N. As a jotting this equation has a meaning, but it has no seman-
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tic meaning.  
Solution of an equation is the value of the variable x for which the corres-

ponding equality becomes true. 
(a) When x takes the value 8, the equality 8 + 7 = 15 is a true proposition. For 

all other values such a proposition is false. Hence, 8 is the only solution of this 
equation. 

(b) The solution of the equation 3x = 15 is the number 5. 
(c) When x takes the values in the set {0, 1, 2, ∙∙∙, 15}, the only true equality is 

15 – 3 = 12 and, therefore, 3 is the only solution of this equation.  
(d) For all values of x in the set {0, 1, 2, ∙∙∙, 20}, the corresponding equalities 

are false and this equation has no solution.  
(e) This equation has no meaning. (It would be wrong to say that such an eq-

uation does not have solutions).  
When at least one of the two expressions related by one of the signs “<” or “>” 

contains the variable x, then such a jotting is called an inequality. For examples, 
the jottings: 

(a) x < 7, (b) 14 – x < 4, (c) 1 – x > 2, (d) 1 – x > x – 2, etc.  
are inequalities. The domain of definition of an inequality is the set which is the 
intersection of sets being the domains of definition of the expressions which 
make that inequality. 

(a) x < 7 is defined in the whole set N. 
(b) The domain of definition of the inequality 14 – x < 4 is the set {0, 1, 2, ∙∙∙, 

14}. 
(c)The inequality 1 – x > 2 has for its domain of definition the set {0, 1}. 
(d) The domain of definition of the expression 1 – x is the set {0, 1} and of the 

expression x – 2 the set {2, 3, 4, ∙∙∙}. The intersection of these two sets is the 
empty set ∅ . Hence, this inequality has no meaning in N. 

A value of the variable x for which an inequality becomes a true proposition is 
called the solution of the inequality and all its solutions make a set which is 
called the set of solutions of the inequality.  

(a) Substituting for x the values 0, 1, 2, ∙∙∙, 6 the true propositions: 0 < 7, 1 < 7, 
2 < 7, ∙∙∙, 6 < 7 are obtained, while all others: 7 < 7, 8 < 7, 9 < 7, ∙∙∙ are false. The 
set of solutions of this inequality is {0, 1, 2, ∙∙∙, 6}. 

(b) The inequality 14 – x < 4 becomes a true propositions when x takes the 
values: 14, 13, 12, 11, (14 – 14 < 4, 14 – 13 < 4, 14 – 12 < 4, 14 – 11 < 4) and for 
all other values of x the corresponding propositions are false: 14 – 10 < 4, 14 – 9 
< 4, ∙∙∙, 14 – 0 < 4. The set of solutions of this inequality is {11, 12, 13, 14}. 

(c) When x takes the values 0 or 1, the corresponding inequalities: 1 – 0 > 2, 1 
– 1 > 2 are false propositions. The set of solutions of this inequality is the empty 
set ∅ , i.e. the inequality has no solution in N. 

(d) The inequality 1 – x > x – 2 has no meaning in N and we would go wrong 
saying that the set of its solutions is the empty set.  

Let us add to the end of this section that the symbols “=”, “<” and “>” are 
called relational signs and a jotting which contains one of this signs is called a 
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relation. Thus “relation” is a collective name for equations, equalities and in-
equalities. Two extra relational signs that are also often used are “≤” (less than or 
equal to) and “≥” (greater than or equal to) and a jotting which contains one of 
these signs is also called an inequality or less specifically, a relation. Let us also 
add that for a fixed natural number n, the sets of solutions of the inequalities x ≤ 
n and x ≥ n are the sets {0, 1, 2, ∙∙∙, n} and {n, n + 1, n + 2, ∙∙∙}, respectively. 

Comments. Our attention here has been concentrated on establishing of a 
precise terminology, but we have not followed a very formal exposition and the 
way how we formulate some similar facts often varies intentionally in some de-
tails. The English word “jotting” is exploited here probably beyond its usual 
meaning. The mere usage of this word emphasizes the syntactic character of 
concepts it refers to. As an example, when the meaning of “jotting” approx-
imates what is our intension of its usage could be Russian word “запис’” (see, 
for example, [4]).  

The usage of letters in primary arithmetic has for its goal the development of 
the idea of variable. To achieve this goal of early algebra, the task of solving 
world problems by means of equations has been in focus. But we find that such a 
task is fully recognized only when equations are formally solved and when they 
are a mighty technique for solving word problems. This means that we find that 
this task should be postponed to upper classes of elementary school and in pri-
mary school, the simplest types of equations and inequalities suffice to “move” a 
letter to take all values from sets of numbers.  

3. Derivation of Arithmetical Rules 

The letter x is usually used to denote a variable which occurs in an equation or 
an inequality. But when the variables are free and when they denote any natural 
number, then they are usually denoted by letters k, l, m, n, p from the middle of 
the alphabet. 

By doing long series of corresponding examples and as a result of learning, 
children in school form mental images and schemes which are basis upon which 
the concepts of numbers and arithmetic operations gain their permanent mean-
ing. And since the psychologists warn us to not identify inner representations 
with any visual realities, we will use set theoretic language to describe precisely 
the type of examples which are experienced establishing permanent meaning of 
these operations. Thus an additive scheme is a pair of disjoint sets together with 
their union. Let m and n be the numbers of elements of these sets and s the 
number of elements of their union. When m and n are given and s is to be 
found, we say that an addition task follows this scheme. But when s and m, 
(resp. n) are given and n, (resp. m) is to be found, we say that a subtraction task 
follows this scheme. Similarly, a multiplicative scheme is a family of m disjoint 
sets each having n elements. Let p be the number of elements of the union of 
these sets. When m and n are given and p is to be found, we say that a multipli-
cation task follows this scheme. But when p and m, (resp. n) are given and n, 
(resp. m) is to be found, we say that a division task follows this scheme.  
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Now we intend to derive several rules expressing properties of arithmetical 
operations in the system N, which, when carried over to the extended systems 
continue to hold true. When these rules are arranged and organized logically, 
selecting some of them as being basic and deducing from them all others, then 
these basic rules are called axioms of arithmetic. We are not going to do it and 
each of the rules that we will derive, we will consider being independent of all 
others. In order to make a distinction, here we use the verb “derive” and “de-
duce” is reserved for performing proofs.  

As the number does not depend on the nature of elements of sets, proceeding 
further, we use some models of boxes with marbles instead of using the general 
terms of set theory.  

(1) Suppose that a red box contains m marbles and a blue one n marbles. Al-
together, it is m + n marbles. Reversing the order, the blue box contains n mar-
bles and the red one m marbles. Altogether, it is n + m marbles. Equating two 
expressions denoting the same number of marbles, we get 

m n n m+ = + . 

In didactics of mathematics this equality is called the rule of interchange of 
the places of summands and in mathematics; it is called the commutative law for 
addition. 

(2) In a red, a blue and a green box there are k, m and n marbles, respectively. 
In the red and blue boxes there are k + m marbles and in the green one n mar-
bles. Altogether, it is (k + m) + n marbles. In the red box there are k marbles and 
in the blue and green ones m + n marbles. Altogether, it is k + (m + n) marbles. 
Equating two expressions for the same number of marbles, we get 

( ) ( )k m n k m n+ + = + +  

In didactics of mathematics, this relation is called the rule of association of 
summands and, in mathematics; it is called the associative law for addition.  

As these two ways of association produce one and the same value, it is not ne-
cessary to indicate them and we can write simply k + m + n. This jotting is called 
the sum of three numbers. Changing the order of taking the three boxes and as-
sociating in both ways, the following sequence of sums is obtained: (k+ m) + n, k 
+ (m + n), (k + n) + m, k + (n + m), (m + k) + n, m + (k + n), (m + n) + k, m + 
(n + k), (n + k) + m, n + (k + m), (n + m) + k, n + (m + k) and they all represent 
the total number of marbles and, hence, they, taken two by two, can be equated. 
Thus we derive the general rule of association of summands, summands can be 
associated in both ways and in an arbitrary order. 

Having four boxes containing k, l, m and n marbles associating them, two by 
two, in all possible ways each of the following jottings denote the total number of 
marbles: 

( )( ) ( )( ) ( ) ( )
( )( ) ( )( )

, , ,

,

k l m n k l m n k l m n

k l m n k l m n

+ + +  + + +  + + +

+ + +  + + +
 

As the number does not depend on the way how sets are grouped, all these 
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jottings denote one and the same number and, hence, they can be equated two 
by two. Not indicating the way of association we can write simply k + l + m + n.  

Proceeding inductively, given n natural numbers k1, k2, ∙∙∙, kn, their sum will 
not depend on the way how they are associated and, accordingly, it is denoted 
writing k1 + k2 + ∙∙∙ + kn. 

Let us note that an application of the commutative rule and the associative 
rule, the general rule of association is easily deduced (though here, we do not 
deduce but we derive). The reader should also recognize the rule of association 
as the way of reducing sums of three (or more) numbers to the sums of two 
numbers. Thereby, as a consequence, we need the addition table for two one-di- 
git numbers, but we do not need such a table for three (or more) numbers.  

(3) A box contains m red and blue marbles and n of them are blue. The num-
ber of red marbles is m – n. When k blue marbles are added, (removed) the total 
number of marbles is m + k, (m – k) and n + k, (n – k) of them are blue. This 
does not affect the number of red marbles which is (m + k) – (n + k), ((m – k) – 
(n – k)). Equating two expressions for the same number of red marbles, we get 

( ) ( ) ( ) ( ),m n m k n k m n m k n k− = + − +  − = − − −  

In order to ensure the meaning in N, in the case of the first of these equalities 
it has to be supposed that m ≥ n and, in addition, in the case of the second one, n 
≥ k is supposed. These relations are called the rules of preservation of the value 
of a difference. 

(4) A box contains k marbles which are red, blue or green. The number of 
blue and green marbles is m and n is the number of green ones. 
 

  k − m m − n n    

  red blue green    

 
Now we can express the number of red and green marbles in two ways: (i) k – 

(m – n) and (ii) (k – m) + n. Equating these two expressions, we obtain  

( ) ( )k m n k m n− − = − + . 

This relation is called the rule of subtracting a difference from a number. 
(5) A box contains k red, blue and green marbles. The number of blue marbles 

is m and n is the number of green marbles. 
 

 k – (m + n) m n  

 red blue green  

 
Expressing the number of red marbles in two ways: (i) k – (m + n) and (ii) (k 

– m) – n and equating these two expressions, we get 

( ) ( )k m n k m n− + = − −   

This relation is called the rule of subtracting a sum from a number. 
(6) In a box there are m red and n blue marbles. When k red and l blue mar-
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bles are removed, m – k red and n – l blue marbles remain. Altogether (m – k) + 
(n – l) marbles remain. There were m + n marbles and k + l of them were re-
moved. In the box, (m + n) – (k + l) marbles remain. Equating two expressions 
for the same number of marbles that remain, we get 

 ( ) ( ) ( ) ( )m k n l m n k l− + − = + − + . 

This relation is called the rule of adding differences or the rule of subtracting 
sums. 

(7) The fact that the relation m + n = s is true whenever one of the following 
two relations m = s – n, n = s – m is true and vice versa is called the rule of in-
terdependence of addition and subtraction.  

The fact that m = s – n is true whenever n = s – m is true and vice versa is called 
the rule of exchange of places of the subtrahend and the difference, which is ana-
logous to the rule of exchange of the places of summands in the case of addition. 

(8) A box contains m marbles, n of them are blue or yellow and k of them are 
green or yellow and l of them are yellow. The rest of them are red. 

____________n_____________ 
 

 red n − l—blue l—yellow k − l—green  

 
_____________k_____________ 

Equating two expressions for the number of red marbles, we get 

( ) ( ) ( ) ( )m n k l m k n l− − − = − − − . 

This relation is called the rule of subtracting differences. 
(9) A useful model for derivation of the properties of multiplication will be 

rectangular arrangements of small circles. The arrangement that follows is sup-
posed to have m rows, in each of them n circlets. 

O OO ∙∙∙ O 
O OO ∙∙∙ O 
O OO ∙∙∙ O 

∙∙∙ ∙∙∙ 
O OO ∙∙∙ O 

In each of m rows, there are n circlets. Altogether, it is mn circlets. In each of 
n columns, there are m circlets. Altogether, it is nm circlets. Equating two ex-
pressions for the total number of circlets, we obtain 

mn nm= .  

This is the rule of the interchange of places of factors or the commutative law 
for multiplication how it is called in mathematics.  

Let us recall that the multiplication sign is omitted in front of a variable and 
an open parenthesis.  

(10) In each of k rows of the following arrangement: 
O  O∙∙∙OOO∙∙∙O 
O O∙∙∙OOO∙∙∙O 
∙∙∙          ∙∙∙ 
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O  O∙∙∙OOO∙∙∙O 
there are m red and n blue circlets. Altogether, there are k(m + n) circlets. The 
number of red circlets is km and of the blue ones is kn. Therefore, it is km + kn 
circlets. Equating two expressions for the same number of circlets, we get 

( )k m n km kn+ = + .  

This relation is called the rule of multiplication of a sum and, in mathematics; 
it is called the distributive law. 

Considering the same arrangement and supposing that there are m circlets in 
each of k rows, n of which are blue. Equating two expressions for the total num-
ber of red circlets, the following relation is obtained 

( )k m n km kn− = − , 

which is called the rule of multiplication of differences. 
(11) In each of k packages there are m boxes, each box contains n marbles. In 

k packages there are m boxes, altogether, it is km boxes and the total number of 
marbles is (km)n. In each package there are m boxes and in each box n marbles. 
In a package there are mn marbles and the total number of marbles is k(mn). 
Equating two expressions for the total number of marbles, the equality 

( ) ( )km n k mn= , 

follows, which is called the rule of association of factors or, in mathematics, the 
associative law for multiplication. 

Since the products involving three numbers do not depend on the way of as-
sociation, they are simply denoted writing kmn and this expression is called the 
product of three numbers. Combining this rule with the rule of exchange of 
places of factors, it is easily seen that the products of three numbers do not de-
pend on the order in which these numbers are taken.  

(12) The fact that the relation mn = p is true, whenever one of the two rela-
tions p:m = n, p:n = m is true and vice versa, is called the rule of interdepen-
dence of multiplication and division. 

The fact that p:m = n is true whenever p:n = m is true and vice versa, is called 
the rule of interchange of places of the divisor and the quotient. 

(13) In a package of n boxes, there are m marbles, in each box the same num-
ber of marbles. In a box there is m:n marbles. In k packages of such boxes there 
are km marbles and kn boxes. The number of marbles in a box is (km):(kn). 
Equating two expressions for the same number of marbles in a box, the relation 

( ) ( ): :m n km kn=  

is obtained, which is called the rule of preservation of the quotient. 
Comments. We hope that the content of this section could direct the early al-

gebra towards the derivation of the rules and their exploitation for the transfor-
mation of expressions in N. Some of the rules that we have derived can be de-
duced from some others and a sequence of new relations can also be deduced.  

We suggest that the reader deduces, for example, the relation under (8) (ab-
breviating, we will refer to it, writing (8)), applying (7) and (6).  
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(Put (k – l) – (m – n)= x – y, then k – l = (m – n) + (x – y) = (m + x) – (n + y). 
From k = m + x and l = n + y, we get x = k – m and y = l – n). 

Putting l = 0 in the relation (6), we get 
(6’) ( ) ( )m n k m k n+ − = − + . 
Putting k = I + j in the relation (4) and applying (6’) and association of the 

summands, we get (I + j) – (m – n) = ((I + j) – m) + n = ((I – m) + j) + n = (I – 
m) + (j + n). We have obtained 

(14) ( ) ( ) ( ) ( )I j m n I m j n+ − − = − + + . 
Let us now deduce the relation 
(15) ( ) ( ) 2 2m n m n m n− + = − . 
Applying (10) and then (6), (5) and (6’), we have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )
( )( )

2 2

2 2 2 2

2 2.

m n m n m m n n m n m mn mn n

m mn mn n mn m mn n

mn mn m n

− + = − + − = − + −

= + − + = + − −

= − + −

 

For centuries, mathematicians had been applying these rules as a matter of 
routine and it was French priest and mathematician F.-J. Servois the first to 
propose the terms “commutative” and “distributive”, (in 1814). Let us remark 
that the acquaintance with the rules of arithmetic helps a primary teacher un-
derstand various arithmetical procedures (see, for example, [5]). Some of these 
rules and their variants adopted for classroom teaching should be the main sub-
ject of early algebra (multiple perspectives of which are discussed in [6], and 
particularly in [7]).  

4. Discovering Rules of Correspondence 

Whenever we have an expression with a variable: (a) 7 – x, (b) x – 4, (c) 3n, 
etc. 

We have a function (a correspondence) defined, taking for its domain of defi-
nition the domain of definition of that expression and in this context the set N is 
always taken as its codomain. Three above expressions define the following three 
functions 

(a) x → 7 – x, (b) x → x – 4, (c) n → 3n 
which have for their domains of definition the sets {0, 1, 2, ∙∙∙ , 7}, {4, 5, 6, ∙∙∙}, N, 
respectively.  

In some parts of television program, participants, when competing, solve puz-
zles like the following ones: Discover a certain law in the formation of the se-
quences: 

(a) 2, 4, 6, 8, ∙∙∙ (b) 1, 3, 5, 7, ∙∙∙  
and prolong them writing the term that follows. Such puzzles are too easy and 
they will be somewhat more demanding if, for example, their 99-th term is to be 
found. In the case of sequence under (a), the dependence of the place of a term 
and its value is: in the place 1, the term is 2 or 2 × 1, in the place 2, the term is 4 
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or 2 × 2, in the place 3, the term is 6 or 2 × 3 and in the place 4, the term is 8 or 2 
× 4 and in the case of the sequence under (b), the terms are 1 less than the cor-
responding ones under (a). Hence, they can be written as: 2 × 1 – 1, 2 × 2 – 1, 2 
× 3 – 1, 2 × 4 – 1, ∙∙∙ Thus, the terms in the place 99 are: (a) 2 × 99, (= 198), (b) 2 
× 99 – 1, (= 197). 

A solution of these puzzles which would be more general and more useful is 
when we find that in the place n, the terms are: (a) 2n, (b) 2n – 1 and when the 
rules of correspondence are (a) n → 2n, (b) n → 2n – 1. 

Discovering of the rules of correspondence are assignments where the variable 
n is used in the way which demonstrates its right meaning of being a represent 
of arbitrary natural numbers. This type of exercises is very instructive and they 
should not be turned into brainteasers. To make the discovering of rules easier, 
groups of similar exercises should always be given. For example: 

(a) Discover the rule of correspondence of the following sequences: 
(i) 5, 10, 15, 20, ∙∙∙, (ii)3, 8, 13, 18, ∙∙∙, (iii) 1, 6, 11, 16, ∙∙∙, 
(iv) 7, 12, 17, 22, ∙∙∙, (v) 9, 14, 19, 24, ∙∙∙. 
((i) n → 5n, (ii) n → 5n – 2, (iii) n → 5n – 4, (iv) n → 5n + 2, (v) n → 5n + 4). 
(b) Discover the rule of correspondence of the sequence: 
(i) 1, 4, 9, 16, ∙∙∙, (ii) 0, 3, 8, 15, ∙∙∙, (iii) 2, 5, 10, 15, ∙∙∙ 
((i) n → n2, (ii) n → n2 – 1. (iii) n → n2 + 1). 
(c) Given rule of correspondence n → n2 – n, write first five terms of the se-

quence and, then, discover the rule of correspondence of the sequences: 
(i) 1, 3, 7, 13, 21, ∙∙∙, (ii) 3, 5, 9, 15, 23, ∙∙∙, (iii) 5, 7, 11, 17, 25, ∙∙∙ 
(0, 2, 6, 12, 20, ∙∙∙, (i) n → n2 – n + 1, (ii) n → n2 – n + 3, (iii) n → n2 – n + 5). 

Etc. 
Looking at the following picture: 

 

            o o o O o 

       o o o o  o o o O o 

   o o o  o o o o  o o o O o 

o o  o o o  o o o o  o o o O o 

o o  o o o  o o o o  o o o O o 

 
we see four square arrangements having 2 × 2, 3 × 3, 4 × 4, 5 × 5 circlets .When the 
circlets of these arrangements are grouped in subsets separated by “right angles”, 
their numbers are 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, 1 + 3 + 5 + 7 + 9. Equating ex-
pressions of circlets for each of these arrangements, we obtain the equalities 

1 + 3 = 2 × 2, 1 + 3 + 5 = 3 × 3, 1 + 3 + 5 + 7 = 4 × 4, 1+ 3 + 5 + 7 + 9 = 5 × 5. 
This procedure can be prolonged to obtain the equality for the sums of con-

secutive odd numbers starting with 1. 
It was Pythagoras who first discovered these relations and we, using the varia-

ble n, are going to derive the general formula for this type of sums. Let us sup-
pose that the following picture:  
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o o o o ∙∙∙ o 

o o o o ∙∙∙ o 

o o o o ∙∙∙ o 

o o o o ∙∙∙ o 

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ 

o o o o ∙∙∙ o 

 
represents a square arrangement of n circlets in each of its rows. In the 
arrangement, there are n × n circlets. But looking at the circlets separated in 
subsets by “right angles”, the last subset has n circlets arranged horizontally and 
n − 1 more in the vertical column. Altogether, it is 2n − 1 circlets. Now the total 
number of circlets can also be written as the sum 1 3 5 2 1n+ + + + − . Equat-
ing this sum with n × n, we obtain the formula for the sum of n consecutive odd 
numbers starting with 1 

21 2 3 5 2 1n n+ + + + + − = . 

As the general form of an even number is 2n and of an odd one 2n – 1, we can 
rewrite the above formula as follows 

22 1 1 2 2 1 2 3 1 2 1n n× − + × − + × − + + − =  

or 

( ) 22 1 2 3 n n n+ + + + − = . 

Thus, we have obtained the formula 

( )21 2 3 : 2n n n+ + + + = + , 

for the sum of n consecutive natural numbers starting with 1. 
Now we will show how the above formula is derived directly, using the fol-

lowing square arrangement, having n + 1 rows (and n + 1 columns): 
 

 
 

On the left side of the diagonal (red circlets) there are 1 2 3 n+ + + +  black 
circlets and that the same number of black circlets is on the right side of the di-
agonal. Altogether, it is ( )2 1 2 3 n+ + + +  black circlets. Looking differently, 
in each of n + 1 rows, there are n black circlets. Altogether, it is n(n + 1) black 
circlets. Equating two expressions for the total number of black circlets, we get 

( ) ( )2 1 2 3 1n n n+ + + + = +  
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or 

( )( )1 2 3 1 : 2n n n+ + + + = + . 

We suggest to the reader to use this formula and to deduce:  
(a) ( )2 4 6 2 1n n n+ + + + = + , 21 3 5 2 1n n+ + + + − = . 
(b) The formula for the sum of n consecutive numbers divisible by k: k + 2k + 

3k + ∙∙∙ + nk. 
(c) The formula for the sum of all consecutive natural numbers from m to m 

+ k. 
Final Remarks. The meaning of natural numbers and operations with them is 

based on the phenomenology which consists of sets at the sensory level and ma-
nipulation with them. When extending this system of numbers the meaning has 
always to be in foreground. Thus, when the system of positive rational numbers 
is concerned, the measuring of quantities with a common unite of measure is a 
basis of the meaning. In the case of integers such a basis are the scales having se-
ries of marks above and below zero (thermometers, tables indicating the level of 
water in a river, etc.). In the case of real numbers the intuitive basis is Descartes’ 
geometrical model, a line with a point fixed to be the origin and a segment fixed 
to be the unit segment and all other segments taken to be conveyors of meaning 
of those numbers. The rules derived in Section 3 of this paper serve for the veri-
fication of the rules in the extended systems. For example, when addition in Q+ 
is defined, then 

( ) ( ),k n l n k l n l n k n l k n+ = + + = +  

and being k + l = l + k (in N), the commutative law for addition also holds true 
in Q+ etc. 

Children in primary school should develop up to some degree the skills of 
transforming (simple) numerical and literal expressions. Teachers should be 
aware of these tasks of early algebra and they should consider them more im-
portant than the calculating skills. We hope that the content of this paper could 
help them realize the significance of these teaching requirements.  

5. Conclusion 

At the end, let us say that we hope this paper shall be just the first step which can 
inspire the researchers to work on the formation of a genre of mathematical li-
terature aimed at the improvement of teachers’ education. 
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