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Abstract 
This paper is concerned with the optimal distributed control problem go-
verned by b-equation. We firstly investigate the existence and uniqueness of 
weak solution for the controlled system with appropriate initial value and 
boundary condition. By contrasting with our previous result, the proof with-
out considering viscous coefficient is a big improvement. Secondly, based on 
the well-posedness result, we find a unique optimal control for the controlled 
system with the quadratic cost functional. Moreover, by means of the optimal 
control theory, we obtain the sufficient and necessary optimality condition of 
an optimal control, which is another major novelty of this paper. Finally, we 
also present the optimality conditions corresponding to two physical mea-
ningful distributive observation cases. 
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1. Introduction 

Recently, Escher and Yin [1] studied the following nonlinear dispersive equation 
(b-equation): 

( ) ( )
( ) ( )

2 2
0

0

1 , 0, ,

0, , ,
t xxt x x xxx x xx xxxu u c u b uu u bu u uu t x R

u x u x x R

α α − + + + + Γ = + > ∈


= ∈
 (1.1) 

where 0c , b , Γ  and α  are arbitrary real constants. Denoting 2
xxy u uα= − , 

we can rewrite b-equation in the following form: 

( ) ( )
0

0

0, 0, ,
0, , .

t x x x xxxy c u uy bu y u t x R
u x u x x R
+ + + + Γ = > ∈

 = ∈
            (1.2) 

Equation (1.2) can be derived as a family of asymptotically equivalent shallow 
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water wave equations that emerge at quadratic order accuracy for 1b∀ ≠ −  by 
an appropriate Kodama transformation [2] [3]. For the case 1b = − , the cor-
responding Kodama transformation is singular and the asymptotic ordering is 
violated [2] [3]. The solutions of the b-Equation (1.2) with 0 0c = Γ =  were 
studied numerically for various values of b in [4] [5], where b was taken as a bi-
furcation parameter. The symmetry condition necessary for integrability of the 
b-Equation (1.2) was investigated in [6]. The Korteweg-de Vries (KdV) equation, 
the Camassa-Holm (CH) equation and the Degasperis-Procesi (DP) equation are 
the only three integrable equations in the b-Equation (1.2), which was shown in 
[7] [8] by using Painleve analysis. The b-equation with 0 0c = Γ =  admits 
peaked solutions for b R∀ ∈  [4] [5] [7]. The peaked solutions replicate a fea-
ture that is characteristic for the waves of great height: waves of the largest am-
plitude that are exact solutions of the governing equations for water waves [9] 
[10] [11]. 

If 0α =  and 2b = , then b-Equation (1.1) becomes the well-known KdV 
equation 

0 3 0, 0, ,t x x xxxu c u uu u t x R+ + + Γ = > ∈              (1.3) 

which describes the unidirectional propagation of waves at the free surface of 
shallow water under the influence of gravity [12]. In this model, ( ),u t x  re- 
presents the wave’s height above a flat bottom; x is proportional to distance in 
the direction of propagation and t is proportional to the elapsed time. The KdV 
equation is completely integrable, and its solitary waves are solitons [13]. The 
Cauchy problem of the KdV equation has been studied by many authors [14] 
[15] [16] and a satisfactory local or global (in time) existence theory is now 
available (for example, in [15] [16]). The solution of the KdV equation is global 
for ( )2

0u L S∈  [15] [16]. It is also observed that the KdV equation does not 
accommodate wave breaking (by wave breaking we mean the phenomenon that 
a wave remains bounded but its slope becomes unbounded in finite time) [17]. 

For 0Γ =  and 2b = , b-Equation (1.1) becomes the CH equation 
2 2 2

0 3 2 , 0, ,t xxt x x x xx xxxu u c u uu u u uu t x Rα α α− + + = + > ∈       (1.4) 

modelling the unidirectional propagation of shallow water waves over a flat bot-
tom. Again ( ),u t x  stands for the fluid velocity at time t in the spatial x direc-
tion and 0c  is a nonnegative parameter related to the critical shallow water 
speed [18]. The CH equation is derived physically by approximating directly the 
Hamiltonian for Euler’s equations in the shallow water regime (it also appears in 
the context of hereditary symmetries studied by Fuchssteiner and Fokas [19]). 
Recently, the alternative derivations of the CH equation as a model for water 
waves, respectively, as the equation for geodesic flow on the diffeomorphism 
group of the circle were presented in [20] and in [21]. For the physical deriva-
tion, we refer to the work in [22]. The geometric interpretation is important be-
cause it can be used to prove that the least action principle holds for the CH eq-
uation [23]. It is worth pointing out that the fundamental aspect of the CH equ-
ation, the fact that it is a completely integrable system, was shown in [24] [25] 
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for the periodic case and in [26] [27] for the non-periodic case. Its solitary waves 
are smooth if 0 0c >  and peaked in the limiting case 0 0c =  [28]. They are or-
bitally stable and interact like solitons [29] [30] and the explicit interaction of 
the peaked solitons is given in [14]. 

Since the CH equation is structurally very rich, many physicists and mathe-
maticians pay great attention to it. Local well-posedness for the initial datum 

( )0
su H I∈  with 3 2s >  was proved by several authors, as in [31] [32] [33] 

[34]. For the initial data with lower regularity, we refer to Molinet’s paper [35] 
and also the paper [36]. Moreover, wave breaking for a large class of initial data 
has been established in [31] [33] [37] [38]. However, in [39], global existence of 
weak solutions was proved but uniqueness was obtained only under a prior as-
sumption that is known to hold only for the initial data ( ) 1

0u x H∈  such that 

0 0,xxu u−  is a sign-definite Radon measure (under this condition, global exis-
tence and uniqueness was shown in [40]). Also it is worth noting that CH equa-
tion has global conservative solutions in ( )1H R  [36] [41] [42] and global dis-
sipative solutions (with energy being lost when wave breaking occurs) in 

( )1H R  [43] [44]. In [45], the authors showed the infinite propagation speed for 
the CH equation in the sense that a strong solution of the Cauchy problem with 
compact initial profile cannot be compactly supported at any later time unless it 
is the zero solution, which is an improvement of the previous results in this di-
rection obtained in [46]. 

For 0 0c = Γ =  and 3b =  in b-Equation (1.1), then we find the DP equation 
of the form [8] 

2 2 24 3 , 0, .t xxt x x xx xxxu u uu u u uu t x Rα α α− + = + > ∈        (1.5) 

Degasperis, Holm and Hone [47] proved the formal integrability of the DP 
Equation (1.5) by constructing a Lax pair. They also showed that DP equation 
has a bi-Hamiltonian structure and an infinite sequence of conserved quantities, 
and that it admits exact peakon solutions which are analogous to the CH pea-
kons. Peakons for either b = 2 or b = 3 are true solitons that interact via elastic 
collisions under CH dynamics, or DP dynamics, respectively. Recently, Lund-
mark [48] showed that the DP equation has not only peaked solitons, but also 
shock peakons of the form 

( ) ( )1, sgn e , 0.xu t x x k
t k

−= − >
+

 

The DP equation can be regarded as a model for nonlinear shallow water dy-
namics and its asymptotic accuracy is the same as for the CH shallow water equ-
ation [2] [3] [22]. An inverse scattering approach for computing n-peakon solu-
tions to the DP equation was presented in [49]. Its traveling wave solutions were 
investigated in [50]. 

The Cauchy problem for the DP equation has been studied widely. Local 
well-posedness of this equation is established in [51] [52] for the initial data 

( )0
su H S∈  with 3 2s > . Similar to the CH equation, the DP equation has al-

so global strong solutions [51] [53] [54] [55] as well as finite time blow-up solu-
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tions [51] [53] [54] [56] [57]. On the other hand, it has global weak solutions in 
( )1H S  [53] [56] [58]. Analogous to the case of the CH equation, Henry [59] 

and Mustafa [60] showed that smooth solutions to the DP equation have infinite 
speed of propagation. Coclite and Karlsen [61] also obtained global existence 
results for entropy weak solutions belonging to the class of ( ) ( )1L R BV R∩  
and the class of ( ) ( )2 4L R L R∩ . 

Although the DP equation is similar to the CH equation in several aspects, 
these two equations are truly different. One of the novel features of the DP equa-
tion different from the CH equation is that it has not only peakon solutions [47] 
and periodic peakon solutions [58], but also shock peakons [48] [61] and the pe-
riodic shock waves [56]. 

Despite the abundant literature on the above three special cases of the b-equ- 
ation, there are few results on the b-equation. Recently, some authors devoted to 
studying the Cauchy problem of the b-equation. Since the conservation laws of 
the b-equation are much weaker, there are only a few kinds of global or blow-up 
results. 

In [1], Escher and Yin studied b-equation on the line for 0α >  and 

0 , ,c b RΓ∈ . They established the local well-posedness, described the precise 
blow-up scenario, and proved that the equation has strong solutions which exist 
globally in time and blow up in finite time. Moreover, the authors showed the 
uniqueness and existence of global weak solutions to b-equation, provided the 
initial data satisfy certain sign conditions. The similar discussions for b-equation 
on the circle can be found in [62]. The author expanded the result of corres-
ponding solutions blow-up in finite time where conditions on the initial data 
and the bifurcation parameter 3b ≥  in [2] to the case 2b ≥  [63]. In [64], the 
authors established the local well-posedness for the nonuniform weakly dissipa-
tive b-equation which includes both the weakly dissipative CH equation and the 
weakly dissipative DP equation as its special cases. They studied the blow-up 
phenomena and the long time behavior of the solutions. 

Recently Gui, Liu, and Tian [65] considered b-Equation (1.1) with 0 0c = Γ =  
on the real line. They proved that the equation is locally well-posed in the Sobo-
lev space ( )sH R  for 3 2s > . Moreover, they give the precise blow-up scena-
rio of strong solution of the equation with certain initial data. In [66], Zhou es-
tablished blow-up results for b-equation with 0 0, 1c α= Γ = =  under various 
classes of initial data. He also proved that the solutions with compact support 
initial data do not have compact support. In the periodic case of b-equation with 

0 0c = Γ = , sufficient conditions on the initial data were obtained in [67] to 
guarantee the finite time blow-up and global existence. The local well-posedness 
of b-equation with 0 0, 1c α= Γ = =  in the critical Besov space 3 2

2,1B  was stu-
died in [68]. They showed that if a weaker ,

q
p rB -topology is used, the solution 

map becomes Hölder continuous. Moreover, they showed that the dependence 
on initial data is optimal in 3 2

2,1B  in the sense that the solution map is conti-
nuous but not uniformly continuous. They also obtained the periodic peaked 
solutions and applied them to obtain the ill-posedness in 3 2

2,B ∞ . There are some 
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other papers concerned with b-equation of 0 0c = Γ =  and we will not attempt 
to mention all here. 

In the past decades, the optimal control of distributed parameter systems has 
become much more active in academic field. Especially, the optimal control of 
nonlinear solitary wave equation lies in the front of the intersection of mathe-
matics, engineering and computer science and so on. Recently, people have tak-
en a considerable interest in realizing the operation mechanism of prototype 
tsunami in the laboratory and in looking for a really efficient control mechanism 
to generate exact long water waves in the man-made pool. The CH equation at-
tracted much more attention also in the context of the relevance of integrable 
equations to the modelling of tsunami waves [69] [70] [71]. Naturally, an opti-
mization problem needs to be considered in this shallow water wave equation. It 
seems to the author that the study of nonlinear shallow water equation from the 
point of view of control theory was an open field. There are only some research 
results reported. For instance, Zhang studied the control problems for two non-
linear dispersive wave equations--the KdV equation and the Benjamin-Bona- 
Mahony (BBM) equation. Moreover, for the BBM equation, he showed that the 
wave-maker, by choosing a proper boundary value, can make a wave to ap-
proach a given state as closely as desired as long as the given state is small in 
some sense [72]. Glass investigated the problem of exact controllability and 
asymptotic stabilization of the CH equation on the circle, by means of a distri-
buted control. The results are global, and in particular the control prevents the 
solution from blowing up [73]. The distributed optimal control problems for the 
viscous CH equation, the viscous DP equation, the viscous Dullin-Gottwald- 
Holm (DGH) equation were considered by our research team respectively. We 
proved the existence and uniqueness of weak solution in short interval. Further, 
we employed the quadratic cost objective functional to be minimized within an 
admissible control set with the distributive observation and discussed the exis-
tence of optimal control which minimizes the quadratic cost functional [74] [75] 
[76]. Subsequently, by the Dubovitskii-Milyutin functional analytical approach, 
Sun considered the optimal distributed control problem of the viscous genera-
lized CH equation and viscous DGH equation respectively and obtained the 
Pontryagin maximum principle of the systems studied. The necessary optimality 
condition is established for an optimal control problem in fixed final horizon 
case [77] [78]. In [79] [80], recently, our research team studied optimal distri-
buted control of the Fornberg-Whitham equation and the θ-equation which in-
volve complex nonlinear items respectively. We clarified the well-posedness of 
weak solution without relying on viscous coefficient, which is major improve-
ment in comparison with our previous results. Utilizing the Dubovitskii- 
Milyutin functional analytical approach, we also proved the necessary optimality 
condition for the control systems in fixed final horizon case. Hwang studied the 
quadratic cost optimal control problems for the viscous DGH equation. He de-
rived the necessary optimality conditions of optimal controls, corresponding to 
physically meaningful distributive observations. By making use of the second 
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order Gateaux differentiability of solution mapping on control variables, he also 
proved the local uniqueness of optimal control [81]. 

Inspired by the papers mentioned above, in present work, we investigate the 
b-equation from the point of view of distributed control. More precisely, we 
consider the following governing equation 

( )
( ) ( ) [ ]
( ) ( ) ( ) ( )

0

0

1 ,

, , , , 0, ,

0, 0, 0, ,

t xxt x x xxx x xx xxxu u c u b uu u bu u uu Bv

u t x L u t x x R t T

y x y x u x u x V

− + + + + Γ − − =


+ = ∀ ∈ ∀ ∈
 = = − ∈

      (1.6) 

where Bv  is the external control term which is L-periodic in spatial x, adv∈   
is a control and B be an operator called a controller. The explicit formulation of 
the control problem will be provided after the investigation of well-posedness of 
the state equation. 

We mainly consider the two following problems: 
• for the nonlinear control system governed by the b-equation with quadratic 

cost functional ( ) ( ) ( )2
; , ,dI v Cu v t x z Nv v= − +


, can one find adv∗ ∈  

such that ( ) ( )inf
adv

I v I v∗

∀ ∈
=


 and whether this v∗  is unique? 

• if one finds the unique optimal control adv∗ ∈  for the above control 
problem, how can we characterize this optimal control? 

The plan of the remaining sections can be summarized as follows. In Section 2, 
we study the initial-boundary problem of the b-equation with forcing function 
in a special space ( )0,T . Adopting the Faedo-Galerkin method and utilizing 
a uniformly prior estimate of the approximate solution, we prove the existence 
and uniqueness of weak solution under the definition introduced in the paper. 
For general b R∈ , the proof without relying on viscous coefficient is a major 
improvement in comparison with our results in [74] [75] [76] and other discus-
sions in [77] [78] [81]. In Section 3, based on the well-posedness result, we give 
the formulation of the quadratic cost optimal control problem for the b-equation 
and investigate the existence and uniqueness of the optimal solution. In Section 
4, by the method of control theory (for more detailed discussion, we refer read-
ers to book [82]), we establish the sufficient and necessary optimality condition 
of an optimal control in fixed final horizon case. In order to obtain this result, 
we also prove the Gateaux differentiability of the state variable ( ); ,u v t x  which 
is used to define the associate adjoint systems. Comparing with the research in 
our previous works [74] [75] [76] and the related works [77] [78] [79] [80] [81], 
the sufficient and necessary optimality condition of an optimal control which is 
not limited to the necessary condition is another novelty in this paper. At last, in 
Section 5, we give the specific sufficient and necessary optimality condition of 
optimal control v∗  for two physical meaningful distributed observation cases 
employing the associate adjoint systems. 

2. The Existence and Uniqueness of Weak Solution 

Without loss of generality, we assume [ ]0, LΩ = . Denote the usual Hilbert  
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space ( )2H L= Ω  equipped with the norm ( )
1

2 2dHu u x
Ω

= ∫ , and the inner  

product in H is denoted by ( ) 2, H Hu u u= . Let ( ) ( ),2s sH WΩ = Ω , s N∈  be 
the integral exponent Sobolev spaces. By using the Poincare’s inequality in 

( )sH Ω , we can define norm ( )

1
22

0
s

s
x xH H Hs

α

α
ξ ξ ξ

Ω
≤ ≤

 
= ∂ ≅ ∂  
 
∑ , where  

( ) ( )0s s
x x Lξ ξ∂ = ∂  and 0,1, 2,3,s = ⋅ ⋅ ⋅ . Especially, taking 1m = , we get the Hil-

bert space ( )1V H= Ω  supplied with the inner product ( ) ( ), ,x xV H
ϕ ψ ϕ ψ= , 

where , Vϕ ψ∀ ∈ . Let us denote that ( )1V H∗ −= Ω  and ( )2H L∗ = Ω  are the 
dual spaces of V and H respectively. Then we can find that V embeds into H and 
H ∗  embeds into V ∗ , where each embedding is dense and corresponding injec-
tions are continuous. 

For convenience, we shall consider the following initial-boundary value prob-
lem for Equation (1.1) 

( ) ( )
( ) ( ) [ ]
( )

0

0

1 , ,

, , , , 0, ,

0, ( ), ,

t xxt x x xxx x xx xxxu u c u b uu u bu u uu f t x

u t x L u t x x R t T

u x u x x R

− + + + + Γ − − =


+ = ∀ ∈ ∀ ∈
 = ∀ ∈

    (2.1) 

where ( ),f t x  is forcing item which is L-periodic in spatial x. 
With ( ) ( ) ( ), , ,xxy t x u t x u t x= −  and ( ) ( ) ( )0 0, 0,xxy x u x u x= − , Equation 

(2.1) takes the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ]
( )

0

0

, , , , , , , , ,

, , , , 0, ,

0, ( ), .

t x x x xxxy t x c u t x u t x y t x bu t x y t x u t x f t x

u t x L u t x x R t T

y x y x x R

+ + + + Γ =


+ = ∀ ∈ ∀ ∈
 = ∀ ∈

(2.2) 

In order to study the weak solution of Equation (2.2), we introduce the fol-
lowing two special spaces firstly. 

( )0,T  is defined by ( ) ( ) ( ){ }2 20, 0, ; , 0, ;tT L T V L T Vξ ξ ξ ∗= ∈ ∈ , 

which is equipped with the norm ( ) ( ) ( )2 2

1
222

0, 0, ; 0, ;tT L T V L T Vξ ξ ξ ∗
 = + 
 

. 

( )0,T  is defined by ( ) ( )( ) ( ){ }2 3 20, 0, ; , 0, ;tT L T H L T Vξ ξ ξ= ∈ Ω ∈  

endowed with the norm ( ) ( )( ) ( )2 3 2

1
222

0, 0, ; 0, ;tT L T H L T Vξ ξ ξ
Ω

 = + 
 

. 

It is easy to verify that the spaces ( )0,T  and ( )0,T  are both Hilbert 
spaces. 

Definition 2.1. A function ( ) ( ), 0,u t x T∈  is said to be a weak solution of 
Equation (2.2), if ( ) ( ) ( ) ( ), , , 0,xxy t x u t x u t x T= − ∈  satisfies 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) [ ]
( ) ( )

0

0

, , , , , , ,

, , , , , , , ,

, , , , 0, ,

0, ,

t x xH H H

x xxxH H H

y t c u t u t y t

bu t y t u t f t

u t x L u t x x R t T

y x y x V

ϕ ϕ ϕ

ϕ ϕ ϕ

 ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + Γ ⋅ ⋅ = ⋅ ⋅


+ = ∀ ∈ ∀ ∈


= ∈

   (2.3) 
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for ( ) Hϕ∀ ⋅ ∈  in the sense of ( )0,T′ . 
From now on, when we speak of a solution of Equation (2.2), we shall always 

mean the weak solution in the sense of Definition 2.1 unless noted otherwise. 
We set an unbounded linear self-adjoint operator xxAu u= − , where u∀ ∈

( ) ( ) ( ){ }, ,D A H u u t x L u t x= ∩ + = . Then the set of all linearly independent  
eigenvectors { }j j N

ω +∈
 of A with the eigenvalues { }j j N

λ +
∗

∈
, i.e., j j jAω λ ω∗= ,  

1 20 jλ λ λ∗ ∗ ∗< ≤ ≤ ⋅ ⋅ ⋅ ≤ → ∞  as j →∞ , 
is an orthonormal basis of H. 

Furthermore, we can define the powers sA  of A for s N +∈ , where the 
space ( )D sA  is a Hilbert space which is endowed with the norm s

H
A ⋅ . It 

can be found that the following expression holds 

( ) 21 ss s s
j x j j jA ω ω λ ω= − ∂ = , 

where { }j j N
ω +∈

 are eigenvectors of sA  and { }sj j N
λ +∈

 are eigenvalues. 

Definition 2.2. A function ( ) ( ) ( ) [ ]( )1

1
, 0, ;

m

m jm j m
j

u t x a t x C T Sω
=

= ∈∑  is called 

an approximate solution to Equation (2.2), if it satisfies 

( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( ) [ ]

( ) ( )

, 0 , ,

, ,

0
1

, , , , , , ,

, , , , , , , ,

, , , , 0, ,

0, , as ,

m t j m x j m m x jH H H

m x m j m xxx j jH H H

m m

m

m jm j
j

y t x c u t x u t x y t x

bu t x y t x u t x f t x

u t x L u t x x R t T

y x y x V m

ω ω ω

ω ω ω

χ ω
=

 + +

+ + Γ =

 + = ∀ ∈ ∀ ∈



= → ∈ →∞


∑

  (2.4) 

where ( ) ( ) ( ),, , ,m m m xxy t x u t x u t x= − , ( ) ( ) ( ){ }1 2, , ,m mS span x x xω ω ω= �  

and 

( ) [ ]( )1 0, ;jma t C T R∈ . 

Lemma 2.1. Let ( ) ( ) ( ) ( ), , , 0,xxy t x u t x u t x T= − ∈  and ( ),u t x  satisfies 
the boundary conditions of Equation (2.1). Then, we get 

( ) ( ) ( ) ( )0, 0,
, ,

T T
u t x C y t x≤

 
, 

where 0C >  is a constant. 
The proof of Lemma 2.1 can be referred to our article [79] [80]. 
Theorem 2.1. Assume that ( ) ( )2, 0, ;f t x L T V∈  and ( )0y x V∈ . Then, 

Equation (2.2) exhibits a unique weak solution ( ) ( ), 0,u t x T∈ . 
Proof: Multiplying both sides of the first equation in Equation (2.4) by 
( )jma t  and summing up over j from 1 to m, we have 

( ) ( ) ( ) ( )
( ) ( )

, 0 , , ,

,

, , , ,

, , .

m t m m x m m m x m m x m mH H H H

m xxx m m HH

y u c u u u y u bu y u

u u f u

+ + +

+ Γ =
 

This gives 

( ) ( ) ( )2 2 3
,

d 2 d 2 ,
d m m m x mH V H

u u b u x f u
t Ω

+ = − +∫ .         (2.5) 
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Because ( ) ( )2, 0, ;f t x L T V∈  is a forcing function, we can assume that 

1Vf M≤ , where 1 0M >  is constant. 
It then derives from Equation (2.5) that 

( ) ( )2
2 2 2 22 2

2 1 1
d 2
d m m m m mH V H V Hu u b u u M u

t
λ λ

Ω
+ ≤ − + + ,    (2.6) 

where 0, 1, 2i iλ > =  are embedding constants. In order to estimate the term 
2 2

m mH Vu u+ , we should estimate the term { }m m N
u +∈

 in ( )2H Ω . 
Multiplying both sides of the first equation in Equation (2.4) by ( )j jma tλ∗  

and summing up over j from 1 to m, we get 

( ) ( ) ( )
( ) ( ) ( )

, , 0 , , , ,

, , , , ,

, , ,

, , , .

m t m xx m x m xx m m x m xxH H H

m x m m xx m xxx m xx m xxH H H

y u c u u u y u

bu y u u u f u

− + − + −

+ − + Γ − = −
 

The above equation implies that 

( )( ) ( ) ( )

( )
2

2 2 3 2
, , ,

,

d 1 d 2 1 d
d

2 , .

m m m x m x m xxV H

m xx H

u u b u x b u u x
t

f u

Ω Ω Ω
+ + + + −

= −

∫ ∫     (2.7) 

By the use of the Sobolev embedding theorem, we can estimate the following 
items as 

( ) ( )2
2 23

, , 21 d 1 1m x m x m m mV H VL
b u x b u u b u uλ∞ ΩΩ

− + ≤ + ≤ +∫ ; 

( ) ( ) ( )2 2
2 32

, , , 22 1 d 2 1 2 1m x m xx m x m mH HL
b u u x b u u b uλ∞ Ω ΩΩ

− − ≤ − ≤ −∫  

and 

( ) ( ) ( )2 2, 1 12 , 2 2m xx m mH H HH
f u f u M uλ

Ω Ω
− ≤ ≤ , 

where 0, 1, 2i iλ > =  are embedding constants. 
Therefore, we can deduce from Equation (2.7) that 

( )( )
( ) ( ) ( )

( )

2

2 2 2

2

2 2

2 3
2 2 1 1

3
22 2 1 1

1 2
1 2

d
d

1 2 1 2

2 ,

m mV H

m m m mH V H H

m mV H

u u
t
b u u b u M u

Mu u

λ λ λ

λβ λ
β λ

Ω

Ω Ω Ω

Ω

+

≤ + + − +

 
≤ + + 

 

 

where 

{ }1 max 1 , 2 1b bβ = + − .                   (2.8) 

From inequality (2.8), we can obtain that 

( )

( ) ( )

( ) ( )

2

2

2

2 2 1 1

2 2 1 2
2

2 21 2 1 1

1 2

21 1
2

1 2

20, 0,

21 0, 0,
2

2
,

m mV H

m mV H

m mV H

Mu x u x
u u

Mt u x u x

M M

λ
β λ

β λ λ
β λ

λ
β λ

Ω

+ +
+ ≤

 
− + + 

  

− �

 (2.9) 
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where [ ]0,t T∀ ∈ , 
( ) ( )( )2

2 22 2
1 2 1 1 2 1

2

0, 0, 2m mV H

T
u x u x Mβ λ β λ λ

<
+ +

 and 

2 0M >  is a constant. 

Therefore, combining the boundedness of the sequence { }m m N
u +∈

 in 
( )2H Ω  with the inequality (2.6), we can derive that 

( ) ( )( ) ( )2 22 2 2 2
1 1 2

2 2 2
1 1 3

0, 0, exp

,

m m m mH V H V
u u u x u x M t

M M

λ β

λ

+ ≤ + +

− �
     (2.10) 

where [ ]0,t T∀ ∈ , { }2 2 2max 2 ,1b Mβ λ= −  and 3M  is some positive con-
stant. 

Similarly, multiplying both sides of the first equation in Equation (2.4) by 

( ) ( )
2

j jma tλ∗  and summing up over j from 1 to m, we can get 

( ) ( ) ( )
( ) ( ) ( )

, , 0 , , , ,

, , , , ,

, , ,

, , , .

m t m xxxx m x m xxxx m m x m xxxxH H H

m x m m xxxx m xxx m xxxx m xxxxH H

y u c u u u y u

bu y u u u f u

+ +

+ + Γ =
 

By integration by parts in the above equation, we can deduce that 

( ) ( )( ) ( ) ( )

( )

2 3
2 2 2 2

, , , ,

,

d 5 1 d 2 1 d
d

2 , .

m m m x m xx m x m xxxH H

m xxxx H

u u b u u x b u u x
t

f u

Ω Ω Ω Ω
+ + + + +

=

∫ ∫
(2.11) 

Using the Sobolev embedding theorem, inequality (2.9) and boundary condi-
tions of Equation (2.4), we can estimate the following each item 

( ) ( )

( )

2

2

22
, , ,

3
2

3
2 2

5 1 d 5 1

5 1

5 1 ;

m x m xx m x m HL

m H

b u u x b u u

b u

b M

λ

λ

∞ ΩΩ

Ω

− + ≤ +

≤ +

≤ +

∫
 

( ) ( )

( )

3

3

22
, , ,

2
2 2

2 1 d 2 1

2 1

m x m xxx m x m HL

m H

b u u x b u u

b M uλ

∞ ΩΩ

Ω

− + ≤ +

≤ +

∫
 

and 

( ) ( ) ( ) ( )3 3
22

, , 12 , 2 , 2m xxxx x m xxx m mV H HH H
f u f u f u M u

Ω Ω
≤ − ≤ ≤ + . 

Combining above estimates, Equation (2.11) can be deduced into the follow-
ing inequality 

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )( ) ( )

2 3

3

2 3

2 2

2 3 2
2 2 2 2 1

2 2 3 2
2 2 2 2 1

d
d

2 1 1 5 1

2 1 1 5 1 .

m mH H

m H

m mH H

u u
t

b M u b M M

b M u u b M M

λ λ

λ λ

Ω Ω

Ω

Ω Ω

+

≤ + + + + +

≤ + + + + + +

  (2.12) 

From inequality (2.12), we can obtain that 
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( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 3

2 3

2 2

2 2 3 2
2 2 2 2 1 2 2

2 2

3 2
2 2 1

2 2

2
4

2 1 1 0, 0, 5 1 exp 2 1 1

2 1 1

5 1
2 1 1

m mH H

m mH H

u u

b M u x u x b M M b M t

b M

b M M
b M

M

λ λ λ

λ

λ
λ

Ω Ω
+

   + + + + + + + +   ≤
+ +

+ +
−

+ +

�

 (2.13) 

where [ ]0,t T∀ ∈ , 
( ) ( )( )2

2 22 2
1 2 1 1 2 1

2

0, 0, 2m mV H

T
u x u x Mβ λ β λ λ

<
+ +

 and 

4 0M >  is a constant. 

Hence, combining estimate inequality (2.9) and (2.13), we can find that 

( ) ( )2 3
22 2 2 2 2 2

, , 2 42m m x m xxx m m mV V H HH
y u u u u u M M

Ω Ω
= − = + + ≤ + ,  (2.14) 

which indicate my V∈ . We also can have my H∈  from the fact of V embeds 
into H. 

Combining estimate inequality (2.9) and (2.10), we also can know that 

( )2
22 2 2 2 2 2

, 2 32m m m xx m m mH H V HH
y u u u u u M M

Ω
= − = + + ≤ + .    (2.15) 

Therefore, we deduce from inequality (2.14) that 

( ) ( )2
2 2 2

2 40, ;m L T Vy M M T≤ + ,                  (2.16) 

which indicates { }m m N
y +∈

 is uniformly bounded in ( )2 0, ;L T V . 
Afterward, we will prove uniform boundedness of sequence { },m t m N

y +∈
 in 

( )2 0, ;L T V ∗ . Indeed, from the first equation of Equation (2.2) and the Sobolev 
embedding theorem, we have 

( )2

, 0 2

2

2 2
3 1 0 3 2 3 2 3

2 2
2 2 2 4 2 ,

m t m m mV H V HV

m m V mH H

y f c u u y

b u y u

M c M M M M

b M M M M

λ

λ

λ λ

λ

∗∗

Ω

≤ + +

+ + Γ

≤ + + +

+ + + Γ

           (2.17) 

where 0, 2,3i iλ > =  are embedding constants as before. 
It derives from inequality (2.17) that 

( )2

2
, 0, ;

2
2 2 2 2

3 1 0 3 2 3 2 3 2 2 2 4 2 .

m t L T V
y

M c M M M M b M M M M Tλ λ λ

∗

 ≤ + + + + + + Γ  

 

Collecting the analysis above, one has: 

(I) For [ ]0,t T∀ ∈ , where 
( ) ( )( )2

2 22 2
1 2 1 1 2 1

2

0, 0, 2m mV H

T
u x u x Mβ λ β λ λ

<
+ +

, 

the sequence { }m m N
y +∈

 is bounded in ( )2 0, ;L T H  as well as in ( )2 0, ;L T V , 
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which is independent of the dimension of ansatz space mS . 
(II) For [ ]0,t T∀ ∈ , where  

( ) ( )( )2

2 22 2
1 2 1 1 2 1

2

0, 0, 2m mV H

T
u x u x Mβ λ β λ λ

<
+ +

, 

the sequence { },m t m N
y +∈

 is bounded in ( )2 0, ;L T V ∗ , which is also independent 
of the dimension of ansatz space mS . 

So, we obtain the boundedness of { }m m N
y +∈

 in ( )0,T  from (I) and (II) 
mentioned above. By the extraction theorem of Rellich’s, there may extract a 
subsequence { }kmy  of { }m m N

y +∈
 and find a ( )0,y T∈  such that 

weakly
kmy y→  in ( )0,T , as k →∞ .            (2.18) 

Utilizing the fact that V embeds H compactly and (2.18), we can refer to the 
conclusion of Aubin-Lions-Teman’s compact embedding theorem to verify that 

{ }kmy  is pre-compact in ( )2 0, ;L T H . Hence we can choose a subsequence 
(denoted again by { }kmy ) of { }kmy  such that 

strongly
kmy y→  in ( )2 0, ;L T H , as k →∞ .          (2.19) 

Because ( )0,T  embeds into ( )0, ;T H , we can obtain that mu ∈

( )( )20, ; 0,1T H . Then, by virtue of (2.19), we can find a subsequence (denoted 
again by { }kmu ) of { }kmu  such that 

strongly
kmu u→  in ( )2H Ω , as k →∞ , for [ ]0,t T∀ ∈  a.e..  (2.20) 

Combining (2.18)-(2.20) and the Lebesgue dominated convergence theorem, 
we have 

weakly
,k km m x xu y uy→  in ( )2 0, ;L T H , as k →∞ ;        (2.21) 

strongly
,k km x m xu y u y→  in ( )2 0, ;L T H , as k →∞ ;       (2.22) 

weakly
,km xxx xxxu u→  in ( )2 0, ;L T H , as k →∞ .         (2.23) 

We replace my  and mu  by 
kmy  and 

kmu  respectively in the first equation 
of Equation (2.4), which yields 

( ) ( ) ( )
( ) ( ) ( )

, 0 , ,

, ,

, , ,

, , , .

k k k k

k k k

m t j m x j m m x jH H H

m x m j m xxx j j HH H

y c u u y

bu y u f

ω ω ω

ω ω ω

+ +

+ + Γ =
         (2.24) 

Multiplying both sides of Equation (2.24) by ( )tα , where ( ) [ ]1 0,t C Tα ∈ , 
( ) 0Tα =  and integrating the result equation over [ ]0,T , we have 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )( )

, 0 , ,0

, ,

0

, , ,

, , d

, d 0, , 0

k k k k

k k k

k

T
m t j m x j m m x jH H H

m x m j m xxx jH H

T
j m jH H

y c u u y

bu y u t

f t y x

α ω αω αω

αω αω

αω α ω

− + +
+ + Γ 

= +

∫

∫

     (2.25) 



C. Y. Shen 
 

1281 

Utilizing (2.19), (2.21)-(2.23), we may pass to the limit in Equation (2.25). 
Then, we get 

( ) ( ) ( )
( ) ( )
( ) ( )( )

00

00

, , ,

, , d

, d , 0 .

T
t j x j x jH H H

x j xxx jH H

T
j jH H

y c u uy

bu y u t

f t y

α ω αω αω

αω αω

αω α ω

− + +
+ + Γ 

= +

∫

∫

          (2.26) 

We can find Equation (2.26) is true for any ( )tα . Therefore, we may take 
( ) ( )0,t Tα ∈ , then Equation (2.26) gives 

( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

0
d , , , , , , ,
d

, , , , , , ,

j x j x jH H H

x j xxx j jH H H

y t x c u t x u t x y t x
t

bu t x y t x u t x f t x

ω αω ω

ω ω ω

+ +

+ + Γ =
 

in the sense of ( )0,T′ . 
Since j is arbitrary and finite linear combinations of jω  is dense in H, we can 

find that ( ) ( ), 0,y t x T∈  satisfies Definition 2.1. Hence, from complex analy-
sis above and Lemma 2.1, we obtain the existence of weak solution ( ),u t x ∈
( )0,T  to Equation (2.2). 
Next we will discuss the uniqueness of this weak solution. 
Let 1u  and 2u  be any two weak solutions of Equation (2.1) and set ( ),t xη  
( ) ( )1 2, ,u t x u t x= − . Then η  satisfies 

( ) ( )

( ) ( ) [ ]
( ) ( ) ( )

0 1 2, 1,

2, 1 2,

1 1
0,

, , , , 0, ,

0, 0, 0, 0, .

t xxt x x x xxx x xx

xx x xxx xxx

x xx

c b u b u bu
bu u u

t x L t x x R t T

x x x x R

η η η η η η η

η η η

η η

η η η

 − + + + + + + Γ −

− − − =


+ = ∀ ∈ ∀ ∈
 = = = ∀ ∈

     (2.27) 

Taking the inner product of both sides of the first equation in Equation (2.27) 
with η , we obtain 

( ) ( )( ) ( )( ) ( )
( ) ( ) ( )

2 2
1 2, 1,

2, 1 2,

1 d 1 , 1 , ,
2 d

, , , .

x x x xxH V

xx x xxx xxx

b u b u bu
t

bu u u

η η η η η η η η

η η η η η η

+ = − + − + +

+ + +
  (2.28) 

The right hand side of Equation (2.28) can be estimated as follows: 

( )( ) ( )2 22 1
1 1

1
1 , 1 d

2x xL H V

b C
b u b u x

λ
η η η η η η∞

Ω

+
− + ≤ + ≤ +∫ ; 

( )( ) ( )2
2 2

2, 2, 2 2

2
2 2

1 , 1 d 1

1 ;

x x H HL

H

b u b u x b u

b C

η η η λ η

λ η

∞ ΩΩ
− + ≤ + ≤ +

≤ +

∫
 

( )

( ) ( ) ( )

( )
3 2

2
1, 1, 1,

2
1, 1,

2 2 22
1 2 1

2 2 22
3 2 4

, d d

d d

2

;
2

x xx xx x x x

xx x x xL L

H H V H V

H V V

bu b u x b u x

b u x b u x

b
u b u

b
C b C

η η ηη η

ηη η

λ
η η λ η

λ
η η λ η

∞ ∞

Ω Ω

Ω Ω

Ω Ω

= − −

≤ +

≤ + +

≤ + +

∫ ∫
∫ ∫
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( ) ( ) ( ) ( )3
2 2 2 22 2

2, 2 5,
2 2xx x H H V H V

b b
bu u C

λ λ
η η η η η η

Ω
≤ + ≤ + ; 

( )

( ) ( ) ( )

( )
3 2

2
1 1, 1,

2
1, 1,

2 2 22 2
1 1

2 2 22 3 2 4

3, d d
2

3d d
2

3
2 2

3 ;
2 2

xxx xx x x x

xx x x xL L

H H V H V

H V V

u u x u x

u x u x

u u

C C

η η ηη η

η η η

λ λη η η

λ λη η η

∞ ∞

Ω Ω

Ω Ω

Ω Ω

= +

≤ +

≤ + +

≤ + +

∫ ∫

∫ ∫
 

( ) ( ) ( ) ( )3
2 2 2 2

2, 2, 2 2 2 5, 2 dxxx xx x H H V H Vu u x u Cη η ηη λ η η λ η η
ΩΩ

= − ≤ + ≤ +∫ , 

where 2 0λ >  is an embedding constant and 0, 1, 2, ,5iC i> = ⋅ ⋅ ⋅  are some con- 
stants. 

Combining all complex estimates above and Equation (2.28), we can deduce 
that 

( ) ( )2 2 2 2d
d H V H Vt

η η β η η+ ≤ + ,              (2.29) 

where 

( ) ( ){
( ) ( ) ( ) }
2 1 2 2 2 3 2 5

2 1 2 3 2 4 2 5

max 1 2 1 1 2 ,

1 1 2 3 2 .

b C b C b C b C

b C b C b C b C

β λ λ λ λ

λ λ λ λ

= + + + + + + +

+ + + + + + +
 

Integrating inequality (2.29) with respect to t over [ )0, t , we have 

( ) ( )( ) ( ) ( )( ) ( )2 2 2 2
, , 0, 0, exp

H V H V
t x t x x x tη η η η β+ ≤ + ,    (2.30) 

where [ ]0,t T∀ ∈ . It follows from ( )0, 0xη =  that ( ) ( )2 2
, , 0

H V
t x t xη η+ = , 

which implies ( ) ( )1 2, ,u t x u t x= . 
This completes the proof of uniqueness. 

3. The Existence and Uniqueness of an Optimal Control 

In this section, we will give the formulation of the quadratic cost optimal control 
problem for b-equation and investigate the existence and uniqueness of an op-
timal solution. 

Let   be a Hilbert space of control variables, and ( )( )2, 0, ;B L T V∈ L  be 
an operator called a controller. We assume that the admissible set ad  be a 
bounded closed convex set, which has the non-empty interior with respect to 
  topology, i.e. 

( )2 0,
int adL T

≠ ∅ . 
We study the following nonlinear control system: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) [ ]
( ) ( )

0

0

; , ; , ; , ; ,

; , ; , ; , ,

; , ; , , , 0, ,

;0, ,

t x x

x xxx

y v t x c u v t x u v t x y v t x

bu v t x y v t x u v t x Bv

u v t x L u v t x x R t T

y v x y x V

 + +

+ + Γ =


+ = ∀ ∈ ∀ ∈

 = ∈

          (3.1) 

where adv∈  is a control. By virtue of Theorem 2.1 and Equation (3.1), we 
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can uniquely define the solution mapping ( ); ,v u v t x→  of ad  into ( )0,T . 
The weak solution ( ); ,u v t x  is called the state variable of the nonlinear control 
system (3.1). 

The observation of the state is assumed to be given by 

( ) ( ); , ; ,z v t x Cu v t x= ,                    (3.2) 

where ( )( )0, ,C T∈  L  is an operator called the observer and   is a 
Hilbert space of the observation variables. 

We shall consider the following quadratic cost functional associated with the 
nonlinear control system (3.1): 

( ) ( ) ( )2
; , ,dI v Cu v t x z Nv v= − +


,              (3.3) 

where dz ∈  is a desired value of ( ); ,u v t x . ( ),N ∈  L  is symmetric 
and positive definite, i.e., ( ) ( ) 2, ,Nv v v Nv vλ= ≥

  
, where 0λ >  is some 

constant. 
Hence, the discussed optimal control problem is to find an element adv∗ ∈  

such that 

( ) ( ){ }inf adI v I v v∗ = ∀ ∈ , 

which subject to the controlled system (3.1) together with the control con-
straints. 

Now, we shall discuss the existence and uniqueness of an optimal control v∗  
for the cost functional (3.3), which is the content of the following theorem. 

Theorem 3.1. Let us suppose that the hypotheses of Theorem 2.1 are satisfied. 
Then there exists a unique optimal control adv∗ ∈  for the nonlinear control 
system (3.1) with the cost functional (3.3), such that ( ) ( )inf

adv
I v I v∗

∀ ∈
=


. 

Proof. Because ad ≠ ∅  is a closed convex set, there exists a minimizing se-
quence { }n n N

v +∈
 in ad  such that 

( ) ( )inf lim
ad

nv n
I v I v

∀ ∈ →∞
=


. 

We set 

( ) ( ) ( )( ) ( ) ( )( )( ) ( )1 2 1 2 1 2, ; , 0; , , ; , 0; , ,v v C u v t x u t x C u v t x u t x Nv vπ = − − +


 

and 

( ) ( ) ( ) ( )( )( )0; , , ; , 0; ,dL v z Cu t x C u v t x u t x= − −


. 

Then cost functional (3.3) can be rewritten as 

( ) ( ) ( ) ( ) 2
, 2 0; ,dI v v v L v z Cu t xπ= − + −


,           (3.4) 

where ( )1 2,v vπ  is a continuous symmetric bilinear form on   and ( )L v  is 
a continuous linear form on  . 

Obviously, ( ){ }nI v  is bounded in R+ . So, the quadratic cost functional (3.3) 
implies that there exists a constant 0 0M >  such that 

( ) ( )2
0,n n n nv Nv v I v Mλ ≤ ≤ ≤

 
,               (3.5) 
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which indicates that { }n n N
v +∈

 is bounded in  . Because ad  is closed and 
convex set, we can extract a subsequence { } { }

kn n n N
v v +∈

⊂  and find a adv∗ ∈  
such that 

weakly
knv v∗→  in  , as k →∞ .                (3.6) 

From now on, each state variable ( ) ( ) ( ), ; , 0,n nu t x u v t x T= ∈  corres-
ponding to nv  is the solution of 

( ) ( ) [ ]
( ) ( )

, 0 , , , ,

0

,

, , , , 0, ,

0, ,

n t n x n n x n x n n xxx n

n n

n

y c u u y bu y u Bv

u t x L u t x x R t T

y x y x

+ + + + Γ =


+ = ∀ ∈ ∀ ∈
 →

            (3.7) 

where ,n n n xxy u u= − . 
From inequality (3.5), the right hand side of the first equation in Equation (3.7) 

can be estimated as 

( ) ( )( ) ( )( )2 22
1

0, 0, ; , 0, ;0, ;n nL T V L T VL T VBv B v B M Mλ−≤ ≤ ≤
 L L

,     (3.8) 

where 0M >  is some constant. 
Utilizing inequality (3.8), we can apply the same method used in Theorem 2.1 

to deduce that { }n n N
y +∈

 is bounded in ( )0,T . Hence, by the extraction 
theorem of Rellich’s, we can extract a subsequence { }kny  of { }n n N

y +∈
 and find 

a ( )0,xxy u u T= − ∈  such that 
weakly

kny y→  in ( )0,T , as k →∞ .            (3.9) 

Using the fact that V embeds H compactly and the result of (3.9), we can refer 
to the conclusion of Aubin-Lions-Teman’s compact embedding theorem to ve-
rify that { }kny  is pre-compact in ( )2 0, ;L T H . So we can also choose a subse-
quence (denoted again by { }kny ) of { }kny  such that 

strongly
kny y→ , in ( )2 0, ;L T H  as k →∞ .         (3.10) 

On the other hand, because ( )0,T  embeds into ( )0, ;T H , we can infer 
that ( )( )20, ;nu T H∈ Ω . And from (3.10), we can get a subsequence (denoted 
again by { }knu ) of { }knu  such that 

strongly
knu u→  in ( )2H Ω , as k →∞ , for [ ]0,t T∈  a.e..   (3.11) 

Combining (3.9)-(3.11) and the Lebesgue dominated convergence theorem, it 
is not difficult to obtain that 

strongly
,kn x xu u→  in ( )2 0, ;L T H , as k →∞ ;          (3.12) 

weakly
,k kn n x xu y uy→  in ( )2 0, ;L T H , as k →∞ ;       (3.13) 

strongly
,k kn x n xu y u y→  in ( )2 0, ;L T H , as k →∞ ;       (3.14) 

weakly
,kn xxx xxxu u→  in ( )2 0, ;L T H , as k →∞ .         (3.15) 

We replace nu  and nv  by 
knu  and 

knv  in Equation (3.7) respectively, and 
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take k →∞ . Then, by the standard arguments as in [83], we find that the limit 
u satisfies the following equations: 

( ) ( ) [ ]
( ) ( )

0

0

,
, , , , 0, ,

0, ,

t x x xxxy c u uy bu y u Bv
u t x L u t x x R t T

y x y x

∗ + + + + Γ =


+ = ∀ ∈ ∀ ∈
 =

             (3.16) 

in weak sense, where xxy u u= − . Moreover, by the uniqueness of weak solution 
of Equation (3.16) via Theorem 2.1 and Lemma 2.1, we can conclude that u =

( ) ( ); , 0,u v t x T∗ ∈ , which implies ( ) ( )weakly; , ; ,nu v t x u v t x∗→  in ( )0,T . 
Because the mapping ( ),v v vπ→  is lower semi-continuous in the weak to-

pology of   and ⋅


 is also lower semi-continuous. The mapping ( )v L v→  
is continuous in the weak topology of  . Thus the mapping ( )v I v→  is 
weakly lower semi-continuous. 

So, we can deduce from cost functional (3.4) that 

( ) ( )lim inf nk
I v I v∗

→∞
≥ .                    (3.17) 

At the same time, from inequality (3.17), we have 

( ) ( ) ( )inf lim inf
ad

nv n
I v I v I v∗

∀ ∈ →∞
= ≥


. 

Moreover, combining ( ) ( )inf
adv

I v I v∗

∀ ∈
≥


 by definition, we can obtain that 

( ) ( )inf
adv

I v I v∗

∀ ∈
=


.                     (3.18) 

Next, we will prove the uniqueness of adv∗ ∈  in (3.18). 
Because the mapping ( ),v v vπ→  is strictly convex and the mapping 

( )v L v→  is continuous. Hence the mapping ( )v I v→  is also strictly convex. 
Let 1 adv∗ ∈  and 2 adv∗ ∈  be two optimal controls, which satisfy ( )1I v∗ =   

( )inf
adv

I v
∀ ∈

 and ( ) ( )2 inf
adv

I v I v∗

∀ ∈
=


 respectively. Because ad  is a bounded 

closed convex set, we can get that ( )1 2
1
2 adv v∗ ∗+ ∈ . We thus can deduce that 

( ) ( ) ( ) ( )1 2 1 2
1 1 1 inf
2 2 2 adv

I v v I v I v I v∗ ∗ ∗ ∗

∀ ∈

 + < + = 
  

, which is a contradiction unless 

1 2v v∗ ∗= . This completes the proof. 

From the above analysis, we can conclude that ( )( ); , ,u v t x v∗ ∗  of ( )0, adT ×   
is a unique optimal solution to the optimal control problem investigated. 

4. The Sufficient and Necessary Optimality Condition 

In this section, we shall characterize the optimal control by giving the sufficient 
and necessary condition for optimality. We firstly give the following lemma ac-
cording to optimal control theory. 

Lemma 4.1. Assume that the mapping ( )v I v→  is differentiable, strictly 
convex and ad  is bounded. Then the unique element (optimal control) v∗  in 

ad  satisfying ( ) ( )inf
adv

I v I v∗

∈
=


 can be characterized by 
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( ) ( ) 0I v v v∗ ∗′ − ≥ ,                      (4.1) 

where adv∀ ∈  and ( )I v∗′  denote the derivative of ( )I v  at v v∗= . 
Proof. Let v∗  be the optimal control subject to Theorem 3.1. Then for 

adv∀ ∈  and ( )0,1θ ∈ , we have 

( ) ( )( ) ( )( )1 1I v I v v I v vθ θ θ θ∗ ∗ ∗ ∗= − + ≤ − + .          (4.2) 

From inequality (4.2), we can derive that 

( )( ) ( )1 0I v v v I vθ θ− ∗ ∗ ∗ + − − ≥  .               (4.3) 

Therefore, if we pass to the limit in inequality (4.3), we obtain that 

( ) ( ) 0I v v v∗ ∗′ − ≥ , where adv∀ ∈ . 

Alternatively, suppose inequality (4.1) remains true. Because the mapping 
( )v I v→  is strictly convex, we can get 

( )( ) ( ) ( ) ( )1 1I v v I v I vθ θ θ θ∗ ∗− + < − + , for ( )0,1θ∀ ∈ .      (4.4) 

From inequality (4.4), we deduce that 

( )( ) ( ) ( ) ( )1 I v v v I v I v I vθ θ− ∗ ∗ ∗ ∗ + − − < −  .          (4.5) 

If we pass the limit in inequality (4.5), we can get 

( ) ( ) ( )( ) ( )
( ) ( )

0
0 lim

I v v v I v
I v v v I v I v

θ

θ

θ

∗ ∗ ∗

∗ ∗ ∗

→

+ − −
′≤ − = < − , 

for adv∀ ∈ , which completes the proof. 
Conditions of the type (4.1) are usually termed as “first order sufficient and 

necessary condition”, in terminology of calculus of variations. In order to ana-
lyze inequality (4.1), we need to prove that the mapping ( ); ,v u v t x→  of 

( )0,ad T→   is differentiable at v v∗= . 
Definition 4.1. The solution mapping ( ); ,v u v t x→  of   into ( )0,T  

is said to be differentiable at v v∗=  in any direction w, if for w∀ ∈  and 
( )0,1θ ∈ , there exists a ( ) ( )( ); , , 0,u v t x T∗′ ∈  L  such that 

( ) ( ) ( )1 ; , ; , ; ,u v w t x u v t x u v t x wθ θ− ∗ ∗ ∗  ′+ − →   in ( )0,T , as 0θ → . 

The function ( ) ( ); , 0,u v t x w T∗′ ∈  is called the directional derivative of 
( ); ,u v t x , which plays crucial in the following discussion. 
Theorem 4.1. The mapping ( ); ,v u v t x→  of ad  into ( )0,T  is deriva-

tive at v v∗=  and such the derivative of ( ); ,u v t x  at v v∗=  in the direction 

adw v v∗= − ∈ , say ( ); ,g u v t x w∗′= , is a weak solution of the following equa-
tion: 

( ) ( )
( ) ( ) [ ]
( )

0 ; , ; , ,

, , , , 0, ,

0, 0,

t x x x x x xxxc g gy u v t x bg y bu v t x g Bw

g t x L g t x x R t T

x

∗ ∗ + + + + + + Γ =
 + = ∀ ∈ ∀ ∈
 =

  



  (4.6) 
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where ( ) ( ); , ; ,xxy u v t x u v t x∗ ∗= −  and xxg g= − . 
Proof. Let ( ) ( )1,0 0,1θ ∈ − ∪ . We set ( ) ( )( )1 ; , ; ,g u v w t x u v t xθ θ θ− ∗ ∗= + −  

and ,xxg gθ θ θ= − . Then gθ  satisfies 

( ) ( )
( ) ( ) [ ]
( )

, 0 , , , , ,; , ; , ,

, , , , 0, ,

0, 0,

t x x x x x xxxc g g y u v t x bg y bu v t x g Bw

g t x L g t x x R t T

x

θ θ θ θ θ θ θ θ θ

θ θ

θ

∗ ∗ + + + + + + Γ =
 + = ∀ ∈ ∀ ∈
 =

  



(4.7) 

where ( ) ( ); , ; ,xxy u v w t x u v w t xθ θ θ∗ ∗= + − + . 
In order to estimate θ , we multiply both sides of the first equation in Equa-

tion (4.7) by 2gθ  and integrate it over Ω . Then we get 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2 2

, ,

2 2
,

d
d

4 2 d 2 2 ; , d

3 2 ; , d 1 2 ; , d

2 d .

H V

x xx x

x x x

g g
t

b y g g x b u v t x g g x

b u v t x g x b u v t x g x

Bw g x

θ θ

θ θ θ θ θ

θ θ

θ

∗

Ω Ω

∗ ∗

Ω Ω

Ω

+

= − + −

+ − + −

+

∫ ∫
∫ ∫

∫

      (4.8) 

Each item on the right hand of Equation (4.8) can be estimated as follows: 

( ) ( )2 21
, ,

4 2
4 2 d 4 2 d

2x xL H V

b m
b y g g x b y g g x g gθ θ θ θ θ θ θ θ∞

Ω Ω

−
− ≤ − ≤ +∫ ∫ ; 

( ) ( )

( ) ( )
,

2 22
,

2 2 ; , d

2 2
2 2 ; , d ;

2

xx x

xx x H VL

b u v t x g g x

b m
b u v t x g g x g g

θ θ

θ θ θ θ∞

∗

Ω

∗

Ω

−

−
≤ − ≤ +

∫

∫
 

( ) ( ) ( ) 2 22
, 33 2 ; , d 3 2 ; , 3 2x x x V VL

b u v t x g x b u v t x g b m gθ θ θ∞

∗ ∗

Ω
− ≤ − ≤ −∫ ; 

( ) ( ) ( ) 2 22
31 2 ; , d 1 2 ; , 1 2x x H HL

b u v t x g x b u v t x g b m gθ θ θ∞

∗ ∗

Ω
− ≤ − ≤ −∫  

and 

( ) 2 22 22
12 d H VH HBw g x Bw g Bw gθ θ θλ

Ω
≤ + ≤ +∫ , 

where 1 0λ >  is an embedding constant and 0, 1, 2,3im i> =  are some constants. 
Hence, Equation (4.8) can be changed into 

( ) ( )2 2 2 2 22
3 1

d
d VH V H Vg g g g Bw
t θ θ θ θβ λ+ ≤ + + ,         (4.9) 

where 

1 2 1 2
3 3 3

4 2 2 2 4 2 2 2
1 2 1, 3 2

2 2 2 2
b m b m b m b m

b m b mβ
 − − − − 

= + + − + + + − 
 

. 

It follows from inequality (4.9) and the Gronwall’s lemma that 

( ) ( ) ( )( ) ( )

2 2

2 2 22
3 1 30

1

exp 0, 0, exp d

,

H V

t

VH V

g g

t g x g x Bw s s

θ θ

θ θβ λ β

+

 ≤ + + −  
Ζ

∫
�

  (4.10) 



C. Y. Shen 
 

1288 

where [ ]0,t T∀ ∈ . 
Next, multiplying both sides of the first equation in Equation (4.7) by ,2 xxgθ−  

and integrating it over Ω , which gives 

( ) ( )

( ) ( )
( ) ( ) ( )

2
2 2

, , ,

, , ,

2
, ,

d 2 2 d 2 d
d

2 ; , d 2 ; , d

1 2 ; , d 2 d .

x xx xxxV H

x xx x xx

x xx xx

g g b g g y x g g y x
t

u v t x g g x b u v t x g g x

b u v t x g x Bw g x

θ θ θ θ θ θ θ θ

θ θ θ θ

θ θ

Ω Ω

∗ ∗

Ω Ω

∗

Ω Ω

+ = − −

+ +

+ − −

∫ ∫

∫ ∫
∫ ∫

(4.11) 

Then, we estimate the each item of the right hand of Equation (4.11) as follows: 

( ) ( )( )2
2 21

, ,
2 2

2 2 d
2x xx V H

b m
b g g y x g gθ θ θ θ θ ΩΩ

−
− ≤ +∫ ; 

, ,2 d 2 d 0xxx xxxLg g y x y g g xθ θ θ θ θ θ∞
Ω Ω

− ≤ =∫ ∫ ; 

( ) ( )

( )( )2

, , , ,

2 2
4

2 ; , d ; , 2 d

;

x xx x xxL

V H

u v t x g g x u v t x g g x

m g g

θ θ θ θ

θ θ

∞

∗ ∗

Ω Ω

Ω

≤

≤ +

∫ ∫
 

( ) ( ) ( )
( )( )2

22
, ,

2 22
3 1

2 ; , d ; ,x xx x xxH HL

V H

b u v t x g g x b u v t x g g

b m g g

θ θ θ θ

θ θλ

∞

∗ ∗

Ω

Ω

≤ +

≤ +

∫

 

( ) ( ) ( ) ( )

( )

2

2

22
,

2
3

1 2 ; , d 1 2 ; ,

1 2

x xx x HL

H

b u v t x g x b u v t x g

b m g

θ θ

θ

∞

∗ ∗
ΩΩ

Ω

− ≤ −

≤ −

∫
 

and 

( ) ( )

( )

2

2

22
, ,

222
1

2 d 2

,

xx xxH H HH

V H

Bw g x Bw g Bw g

Bw g

θ θ θ

θλ

ΩΩ

Ω

− ≤ ≤ +

≤ +

∫
 

where 1 0λ >  is an embedding constant and 0, 1,3, 4im i> =  are some constants. 
By the above estimates, we can deduce from Equation (4.11) that 

( )( ) ( )( )2 2
2 2 2 2 22

4 1
d
d VV H V Hg g g g Bw

t θ θ θ θβ λ
Ω Ω

+ ≤ + + ,     (4.12) 

where 

1 12
4 4 3 1 4 3 3

2 2 2 2
max , 1 2 1

2 2
b m b m

m b m m b m b mβ λ
 − − 

= + + + + + − + 
 

. 

Applying Gronwall’s lemma to inequality (4.12), which yields 

( )

( ) ( ) ( ) ( )( ) ( )

2

2

2 2

2 2 22
4 1 40

2

exp 0, 0, exp d

,

V H

t

VV H

g g

t g x g x Bw s s

θ θ

θ θβ λ β

Ω

Ω

+

 ≤ + + −  
Ζ

∫
�

(4.13) 

where [ ]0,t T∀ ∈ . 
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Similarly, multiplying both sides of the first equation in Equation (4.7) by 

,2 xxxxgθ  and integrating it over Ω , which gives 

( ) ( )( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 3
2 2

, , ,

2 2
, ,

, , ,

, , ,

d
d

2 2 d 2 d

2 3 ; , d 2 1 ; , d

2 2 ; , d 2 ; , d

2 ; , d 2 d .

H H

x xxxx xxxxx

x xx x xxx

xx x xx xx xxx

xx xx xxx xxxx

g g
t

b g g y x g g y x

b u v t x g x b u v t x g x

b u v t x g g x b u v t x g g x

b u v t x g g x Bw g x

θ θ

θ θ θ θ θ θ

θ θ

θ θ θ θ

θ θ θ

Ω Ω

Ω Ω

∗ ∗

Ω Ω

∗ ∗

Ω Ω

∗

Ω Ω

+

= − +

− + − +

− + +

− +

∫ ∫
∫ ∫
∫ ∫

∫ ∫

   (4.14) 

We can also estimate each item of the right hand of Equation (4.14) as follows: 

( ) , , , ,2 2 d 2 2 d 0x xxxx x xxxxLb g g y x b y g g xθ θ θ θ θ θ∞
Ω Ω

− ≤ − =∫ ∫ ; 

, ,2 d 2 d 0xxxxx xxxxxLg g y x y g g xθ θ θ θ θ θ∞
Ω Ω

≤ =∫ ∫ ; 

( ) ( ) ( )
( )2

2 2
, ,

2
3

2 3 ; , d 2 3 ; , d

2 3 ;

x xx x xxL

H

b u v t x g x b u v t x g x

b m g

θ θ

θ

∞

∗ ∗

Ω Ω

Ω

− + ≤ +

≤ +

∫ ∫
 

( ) ( ) ( )
( )3

2 2
, ,

2
3

2 1 ; , d 2 1 ; , d

2 1 ;

x xxx x xxxL

H

b u v t x g x b u v t x g x

b m g

θ θ

θ

∞

∗ ∗

Ω Ω

Ω

− + ≤ +

≤ +

∫ ∫
 

( ) ( ) ( ) ( )( )2 2
2 22 2

, , 4
2 2

2 2 ; , d
2xx x xx H H

b m
b u v t x g g x g gθ θ θ θλ∗

Ω ΩΩ

+
− + ≤ +∫ ; 

( ) ( ) ( )( )2 3
2 22

, 2 52 ; , dxx xxx H Hb u v t x g g x b m g gθ θ θ θλ∗
Ω ΩΩ

≤ +∫ ; 

( ) ( ) ( )( )2 3
2 2

, , 22 ; , dxx xx xxx H Hb u v t x g g x b m g gθ θ θ θ
∗

Ω ΩΩ
− ≤ +∫  

and 

( ) ( ) ( )3
22

, ,2 d 2xxxx xxxx V HHH
Bw g x Bw g Bw gθ θ θ ΩΩ

≤ ≤ +∫ , 

where 0, 2,3im i> =  are some constants and 0, 4,5i iλ > =  are some embed-
ding constants. 

Combining a series of complex estimates above and Equation (4.14), we can 
obtain that 

( ) ( )( ) ( ) ( )( )2 3 2 3
2 2 2 2 2

5
d
d VH H H Hg g g g Bw
t θ θ θ θβ

Ω Ω Ω Ω
+ ≤ + + ,   (4.15) 

where 

( )2
4 2

5 5 2 3 2 3

2 2 1
max 2 3 ,2 2 1 1

2

b
b b m b m b m b m

λ
β λ

  + +  = + + + + + + + 
    

. 

By applying the Gronwall’s lemma to inequality (4.15), we can get 

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

2 3

2 3

2 2

2 2 2
5 50

3

exp 0, 0, exp d

,

H H

t

VH H

g g

t g x g x Bw s s

θ θ

θ θβ β

Ω Ω

Ω Ω

+

 ≤ + + −  
Ζ

∫
�

(4.16) 
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where [ ]0,t T∀ ∈ . 
Combining estimate inequality (4.13) and (4.16), we can deduce that 

( ) ( )2 3
22 2 2 2

, , 2 32x xxxV V H HH
g g g g gθ θ θ θ θ θΩ Ω

= − = + + ≤ Ζ + Ζ .   (4.17) 

Similarly, combining estimate inequality (4.10) and (4.13), we can obtain that 

( )2
22 2 2 2

, 1 22xxH H V HH
g g g g gθ θ θ θ θ θ Ω

= − = + + ≤ Ζ + Ζ .     (4.18) 

From inequality (4.17), we derive that 

( ) ( )2
2

2 30, ;L T V Tθ ≤ Ζ + Ζ ,                  (4.19) 

which indicates a uniformly ( )2 0, ;L T V  bounded of θ . 
Afterward, we will prove a uniformly ( )2 0, ;L T V ∗  bounded of ,tθ . 
From the first equation in Equation (4.7) and the Sobolev embedding theorem, 

we have 

( )
( ) ( )

( )

( )

2

, 0 2

2

1 1 1
2 2 23 0 1 2 5 1 4 1 2

1 11
2 221 1 2 6 2 3 2

; ,

; ,

,

t V H V H HV L

HL HV H

V

Bw c g g y u v t x

b y g b u v t x g

Bw c m m

b m b m

θ θ θ θ θ

θ θ θ θ

λ

λ

λ λ

λ

∗∗ ∞

∞

∗

∗
Ω

≤ + + +

+ + + Γ

≤ + Ζ + Ζ + Ζ + Ζ

+ Ζ + Ζ + Ζ + Γ Ζ

 


 (4.20) 

where 0, 2,3i iλ > =  are some embedding constants and 0, 1, 4,5,6im i> =  
are some constants. 

Analogously, from inequality (4.20), we can get 

( ) ( )

( )

2

1 1 112 2 2 22, 3 0 1 2 5 1 4 1 2 1 10, ;

211
222 6 2 3 2 .

t VL T V
Bw c m m b m

b m T

θ λ λ

λ

∗


≤ + Ζ + Ζ + Ζ + Ζ + Ζ



+ Ζ + Ζ + Γ Ζ 





(4.21) 

Combining inequality (4.19) and (4.21), we can establish the boundedness of 

θ  in ( )0,T . Hence, from Lemma 2.1, we can deduce that 

( ) ( )0, 0,T Tg Cθ θ≤ < +∞
 

 . 

From now on, we can infer that there exists a ( )0,g T∈  and a sequence 
{ } ( )1,1kθ ⊂ −  tending to 0 such that 

weakly
k

g gθ →  in ( )0,T , as k →∞ .           (4.22) 

Because the imbedding ( )0,T  into ( )( )2 20, ;L T H Ω  is compact, then it 
can deduce from (4.22) that 

strongly
k

g gθ →  in ( )2H Ω  a.e. [ ]0,t T∈ ,         (4.23) 

for some { } ( )1,1kθ ⊂ −  tending to 0 as k →∞ . Whence by (4.22) - (4.23), 
Theorem 2.1 and the Lebesgue dominated convergence theorem, we can easily 
obtain that 
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weakly
,k k x xg y gyθ θ →  in ( )2 0, ;L T H ;            (4.24) 

strongly
,k kx xg y g yθ θ →  in ( )2 0, ;L T H ;           (4.25) 

weakly
kθ
→   in ( )2 0, ;L T V ;                (4.26) 

weakly
,k xxx xxxg gθ →  in ( )2 0, ;L T H ;            (4.27) 

as k →∞ , where xxg g= − . And also we can derive from Equation (4.7) and 
inequality (4.21) that 

weakly
,k t tθ →   in ( )2 0, ;L T V ∗ , as k →∞ .         (4.28) 

Therefore, we can infer from (4.24) to (4.28) that 

( )weakly ; ,g g u v t x wθ
∗′→ =  

in ( )0,T  as 0θ →  in which g is a solution of Equation (4.6). 
Consequently, the solution mapping ( ); ,v u v t x→  of ad  into ( )0,T  is 

differentiable in the weak topology of ( )0,T . This completes the proof. 
The conclusion of Theorem 4.1 means that the cost ( )I v  is derivative at v∗  

in the direction v v∗− . So, we can get that 

( )( )
( )( ) ( )

( )( ) ( )( )( )
( ) ( )( )

( )( ) ( )( ) ( )
( ) ( )( )( ) ( )

0

1

0

1

0

lim

lim ,

,

lim , ,

2 , 2 ,

d d

d d

d

I v v v

I v v v I v

Cu v v v z Cu v v v z

Cu v z Cu v z

N v v v v v v Nv v

Cu v z Cu v v v Nv v v

θ

θ

θ

θ

θ

θ θ θ

θ θ θ

∗ ∗

∗ ∗ ∗

→

− ∗ ∗ ∗ ∗

→

∗ ∗

− ∗ ∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗

′ −

+ − −
=

= + − − + − −
− − − 

 + + − + − −  

′= − − + −











 

Then the sufficient and necessary optimality condition (4.1) can be rewritten 
as 

( ) ( )( )( ) ( )
( )( ) ( )( )

( ) ( )

( )
0, , 0,

; , , ; , ,

; , , ; ,

, 0,

d

d
T T

Cu v t x z Cu v t x v v Nv v v

C Cu v t x z u v t x v v

Nv v v

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′

∗ ∗

′− − + −

′= Λ − −

+ − ≥

 


 



     (4.29) 

for adv∀ ∈  , where Λ  is the canonical isomorphism   onto ′  and 

dz ∈  is desired value. 

5. The Two Cases of Distributive Observations 

In this section, we will characterize the optimal control by giving the sufficient 
and necessary optimality condition (4.29) for the following two cases of physical 
meaningful observations: 

(I) We set ( )2 0, ;L T H=  and ( )( )0, ,C T∈  L , then observe that 
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( ) ( ) ( ) ( )2; , ; , ; , 0, ;z v t x Cu v t x u v t x L T H= = ∈ . 
(II) We set ( )2 0, ;L T H=  and ( )( )0, ,C T∈  L , then observe that 
( ) ( ) ( ) ( ) ( ) ( )2 2; , ; , ; , ; , 0, ;xz v t x Cu v t x I u v t x y v t x L T H= = − ∂ = ∈ . 
Firstly, we discuss the cost functional expressed by 

( ) ( ) ( ) ( )2

0
; , , d d , , ,

T
d adI v u v t x z t x x t Nv v v

Ω
= − + ∀ ∈ ⊂∫ ∫ 

       (5.1) 

where ( ),dz t x ∈  is a desired value. Let v∗  be the optimal control subject 
to Equation (3.1) and cost functional (5.1). Then the sufficient and necessary op-
timality condition (4.29) can be represented by 

( ) ( )( ) ( )0
; , , d d , 0, ,

T
d adu v t x z t x g x t Nv v v v∗ ∗ ∗

Ω
− + − ≥ ∀ ∈∫ ∫ 

      (5.2) 

where ( ) ( ); ,g u v t x v v∗ ∗′= −  is the weak solution of Equation (4.6). Now we 
will introduce the adjoint system to describe the optimality condition (5.2): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]
( )

0; , ; , ; , ; ,

3 2 ; , ; , 3 ; , ; ,

; , ; , ; , ; , , ,

; , ; , , , 0, ,

; , 0,

t x x

xx x x xx

x xxx d

v t x c v t x u v t x v t x

b u v t x v t x b u v t x v t x

by v t x v t x v t x u v t x z t x

v t x L v t x x R t T

v T x

ψ

ψ ψ

ψ ψ

ψ ψ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗

− − −

+ − + −

− −Γ = −


+ = ∀ ∈ ∀ ∈
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    (5.3) 

where 

( ) ( ) ( ); , ; , ; ,xxv t x v t x v t xψ ψ∗ ∗ ∗= −  

and 

( ) ( ) ( ); , ; , ; ,xxy v t x u v t x u v t x∗ ∗ ∗= − . 

Therefore, we can provide the characterization for the optimal control v∗  of 
the quadratic cost functional (5.1) as follows: 

Theorem 5.1. The optimal control v∗  of the quadratic cost functional (5.1) 
is characterized by the following control system, adjoint system and inequality: 
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where 

( ) ( ) ( ); , ; , ; ,xxy v t x u v t x u v t x∗ ∗ ∗= −  

and 

( ) ( ) ( ); , ; , ; ,xxv t x v t x v t xψ ψ∗ ∗ ∗= − . 

Proof. Taking inner product of the first equation in Equation (5.3) by g over 
Ω , then integrating the result equation with respect to t on [ ]0,T , we get 

( ) ( )

( )

00 0 0
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        (5.4) 

Combining Equation (4.6) and Equation (5.3) and taking integration by parts, 
the left hand side of Equation (5.4) yields 

( )

( )
00
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d d

d d ,

T
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∫ ∫

∫ ∫

  
      (5.5) 

where xxg g= − . Therefore, utilizing Equation (5.4) and Equation (5.5), the 
sufficient and necessary optimality condition (5.2) is equivalent to 

( ) ( ) ( )0
; , d d , 0, .

T
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Ω
− + − ≥ ∀ ∈∫ ∫ 

   

Hence, the theorem is proved. 
Secondly, we discuss the cost functional expressed by 

( ) ( ) ( ) ( )2

0
; , , d d , , ,

T
d adI v y v t x z t x x t Nv v v

Ω
= − + ∀ ∈ ⊂∫ ∫ 

     (5.6) 

where ( ),dz t x ∈  is a desired value. Let v∗  be the optimal control subject 
to Equation (3.1) and cost functional (5.6). Then the sufficient and necessary op-
timality condition (4.29) is represented by 

( ) ( )( ) ( )0
; , , d d , 0, ,

T
d ady v t x z t x x t Nv v v v∗ ∗ ∗

Ω
− + − ≥ ∀ ∈∫ ∫ 

      (5.7) 

where xxg g= −  and ( ); ,g u v t x w∗′=  is the weak solution of Equation (4.6). 
Similarly, we formulate the adjoint system to describe the optimality condition 
(5.7): 
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where 

( ) ( ) ( ); , ; , ; ,xxy v t x u v t x u v t x∗ ∗ ∗= −  

and 

( ) ( ) ( ); , ; , ; ,xxv t x v t x v t xψ ψ∗ ∗ ∗= − . 

Hence, we can give the following theorem. 
Theorem 5.2. The optimal control v∗  of the quadratic cost functional (5.7) 

is characterized by the following control system, adjoint system and inequality: 
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( ) ( ) ( )0
; , d d , 0, ,

T
adv t x B v v x t Nv v v vψ ∗ ∗ ∗ ∗

Ω
− + − ≥ ∀ ∈∫ ∫ 

   

where 

( ) ( ) ( ); , ; , ; ,xxy v t x u v t x u v t x∗ ∗ ∗= −  

and 

( ) ( ) ( ); , ; , ; ,xxv t x v t x v t xψ ψ∗ ∗ ∗= − . 

Proof. As we did before, we multiply both sides of the first equation of Equa-
tion (5.8) by g and integrate it over [ ]0,T ×Ω . Then we have 
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(5.9) 

where xxg g= − . 
Utilizing Equation (4.6), the integration by parts on the left hand side of Equ-

ation (5.9) yields 

( )
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      (5.10) 

where xxg g= − . Therefore, combining Equation (5.9) and Equation (5.10), 
the sufficient and necessary optimality condition (5.7) is equivalent to 
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( ) ( ) ( )0
; , d d , 0

T
v t x B v v x t Nv v vψ ∗ ∗ ∗ ∗

Ω
− + − ≥∫ ∫ 

, adv∀ ∈  , 

which completes the proof. 

6. Conclusions 

b-equation is an important shallow water wave equation which has many prac-
tical meanings. In this paper, we aim at pursuing an in-depth study of the op-
timal control issue of the classical b-equation. So, we investigate firstly the local 
existence and uniqueness of solution to the initial-boundary problem of the 
b-equation with source term, and then discuss the formulation of the quadratic 
cost optimal control problem for the b-equation, obtain the existence and uni-
queness of an optimal control, establish the sufficient and necessary optimality 
condition of an optimal control in fixed final horizon case. Moreover, we give 
the specific sufficient and necessary optimality condition for two physical mea-
ningful distributive observation cases by employing associate adjoint systems. 
Compared with other papers in similar directions, the weak solution analysis of 
b-equation without relying on viscous item is one technical innovation, and the 
sufficient and necessary optimality condition of an optimal control which is not 
limited to the necessary condition is another novelty. However, much work re-
mains to be done in this direction. For example, it is an optimal control problem 
of the distributed parameter system governed by the nonlinear partial differen-
tial equation, to obtain the numerical solutions for the optimal control-trajectory 
pair is not an easy job due to the tremendous calculation and possible model dif-
ficulties. We try to finish this non-trivial work in the follow-up research by op-
timizing numerical algorithm and carrying out numerical simulation, which can 
provide a basis for application in the engineering field. 
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