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Abstract 
The Moody Diagram is widely used to determine the friction factor for fluid 
flow in pipes. The diagram combines the effects of Reynolds number and rela-
tive roughness to determine the friction factor. The relationship is highly 
non-linear and appears to have a complex interaction between viscous and 
boundary roughness effects. The Moody Diagram is based on predictions 
from an equation developed by Colebrook in 1939. The relationship requires 
an iteration process to make predictions. While empirical relationships have 
been developed that provide good predictions without an iteration process, no 
one has fully explained the cause for the observed results. The objective of this 
paper is to present a logical development for prediction of the friction factor. 
An equation has been developed that models the summed effect of both the 
laminar sublayer and the boundary roughness on the fluid profile and the re-
sulting friction factor for pipes. The new equation does not require an itera-
tion procedure to obtain values for the friction factor. Predicted results match 
well with values generated from Colebrook’s work that is expressed in the 
Moody Diagram. Predictions are within one percent of Colebrook values and 
generally less than 0.3 percent error from his values. The development pro-
vides insight to how processes operating at the boundary cause the friction 
factor to change. 
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1. Introduction 

Many people have contributed to understanding and describing fluid flow. The 
association of velocity, V, diameter, d, density, ρ, and viscosity, μ, to form the 
dimensionless term, Vdρ/μ, known as the Reynolds number was a major con-
tribution in relating friction to fluid properties, especially for laminar flow [1]. 

A subsequent major development was the concept of a mixing length for tur-
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bulent flow by Prandtl (1926) [2]. Building on this concept, an equation to de-
scribe the velocity distribution in turbulent flow can be developed 

*

0

lnU ZU
k Z

 
=  

 
                         (1) 

where U = fluid velocity at height Z above a reference 
U* = friction velocity 
k = von Karman constant (0.4 for neutral conditions) 
Z0 = fluid roughness height at the boundary. 
Two other major contributions were by Nikuradse in 1933 [3] and Colebrook 

[4] in 1939. Nikuradse [3] created pipes lined with sand grains of various sizes 
and measured the friction associated with boundary roughness. Colebrook [4], 
using information from the literature and other researchers, reported the fol-
lowing equation based on the log profile applied to pipe flow: 

1

1 2 log 0.113 d
yf

 
=  

 
                      (2) 

where f = friction factor 
y1 = lower limit of integration 
0.113 = the height in terms of diameter where the velocity in the profile is 

equal to the average velocity of flow. 
Colebrook then used Equation (2) to develop two independent equations of 

similar form: 

1 12 log
2.51f
R f
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                    (3) 
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     

                     (4) 

where R = Reynolds number 
dp = diameter of sand grain from Nikuradse’s experiments 
3.7 = 33 x 0.113 – The dp/33 was the measured value for Z0 or y1 in the equa-

tions above. 
We have chosen the form in Equations (3) and (4) so that dp/d will follow the 

same form as e/d used in the Moody Diagram. The variable dp communicates the 
specific geometry of spherical particles used by Nikuradse. Other shapes will 
produce a different calibration for Z0 [5]. Moody [6] (1944) used e for roughness 
height that would produce an equivalent to that of sand grain roughness. Cole-
brook reasoned that the two denominator terms were additive, leading to a gen-
eral equation. Unfortunately, the presence of f on both sides of his equation re-
quires an iteration process to solve for f. Also, his work did not express a deter-
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ministic explanation of the processes causing these interactions. 
Moody (1944) used Colebrook’s work and rearranged the output into the 

more useable chart form with f as a function of Reynolds number and relative 
roughness with the results displayed in log-log graphical form. He, however, did 
not provide additional understanding about the underlying relationships. His 
diagram is now given in most modern fluid textbooks and is considered the 
standard for estimating the friction factor for pipe flow. 

Swamee and Jain [7] (1976) and Haaland [8] (1983) expanded on the work of 
Colebrook [4] and developed closed-form equations that give good predictions 
but do not provide an explanation of the processes causing the results. It will be 
shown later that these equations provide results very close to those produced by 
a process-based outcome. Haaland’s [8] best equation is more accurate than the 
final equation of Swamee and Jain [7]. 

The objective of this current work is to provide a non-iterative equation that is 
process based to predict the friction factor in the Moody Diagram for turbulent 
conditions. This equation improves predictions slightly over the best equation of 
Haaland [8]. The development provides a reasonable description of the process 
by which smooth and rough boundaries interact to determine the final value for 
the friction factor. 

2. Development of Equations 
2.1. Laminar Flow 

The friction factor for laminar flow is 

64
Lf R
=                            (5) 

where fL = friction factor for laminar flow. 
This equation applies to Reynolds numbers less than 2000. 

2.2. Turbulent Flow with Smooth Boundary 

Using a similar form to Equation (5) (inverse of Reynolds number), an equation 
was developed to describe the friction factor associated with turbulent flow for 
smooth boundary conditions: 

( )
1

2 0.104ln 3000

2.3
S

R

f

R +

=                       (6) 

where fS = friction factor for smooth turbulent flow. 
This equation was developed by observing that the slope of the curve on the 

Moody Diagram for smooth conditions near the beginning of the turbulent flow 
range at Reynolds number of approximately 4000 was one half of that of laminar 
conditions. In other words, the exponent on Reynolds number changes from 1.0 
to 0.5 when the change from laminar to turbulent flow occurs. It was also ob-
served that the slope of this curve gradually decreases as Reynolds number in-
creases. Numerical coefficients of 2.3 and 0.104 were obtained by minimizing the 
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least square difference between predictions and values read from the Moody Di-
agram for smooth conditions. An R2 of 0.9997 was obtained and the worst-case 
individual point prediction was 1.6 percent error for Reynolds number of 4000. 
Generally the prediction error was random and less than plus or minus one per-
cent of the values from the Colebrook equation. The new equation is valid for 
Reynolds numbers greater than 4000 through the full range of Reynolds num-
bers on the Moody Diagram. It has a similar form as laminar flow (Equation (5)) 
and is valid over a greater range of Reynolds numbers than the Blasius equation 
(presented later) for turbulent flow. 

3. Turbulent Flow General Relationships 

Colebrook (1939) in effect separated his variable y1 in Equation (2) into two 
roughness components, one for boundary roughness and one for viscous effects, 
which we will associate with the laminar sublayer. Equation (1) can be rewritten 
to express these components, 

*

0 0

ln
L

U ZU
k Z Z

 
=  + 

                     (7) 

where Z0L = roughness height associated with laminar sublayer. 
Roughness height can be related to geometry of the roughness elements for 

solid boundaries with the following equation from [5]: 

( )0 0.13Z H D= −                        (8) 

where H = maximum height of roughness element 
D = displacement height of surface (average height of elements). 

This equation is valid for a surface of 30 percent or more coverage of rough-
ness elements such as sand grains, pine trees, broadleaf trees, etc. It is valid for 
flow across ridges. It is not valid to describe the effects of a telephone pole in the 
middle of a large field. For equations to deal with both sparse tall elements like 
telephone poles and other surface elements see Gregory et al. (2004) [9]. 

Abtew et al. (1989) [5] calculated the roughness height for an average of open 
and closed packed spheres to obtain 

pH d=                             (9) 

0.72 pD d=                          (10) 

0 0.036 pZ d=                         (11) 

If 15 percent of the diameter of the particles were covered by the glue in Ni-
kuradse’s [3] experiment, then both H and D are reduced to only 0.85 of their 
original value above the surface boundary and 

0
10.30
33p pZ d d= ≈  (measured result from Nikuradse) (12) 

Colebrook [4] used this measured result to obtain the 3.7 in Equation (4). A 
15 percent reduction in heights associated with the glued surface seems reasona-
ble. 
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Darwish [10] and Abtew (personal communication) have both applied Equa-
tion (8) to predict Z0 associated with wind and wave interaction. Abtew applied 
Equation (8) directly to get a roughness estimate and Darwish [10, page 128] 
used a constant of 0.148 to reduce Z0 because both the wind and the wave are 
moving together. If both the wind and the wave moved at the same velocity, the 
wave would have no effect on the wind and the wind would have no effect on the 
wave. For this case, the wave height would have zero effect on Z0. Darwish [10] 
found that her model for predicting evaporation from lakes gave optimum re-
sults when she used Equation (8) with an adjustment factor of 0.148 to predict 
Z0. 

From observations of the sea being ruffled by the wind, Lord Kelvin [11] de-
scribed the effects of viscosity and relative velocity upon a fluid surface. The 
movement of one layer of fluid over another causes a boundary disturbance 
commonly known as the Kelvin-Helmholtz (KH) instability [11] [12]. This 
phenomenon is discussed extensively in references by Miles [13], Lamb [14] and 
others. Figure 1 illustrates an assumed bulk roll-up of the fluid interface be-
tween the laminar and turbulent regions similar in form to the KH instability. 
This figure illustrates flow conditions over a smooth boundary. The presence of 
boundary roughness elements compound this bulk roll-up as the laminar region 
moves upward over the roughness elements. This process can be visualized as a 
wave increases in height when it comes ashore on a beach. 

The interface between turbulent flow and the surface of the laminar sublayer 
has to be disturbed and irregular in shape similar to wind moving over waves. 
Immediately above the laminar sublayer eddies are developing and diffusing 
throughout the turbulent layer above. As these eddies protrude into the laminar 
sublayer, the sublayer must speed up or slow down and adjust in depth to ac-
commodate this intrusion. Both the turbulent flow and the laminar sublayer are 
moving in the direction of flow, but the turbulent flow is moving faster than the 
irregular wave forms on the surface of the laminar sublayer. The wave-like irre-
gular shape of the surface of the disturbed laminar sublayer causes a roughness 
that interferes with the turbulent flow above. We will assume that we can model 
this roughness effect with the following equation: 
 

 
Figure 1. Instability and roughness at interface of laminar and turbulent flow. 
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( )0 0.13L L LZ C H D= −                    (13) 

where C = adjustment for a moving roughness (0 < C ≤ 1) 
HL = height of wave of laminar sublayer above the boundary 
DL = average height of laminar sublayer. 
For a symmetrical wave pattern, the maximum value for HL is two times DL, in 

which case the lowest part of the wave contacts the boundary (Figure 2). The 
turbulent flow, thus, contacts the boundary part of the time. It could be argued 
that there is always a small thickness of laminar flow at the boundary because at 
the boundary the velocity of fluid movement must be zero. This boundary effect 
may distort the lower shape of the assumed wave pattern. This distortion should 
not affect the Z0 value, however, because according to Equation (8) by Abtew et 
al. [5], the Z0 is a function of the top half (H-D) of a wave pattern. Interference 
by roughness elements slows the turbulent movement and further bunches the 
laminar flow causing it to amplify the laminar sublayer surface roughness. 
Because HL is twice DL, Equation (13) reduces to 

0 0.13L LZ CD= .                       (14) 

The fluid roughness changes in proportion to the change in average sublayer 
depth. Street et al. [15] (1996, page 334) give the following equation for the av-
erage depth of the laminar sublayer: 

32.8
L

dD
R f

= .                         (15) 

If we substitute the expression for DL from this equation into DL in Equation 
(14), we obtain 

0 4.264L
dZ C

R f
= .                       (16) 

The friction factor, f, is not independent of R for smooth pipe flow. We can, 
 

 
Figure 2. Illustration of apparent roughness at the surface of the laminar sublayer. 
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thus, eliminate f in terms of R. We have a couple of ways to estimate f in terms 
of Reynolds number. The simplest method is to use the Blasius equation [15, 
page 336]: 

0.25
0.316f
R

= .                         (17) 

If we use this relationship to estimate f, Equation (16) reduces to 

0 0.8757.585L
dZ C

R
= .                      (18) 

If we now expand Equation (2) to include both the stationary roughness and 
the roughness associated with the laminar sublayer, the following is obtained: 

0.875

1 0.1132 log
7.585

33
p

d
d Cdf

R

 
 
 =
 + 
 

.                (19) 

This equation reduces to 

0.875

1 12 log
67.1

3.7
pd Cf
d R

 
 
 =
 + 
 

.                (20) 

This equation is very similar in form to those developed by Swamee and Jain 
[7] and Haaland [8] 

0.9
1 12 log

6.9
3.7

pdf
d R

 
 
 =
  +  

  

.               (21) 

Based on the success reported by Haaland (1983) of less than three percent 
error for his results (Equation (21)) and the similarity between Equations (20) 
and (21), it appears that Equation (20) is a valid model to describe the effects of 
surface and fluid roughness on the friction factor in pipe flow. 

It appears that Haaland [8] adopted the ratio of 6.9/R from the relationship 
given by Colebrook [4] for smooth pipes over a half century ago, 

1 11.8log
6.9f
R

 
 
 =
  
    

.                    (22) 

It is interesting that Haaland adjusted the 6.9/R with a power of 0.9, which is 
very similar to 0.875 obtained in the development of Equation (20). 

Equation (20) was tested with data generated using Colebrook’s [4] equation 
and running enough iterations to obtain no change in the friction factor at the 
fifth decimal place. A value of C = 0.062 gave the best results. An R2 of 0.9997 
was obtained. The worst individual percent error relative to the Colebrook val-
ues was 3.4 percent. Only one point out of 357 points had an error in excess of 
three percent. The error for most points was less than one percent. Of the 357 
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points, 33 or 9.2 percent had relative error greater than two percent. 
To improve those results, we return to Equation (16) and substitute Equation 

(6) for f, rather than the Blausius equation. As mentioned earlier, there are al-
ternate ways to estimate the friction factor in Equation (16). Although Equation 
(6) is more complex, it should provide better results. Using Equation 6 to esti-
mate the f in Equation (16) produces 

( )
0 1

4 0.208ln 3000

4.264

2.3

L

R

dZ C

R R
 −
  + 

= .              (23) 

This equation reduces to 

( )

0 11
4 0.208ln 3000

2.81L
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dZ C

R
  
 −   +  

= .                (24) 

After substitution of this new relationship, Equation (19) becomes 

( )
11

4 0.208ln 3000
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which reduces to 
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.             (26) 

This equation was also tested with the generated points from Colebrook’s eq-
uation. A value of 0.0618 for C gave the best results. The R2 remained the same 
at 0.9997. The number of points with greater than three percent error dropped 
to zero. The number of points with two or more percent error dropped to three 
out of the 357 points or 0.84 percent. 

Equations (20) and (26) are acceptable and well within the range of scatter 
reported by Haaland [8] for the experimental data used by Colebrook in his 
analysis. However, there remains an inherent problem in the development of 
both equations pertaining to the conceptual basis for f in the square root of the 
friction factor of the laminar sublayer depth term (Equation (15)). Both the 
Blausius equation (Equation (17)) and Equation (6), used to compute f in Equa-
tions (20) and (26) respectively, are based upon flow passing a smooth boun-
dary. To rectify this problem, Equation (26) can be expanded with an adjustment 
to f. This is done by returning to Equation (16) with the following modification 
in the development: 

adjusted
0

adjusted adjusted

4.264 s
L

s

ff dZ C
f fR f

 
=  

 
 

         (27) 
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where fs = the friction factor for a smooth boundary 
fadjusted = an adjusted friction factor for the actual flow condition. 
This equation allows the appropriate friction factor to be used in the laminar 

sublayer equation by an adjustment factor contained in the parentheses in the 
above equation. This will be shown to be a function of the relative roughness. An 
analysis was made to determine C for only smooth boundary values. The result-
ing C value became 0.0657. The analysis was repeated for a range of relative 
roughness values to determine the adjusted best fit value for the product of va-
riables contained in parenthesis. This process greatly reduced the error between 
the Colebrook generated points and the points predicted with Equation (26). 
Next, the adjusted values relative to the value for a smooth boundary were used 
to calibrate the adjustment as a function of relative roughness. The relationship 
is shown in Figure 3. This fraction is an estimate of the square root of the ratio 
shown in the parenthesis in Equation (27). 

The square root ratio was replaced with the equation developed with this 
analysis: 

400

adjusted

0.1e 0.9 4.9
pd

ps d
df

f d
−

= + − .            (28) 

Substitution of this adjustment factor into Equation (26) gives the following: 
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Figure 3. Effects of relative roughness on the square root ratio of friction factors. 
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Equation (29) predicted values matching results from Colebrook’s equation 
with relatively little error and without the need for iteration. All errors were less 
than one percent. Most errors were less than 0.3 percent. The R2 improved to 
0.99998. This is slightly superior to the R2 of 0.99996 for the correlation of 
Haaland’s equation to values from Colebrook’s equation. Based on a reasonable 
description of the process by which smooth and rough boundaries interact, this 
equation improves upon the work of Haaland both in accuracy and logic. 

4. Discussion 

It is interesting to examine Colebrook’s [4] development of the relationship that 
we cite as Equation (3). On page 139 of his paper, he reports the following: 

Other experiments by Nikuradse show that for smooth pipes 

1
*

1
10

y
V
µ
ρ

= .                       (30) 

If we replace friction velocity V* with the form U(f/8)0.5 [15, page 325, Equa-
tion 9.4] and multiple the numerator and denominator on the right side by the 
diameter of the pipe, we obtain the same relationship as Equation (15) in terms 
of the friction factor and Reynolds number, 

1
8

10
dy

R f
= .                       (31) 

If we now recall that Z0L in Equation (14) and y1 are the same when there is no 
roughness, we get the following relationship: 

8
1.3L

dD
C R f

 
=   
 

.                     (32) 

Equation (32) has exactly the same form as Equation (15) given by Street et al. 
[15, page 334, Equation 9.22]. If we compare the 32.8 from Equation (15) to the 
value inside the parentheses in Equation (32), and solve for C, a value of 0.0663 
is obtained. This value is close to the 0.0657 obtained for the adjusted Equation 
(26). The relative error between these two estimates of average depth for the la-
minar sublayer is between 0.90 and 0.91 percent depending on which one is used 
as reference. The experimental results of Nikuradse [3] seem to confirm that the 
laminar sublayer creates a roughness that interacts with the turbulent flow at the 
intersection of the two flows. 

It is obvious that the experiments of Nikuradse produced key information for 
modeling both the effects of boundary roughness and smooth boundary effects 
to predict the friction factor. This concept explains why Z0 and Z0L are additive. 
Colebrook assumed they were additive to develop his model for the friction fac-
tor but did not offer an explanation as to why they are additive. From Equation 
(8), the additive effect can be explained. The Z0 value in Equation (8) is just the 
difference in height of roughness elements and the average height times the con-
stant of 0.13. Thus when we add Z0 terms in Equation (7), we are adding the 
roughness difference between the average element height and the displacement 
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height of the roughness elements and the difference between the wave height 
and the displacement height or average height of the laminar sublayer. The total 
effect is the sum of these two differences. 

It has been said that trying to teach something you don’t understand is like 
trying to describe a place you have never visited. Based on the information pre-
sented in this paper, the concepts affecting the friction factor are simple. The 
friction factor is simply a function of the Z0 or aerodynamic roughness at the 
boundary. This roughness is the sum of the physical roughness of the boundary 
surface and the apparent roughness from turbulence interacting with the lami-
nar boundary layer. While the mathematical model to describe this process is 
messy, the concept is simple and logical. 

5. Summary and Conclusions 

An attempt has been made to explain how roughness at pipe boundaries affects 
friction. We acknowledge that a laminar sublayer exists between the region of 
turbulent flow and the pipe boundary. Furthermore, we use the roughness on 
the surface of this laminar sublayer to generate a fluid roughness height Z0L. 
This roughness in turn affects the velocity profile in the turbulent region simi-
lar to the manner in which waves affect the wind profile above a water surface. 

This concept was used along with relationships presented in the literature to 
develop mathematical equations for prediction of the friction factor as a func-
tion of Reynolds number and relative roughness as used in the development of 
the Moody Diagram. 

Two equations were developed and tested against data generated from the ac-
cepted standard for predicting the friction factor in the Moody Diagram. The 
first used the Blasius equation to estimate the f factor for smooth pipe flow. The 
second used a more elaborate model to predict f as a function of Reynolds num-
ber for the full range of Reynolds numbers in the Moody Diagram. A final equa-
tion was developed that accurately predicts the friction factor without iteration. 
This equation was achieved by identifying an adjustment factor and relating it to 
relative roughness. The final equation also eliminates the need to iterate to ob-
tain an accurate prediction. 
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