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Abstract 
Maximum entropy likelihood (MEEL) methods also known as exponential 
tilted empirical likelihood methods using constraints from model Laplace 
transforms (LT) are introduced in this paper. An estimate of overall loss of ef-
ficiency based on Fourier cosine series expansion of the density function is 
proposed to quantify the loss of efficiency when using MEEL methods. Pen-
alty function methods are suggested for numerical implementation of the 
MEEL methods. The methods can easily be adapted to estimate continuous 
distribution with support on the real line encountered in finance by using 
constraints based on the model generating function instead of LT. 
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1. Introduction 
1.1. New Distributions Created Using Laplace Transforms 

Nonnegative continuous parametric families of distributions are useful for mod-
eling loss data or lifetime data in actuarial sciences. Many of these families do 
not have closed form densities. The densities can only be expressed using means 
of infinite series representations but their corresponding Laplace transforms (LT) 
have closed form expressions and they are relatively simple to handle. An illu-
stration is given below. 
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Hougaard [1] introduced the positive tempered stable (PTS); the PTS distri-
bution is obtained by tilting the positive stable (PS) distribution. The random 
variable 0X ≥  follows a positive stable law if the Laplace transform is given as 

( ) ( ) ( ) ( )
0

e e d e , 0 1, 0, , .
ssX ss E f x x
αδ

αϕ α δ δ α
−∞− − ′= = = < < > =∫β β β  

The density function ( )f xβ  has no closed form but can be represented as an 
infinite series. 

Now if we create a new distribution using the Esscher transform technique, 
the corresponding new density can be expressed using ( )f xβ  and is given by 

( )
( )

e x f xθ

ϕ θ

−
β

β

, 

and its LT is 

( ) ( )
( )
s

L s
ϕ θ
ϕ θ

+
= β

β

. 

This operation adds an extra tilted parameter θ  to the vector of parameter 
β  of the original distribution and a new distribution is created. This new dis-
tribution is the positive tempered stable (PTS) distribution with Laplace trans-
form given by 

( ) ( ) ( )e exp ,

0, 0, 0 1, 0.

sXL s E s

s

α αδ θ θ
α

θ α δ

−   = = − + −   
> > < < >

             (1) 

The first four cumulants are given by Hougaard [1] with 

( ) ( )( )
( )( )( )

1 2 3
1 2 3

4
4

, 1 , 1 2 ,

1 2 3 .

c c c

c

α α α

α

δθ δ α θ δ α α θ

δ α α α θ

− − −

−

= = − = − −

= − − −
 

For the limiting case 0α +→  we have the gamma distribution. In general, 

the density function has no closed form except for 1
2

α = . For 1
2

α =  we ob-  

tain the inverse Gaussian (IG) distribution with density function given by Hou-
gaard ([1], p.392) as 

( )
1 2
2

3
2

; , exp 2 exp , 0.
π

f x x x
x

x

δ δθ α δθ θ
   

= − − ≥       
 

For other parameterisation for the IG distribution, see Panjer and Wilmott 
([2], p.114). 

Hougaard [1] has given the name power variance for the PTS distribution and 
developed moment estimators. There are many names given to this distribution. 
In the financial literature the name PTS is commonly used, see Schoutens ([3], 
p.56), Kuchler and Tappe [4]. In actuarial sciences, it is also called generalized 
gamma distribution, see Gerber [5]. 

Many new infinitely distributions (ID) can be created using operations on LT 
based on existing distributions. One of them is the power mixture (PM) operator, 
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see Abate and Whitt ([6], p.92). It can be summarized as follows. Assume that 

tX  is an infinitely divisible random variable with LT given by ( )( ) , 0.
t

s tκ ≥  
The LT of tX  is formed using ( )sκ  which is the LT of a continuous nonneg-
ative, ID random variable X . With the introduction of a new random variable 
T  which is also positive continuous and ID with distribution ( )H t , a new 
nonnegative continuous distribution with LT ( )H sκ  can then be created with 
LT 

( ) ( ) ( )( ) ( ) ( )( )( )0
, d log .

t
Hs EP H s H t sη κ κ κ κ

∞
= = = −∫        (2) 

The new distribution is created using the power mixture (PM) operator. The 
PM operator was introduced by Abate and Whitt ([6], p.92). The random vari-
able Y is also called mixing random variable. 

The new distribution obtained will have more parameters than the distribu-
tion of X . For other methods, such as compounding methods for creating new 
distributions, see Klugman et al. ([7]), p.141-1430. For other ID nonnegative 
distributions with closed form LT’s, see Section (1.2) of Luong [8]. ID nonnega-
tive distributions also appear in risk theory as they arise naturally from Lévy 
processes often used to model aggregate claim processes, see Gerber [9], Du-
fresne and Gerber [10] for examples. We often work with ID distribution and for 
completeness, a definition is given below. 

Definition (Lévy-Khintchine Representation). A characteristic function (CF) 
( )sω  of a random variable X  is infinitely divisible if and only if it can be 

represented as 

( ) ( )
2

2 2

1exp e 1 d ,
1

ixv ivx xv ibv G x
x x

ω
∞

−∞

  + = + − −    +   
∫  

( )G x  is a bounded and non-decreasing function with ( ) 0,G −∞ =  see Rao 
[11]. An equivalent expression known as the canonical Lévy-Khintchine repre-
sentation is also used in the literature, see Sato [12]. A similar representation 
using LT for nonnegative distribution instead of CF can be found in Feller ([13], 
p.450). 

1.2. Quasi-Likelihood Estimation 

For statistical inferences, we assume that we have a random sample with n ob-
servations, 1, , nX X . These observations are independent and identically dis-
tributed as X  which has a model distribution with closed form LT ( ) ,L sβ  ( )1, , pβ β ′= β  is the vector of parameters. The true parameter vector is de-
noted by 0β . The density function ( )f xβ  has no closed form which makes 
likelihood estimation difficult to implement. Consequently, we would like to es-
timate β  based on ( )L sβ . Quasi-likelihood among other methods which do 
not rely on the true density can be considered. A brief review of QL estimation is 
given below. 

Godambe and Thompson [14] developed estimating equations theory and ex-
tended quasi-likelihood theory in their seminal paper. They also proposed esti-
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mators using quadratic estimating equations which can be viewed as based on a 
quasi-score functions obtained by projecting the vector of the scores functions 
denoted by 

( )log f x∂

∂
β

β
 

on the linear spanned space by the basis 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

2
1 1 2 2

2
1 2

, ,

.,

QB g x h x E x g x h x E x

h x x h x x

= = − = −

= =
 

Note that ( ) ( )2,E x E x  can be obtained based on the model Laplace trans-
form denoted by ( )L sβ . See Chan and Ghosh [15] for a geometry point of view 
of estimating functions. Godambe and Thompson [14] obtained the most effi-
cient estimators based on quasi-score functions obtained by projecting the true 
score functions on the linear space spanned by QB . They are the most efficient 
quadratic estimating function (EQEF) estimators within the class of quadratic 
estimating function introduced by Crowder [16]. The class includes Gaussian 
quasi-likelihood estimating equations. Consequently, The EQEF estimators are 
more efficient than normal quasi-likelihood (NQL) estimators in general. 

The EQEF estimators are simple to obtain since the basis QB  has only two 
elements. The fact they are based on best approximations of the score functions 
allow them to outperform moment estimators in many circumstances. 

For example, we can consider a parametric model with 3 parameters which 
leads to solve the moment equations, i.e., 

( )( ) ( )( ) ( )( )2 2 3 3

1 1 1

1 1 10, 0, 0.
n n n

i i i
i i i

x E x x E x x E x
n n n= = =

− = − = − =∑ ∑ ∑  

It is easy to see that the quasi-score functions of moment methods belong to 
the linear space spanned by the basis 

( ) ( ) ( ){ }2 2 3 3, ,momB x E x x E x x E x= − − − . 

Even that momB  includes all the elements of QB , the EQEF methods can 
outperform the method of moments due to the quasi-score functions of the 
methods of moments are not the best approximations based on momB . 

Therefore, in this paper we shall emphasize quasi-score functions which make 
use of best linear combinations of elements of a basis to produce quasi score 
functions and propose some bases that can provide better efficiencies than the 
basis formed by linear and quadratic polynomials. The basis should only make 
use of the model LT. Note that moment estimators based on selected points of 
the model LT have been discussed in the literature, see Read ([17], p.151-153). 
The methods appear to be useful for fields of applications which make use ex-
tensively of LT of the distributions such as actuarial sciences or engineering. 

We shall approach in a unified way so that both QL methods and the MEEL 
methods are related to the notion of projection of the true score functions on a 
linear space spanned by a finite base. Within this framework, MEEL estimators 
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are shown to be asymptotically first order equivalent to QL estimators using the 
same base. For the first and higher order properties of empirical likelihood esti-
mators, see Newey and Smith [18], Smith [19]. 

MEEL methods use of informations from the parametric model via con-
straints and there is one to one correspondence between the constraints, mo-
ment conditions and the elements of the basis. Despite that general theory of 
MEEL or QL methods is well established, the question which bases should we 
choose to achieve good efficiencies appears to be a relevant one for applications. 
There is a need to quantify the loss of efficiency as well and consequently in this 
paper, we also propose a measure of loss of efficiency to evaluate whether MEEL 
are appropriate methods for analyzing a data set from a specific field of applica-
tions. 

We hope that the answers will give ideas on how to choose moment condi-
tions or constraints for MEEL estimators. It will also give ideas how to construct 
semi-parametric bounds as defined by Chamberlain ([20], p.311) which can ap-
proximate the parametric bound which is the inverse of the Fisher information 
matrix. We emphasize MEEL methods but offer a unified view for both MEEL 
and QL methods as they are related. Numerical implementations of the MEEL 
methods are also discussed to facilitate practical implementations of these 
methods for applications in actuarial sciences. We shall discuss the quasi-score 
functions of the QD methods in the next section. 

1.3. Quadratic Distance (QD) Estimation 

Let ( ) ( )log ; , 1, ,i i
i

l l f x i p
β
∂

= = =
∂

β β  be the score functions and note that 

( ) 0iE l =  in general. If we try to approximate ( )il β  using a quasi-score func-
tion formed by linear combinations of the functions ( ) ( )1 , , kh x h x , this leads 
to consider quasi-score functions of the form 

( )0 1 , 1, , .a
i ij jj

kl a a h x i p
=

= =+∑ 
 

We shall also impose the condition of unbiasedness of estimating function by 
requiring ( ) 0, 1, ,a

iE l i p= =  . With these restrictions, it is equivalent to con-
sider 

( ) ( )( )( )1 , 1, , .ka
i ij j jjl a h x E h x i p

=
= − =∑ β  

Using vector notations, 

,i
a
il ′= a g  

( ) ( ) ( )( ) ( ) ( )( )( )1 1 , , k kx h x E h x h x E h x ′= − −g β β  

and define 

( ) ( ) ( )( )1 , ., kx h x h x ′=h   

For the best approximation by projecting ( )il β  on the linear space spanned 
by the basis ( ) ( )( ) ( ) ( )( ){ }1 1 , , k kB h x E h x h x E h x= − −β β , we look for the 
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vector of coefficients *
i s′a  which minimizes 

( )2
iiE l ′− a g , 

( ) ( ). .E E= β , the expectation is taken under ( )f xβ . 
Using results of the proof of Theorem 4.1 given by Luong and Doray ([21], p 

150), the optimum vector is *
ia  with 

* 1, 1, ,i
i

E i p
β

−
 ′

′  

∂

= =
 ∂ 



ga β Σ                    (3) 

Σ  is the covariance matrix of ( )xh  under ( )f xβ . We also use the notation 
( )= βΣ Σ  if an emphasis on the dependence on β  is needed.It is easy to see 

that the best approximation is given by 

( ) ( ) ( )* * , 1, , .i i il l i k′= = =a g β β β . 

Note that the elements of *
ia  need to be spelled out explicitly which means 

that the covariance matrix Σ  needs to be known or estimated for applying qu-
asi-likelihood estimation. MEEL estimation does not need this feature and yet 
produces asymptotic equivalent estimators. This is one of the main advantages 
of MEEL estimation over QL estimation. 

Quadratic distance (QD) estimation as given by Luong and Thompson [22] 
can be viewed as a form of quasi-likelihood estimation. Numerically, it might be 
easier to implement QD methods than QL methods defined using estimating 
functions as there is an objective function to minimize for QD estimation rather 
than solving for roots of the QL estimating equations. QD estimation will be 
briefly discussed below. 

Let nu  be a vector defined based on observations, 

( )10 0
d , , d .n kn nh F h F

∞ ∞
′ = ∫ ∫u   

Its model counterpart is given by 

( )10 0
d , , dkh F h F

∞ ∞
′ = ∫ ∫u β β β  

where nF  is the sample distribution function and its model counterpart is de-
noted by Fβ . 

The QD estimators Qβ  are obtained by minimizing the quadratic form de-
fined as 

( ) ( ) ( )1 .n nQ −′= − −u u u uβ ββ Σ  

The equivalent quadratic form is 

( ) ( ) ( )1ˆ ,n nQ −′= − −u u u uβ ββ Σ                   (4) 

Σ̂  is a consistent estimate of ( )βΣ  under the true vector of parameters 0β . 
One can see that this procedure is equivalent to use quasi-score functions ob-
tained by projecting the true score functions on the linear space spanned by B  
since minimizing Expression (3) leads to solve for β  the system of equations 
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( )1
1

ˆ , 0, 1, ,n
ij

i

gE x i p
β

−
=

 ′∂
= = ∂ 

∑ g β βΣ , 

( )
, 1, , .

i i

E h
E i p

β β

  ′∂∂
  = − =
 ∂ ∂ 

′


g β
β  

Observe that the vector * 1ˆˆi
i

E
β

−
 ∂
 
 ∂ 

′
′ =

ga β Σ  is equivalent to *
i
′a . 

From results in Luong and Thompson ([22], p 245) the asymptotic distribu-
tion of Qβ  is given as 

( ) ( )0 0, .L
Qn N− → Vβ β  

( ) 11 −−′=V S SΣ                               (5) 

The matrix ′S  can be expressed as 

( ) ( )

( ) ( )

1

1 1

1

k

k

p p

E h E h

E h E h

β β

β β

 ∂ ∂
… 

∂ ∂ 
 ′ =
 
 ∂ ∂

… ∂ ∂  

S   

β β

β β

. 

The elements of the matrix V  are evaluated under 0=β β , ′S  is the 
transpose of S . 

Following Morton ([23], p.228), the matrix 

( ) ( ) ( ) ( )1
B

−′=I S Sβ β β βΣ                   (6) 

can be defined as the information matrix of the vector of optimum quasi-score func-
tions and it is related to the semiparametric bounds using the moment conditions as 
given by Chamberlain ([20], p.311). The moments conditions can be identified with 
elements of the basis 𝐵𝐵and so are the constraints used for MEEL methods. 

Despite QL and MEEL methods generate asymptotic equivalent estimators, 
there are reasons to consider MEEL methods rather than quasi-likelihood me- 
thods. 

With MEEL methods, we have the following main advantages: 
1) The matrix Σ  which depends on β  in general needs to be specified ex-

plicitly which might restrict elements to be included in the basis. We can only 
include elements with relative simple form for their covariances, otherwise Σ  
will be complicated. 

2) If Σ  is replaced by a consistent estimate Σ̂  under 0β , the estimate is 
often not accurate enough especially when the sample size n is not large enough 
and therefore, Σ̂  tends to be nearly singular even with a few elements in the 
basis, this creates numerical instability when applying QD methods or quasi- 
likelihood methods. 

3) Goodness of fit test statistics with limiting chi-square distributions for test-
ing the model can be constructed in a unified way with MEEL methods. This 
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feature is not shared by QL methods. 
Within the class of empirical likelihood methods, the MEEL methods are nu-

merically more stable than the original empirical likelihood methods (EL) which 
were first introduced by Owen [24]. For asymptotic properties of the empirical 
likelihood methods, see Qin and Lawless [25], Schennach [26], Imbens et al. [27]. 
Also, see the monograph by Owen [28], the book by Mittelhammer et al. ([29], 
p.281-325) and the book by Anatolyev and Gospodinov ([30], p.45-61). It is also 
worthwhile to note that the MEEL methods are less simulation oriented than in-
direct inference methods as proposed by Garcia et al. [31]. Numerical imple-
mentations using penalty function methods are relative simple and will be dis-
cussed in Section 4. We hope that with the exposition of the methods in details 
without too many technicalities, it will encourage people to use these methods in 
practice. There are many fields beside actuarial sciences where LT for the distri-
bution is widely used. With some modifications, such as using constraints from 
the model moment generating function instead of the model LT, the methods 
can be applied to estimate distribution with support on the real line which are 
often used in finance, see these distributions in Fang and Osterlee [42]. 

The paper is organized as follows. The choice of bases for generating con-
straints for the MEEL methods is examined in Section 2. Two families of bases 
using LT are presented in this section. These two families of bases appear to be 
useful for actuarial applications. In Section 3, we review asymptotic properties of 
MEEL methods. An estimate for overall relative efficiency using Fourier cosine 
series expansion is proposed to quantify the loss of overall efficiency when 
MEEL methods are used. In Section 4 we examine numerical issues and penalty 
function methods are advocated to locate the global minimizer which gives the 
MEEL estimators. Simulations are discussed in Section 5. The simulation study 
from the positive tempered stable distribution shows that the MEEL estimators 
are much more efficient than moment estimators originally proposed by the 
seminal paper of Hougaard [1]. Based on the fields of application, often the full 
parameter space is not needed and can be restricted to a subspace by having the 
parameters subject to inequality bounds, the MEEL estimators have the potential 
to attain high efficiency when comparing to the maximum likelihood (ML) by 
using a reasonable number of elements in the basis. Actuarial applications are 
discussed in Section 6. 

2. Choice of Bases 

Using results in Section 1.2, we consider the basis B which can be used for non-
negative continuous distribution or nonnegative distribution with a discontinu-
ity point at the origin with mass assigned to it. The basis B will have the form 

( ) ( ) ( ) ( ){ }2 2, , e , , e .x m xB x E x x E x L L mτ τ
β βτ τ− −= − − − −

      (7) 

We observe that the number of elements in the basis is 2k m= +  and the 
elements can be obtained using the LT of the model and therefore suitable for 
estimation for parametric continuous distribution with density without a closed 
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form expression. 
The number of elements in basis B is finite. It is formed based on the com-

pleteness property of the following basis with an infinite number of elements, 

( ) ( ){ }2e , e 2 , .x xL Lτ τδ τ− −− − β β                   (8) 

This infinite basis can be traced back to the work of Zakian and Littlewood 
[32] who show that a density function can be expressed as an infinite series using 
elements of the infinite basis given by Expression (8) and develop methods to 
recover the density function using selected points of its LT. This might explain 
the potential of high efficiencies of the MEEL estimators constructed using only 
a finite number of elements of B on some restricted parameter spaces. 

The following example will make it clear the notion of restricted parameter 
spaces. For example, we have a model with two parameters given by 1 0θ ≥ ,

2 0θ ≥ . On a restricted parameter space, the parameters are subject to stricter in 
equalty bounds. For example 10 a bθ< ≤ ≤  and 20 c dθ< ≤ ≤  with , , ,a b c d  
are finite positive real numbers. 

Therefore, in practice we might want to fix 10m =  and 0.01τ = , i.e., let 

( ) ( ) ( ) ( ){ }2 2 0.01 0.1, , e 0.01 , , e 0.1 .x xB x E x x E x L L− −= − − − −β β    (9) 

The basis B as indicated above often gives a good balance between numerical 
simplicity and efficiencies of the estimators. 

If the model density has no discontinuity at all then the following basis with 
negative power moment elements can be considered and we shall see negative 
power moments can be recovered using the LT. Using the result given in lemma 
1 given by Brockwell and Brown ([33], p.630), the following infinite basis with 
negative power moment element is again complete in general if τ  belongs to 
some interval with 0τ >  

( ) ( ){ }2 2, , .x E x x E xτ τ τ τ− − − −− −   

Therefore, the following finite basis 

( ) ( ) ( ){
( ) ( )}

2 2

2 2

, , ,

, , m m

C x E x x E x x E x

x E x x E x

τ τ

τ τ τ τ

− −

− − − −

= − − −

− −

             (10) 

can also be considered. 
The elements of a basis should respect the regularity conditions of Assump-

tion of Section (3.2) for the estimators to be consistent and have an asymptotic 
normal distribution. The following example will illustrate this point. In practice 
for example if ( )1E x−  exists and lower negative power moments do not exist, 
we might want to choose C to be 

( ) ( ) ( ){
( ) ( )}

2 2

2 2

, , ,

, , ,m h m h

C x E x x E x x E x

x E x x E x

τ τ

τ τ τ τ

− −

− − − + − +

= − − −

− −

           (11) 

5, 0.1.m τ= =  
The last element is special as it involves h which can be set equal to some 



A. Luong 
 

468 

small positive value, for example let 0.01h =  for the regularity condition 3) of 
Assumption 1 to be met. Obviously, if ( )2E x−  exists then we can let 0h = . 

Now we shall state a proposition which relates negative power moments of a 
distribution to its LT. The results given by the following proposition are more 
general than results given by Cressie et al. [34] who only give results for negative 
integer moments. The general results can be traced back to Theorem 2.1 given 
by Brockwell and Brown ([35], p.215) but it can be difficult to find this reference, 
so we reproduce the results below. 

Proposition 
Suppose that X  is a nonnegative continuous random variable with density 

function and Laplace transform given respectively by ( )f x  and ( )L s  then if 

( )uE x−  exists, it is given by ( ) ( ) ( )1
0

1 , 0u uE x s L s u
u

∞− −= >
Γ ∫ , ( )uΓ  is the 

commonly used gamma function, assuming the integral exists. 
Proof. 

Observe that ( ) ( ) ( )1 1
0 0 0

d e d du u sxs L s s s s f x x
∞ ∞ ∞− − −=∫ ∫ ∫  by switching the or-  

der of integration and note that the inner integral can be expressed as 

( )1
0

e d , 0,u sx us s x u u
∞ − − −= Γ >∫ , 

using properties of a gamma distribution. The integral ( )1
0

, 0us L s u
∞ − >∫  if it 

exists can be evaluated numerically. Most of computer packages provide built- in 
functions to evaluate these integrals numerically.For the positive stable distribu-
tion or gamma distribution negative power moments have closed form expres-
sions, see Luong and Doray ([21], p.149). The bases B and C only provide guide-
lines to form a good basis based on LT. We can also combine or select elements 
from these bases to form new bases. 

3. MEEL Methods 
3.1. Two Stages Distance Methods 

MEEL methods as discussed in chapter 13 by Mittelhammer et al. ([29], p.313- 
326) belong to the class of empirical likelihood methods. The name MEEL is 
given by the authors and MEEL methods are based on the Kullback-Leibler dis-
tance which belongs to the class of distance for discrete distribution introduced 
by Cressie-Read [36]. MEEL methods are also called exponential tilted empirical 
likelihood methods in the literature, see Imbens [37]. The methods are asymp-
totically as efficient as other EL methods. The main reason which leads us to 
emphasize MEEL methods over EL methods is the advantage of the numerical 
stability of MEEL methods, see Schennach [26] for this property. We shall dis-
cuss how to implement MEEL methods with the specifications of constraints ex-
tracted from LT of the original model. These constraints are associated with 
moment conditions or elements of a finite base. MEEL methods can also be 
viewed conceptually as a two stages distance methods based on the Kullback- 
Leibler distance for discrete distributions. The first stage consists of choosing the 
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best proxy discrete model to replace the original parametric model and the sec-
ond stage consists of using the best discrete proxy model to estimate the pa-
rameters of the original model. 

Assume that we have a random sample as in Section 1.2. The vector β  has p 
components, i.e., 

( )1, , .pβ β ′= β  

We are in the situation where the density ( )f xβ  has no closed form expres-
sion but using the LT, we can extract k moments of the original parametric 
model, ( )( ) ( )( )( )1 , , kE h x E h x ′

β β  assuming k p> . 
Clearly, the sample distribution function corresponds to a discrete distribu-  

tion which assigns the mass 1
inp

n
=  at the realized point of the observation 

1, ,i n=   and 1 1n
ii p

=
=∑ . Now instead of using the original model for infer-

ences we shall consider proxy discrete models with mass function ( )iπ β  as-
signing mass at the realized point of observations. Let 

( )1
1 1, , , , ,n n nnp p
n n

′ ′= =  
 

p    

( ) ( )1, , ,nπ π ′= = π π β  

The Kullback-Leibler distance between the two discrete distributions np  and 
π  is defined by the following measure of discrepancy, 

( ) 1

1, ln ln .n
n i iiKL

n
π π

=

  = −   
  

∑pπ  

We also require the proxy model beside satisfying the basic requirement, i.e., 

1 1, 0n
i ii π π

=
= ≥∑ , it also satisfies the same moment conditions of the original 

parametric model, i.e., 

( )( ) ( )( ) , 1, , ,j jE h x E h x j k= = π β  

( )( ) ( )1 .n
j i jiE h x h xπ

=
= ∑π  

Parametric estimation will be carried out in two stages. The first stage is to 
choose the best proxy model by minimizing ( ), nKL pπ  which is equivalent to 
maximize the entropy measure with the above constraints. It leads to maximize 

1 lnn
i ii π π

=
−∑  or equivalently minimize 

1 lnn
i ii π π

=∑                         (12) 

subject to the constraints given by 

1 1,n
ii π

=
=∑                                 (13) 

( )( )1 ; 0, 1, ,n
i j ii g x j kπ

=
= =∑ β               (14) 

with 

( ) ( ) ( )( ); , 1, , .j i j i jg x h x E h x j k= − = ββ           (15) 
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Mittelhammer et al. ([29], p.321) have shown that the Lagrangian of the opti-
mization problem is 

( ) ( )
1 1 1 1

, , ln ; 1
n k n n

i i j i j i i
i j i i

L g xµ π π λ π µ π
= = = =

   
= + + −   

   
∑ ∑ ∑ ∑π λ β  

with , 1, ,j j kλ =   and µ  are Lagrange multipliers. Taking partial derivatives 
with respect to iπ  leads to the system of equation 

( )( )1ln 1 ; 0, 1, , .k
i j j ij

i

L g x i nπ λ µ
π =

∂
= + + + = =

∂ ∑ β      (16) 

The solutions of the equation yield the best discrete proxy model with mass 
function given by 

( ) ( )( )( )
( ) ( )( )( )

1*

1 1

exp ;
, 1, ,

exp ;

k
j j ij

i n k
j j ii j

g x
i n

g x

λ
π

λ

=

= =

−
= =

−

∑
∑ ∑



β β

β β
       (17) 

which is Expression (13. 2.6) given by Mittelhammer et al. ([29], p.321). Note 
that ( )j jλ λ β=  and the j sλ′  are defined implicitly by Expression (16). 

Note that since the *
i sπ ′  are defined implicitly, they depend on β  but do 

not depend on the Lagrange multiplier µ  as it is easy to see that we already 
have *

1 1n
ii π

=
=∑  and * 0, 1, , .i i nπ ≥ =   

Let ( )* * *
1 , , nπ π ′= π , ( )1, , kλ λ ′= λ  

The second stage is to use the KL distance for parametric inferences. At this 
stage, we minimize with respect to β  the expression 

( ) ( )* *
1 lnn

i ii π π
=∑ β β                     (18) 

to obtain the MEEL estimators β̂ . 
The numerical procedures to implement MEEL methods appear to be com-

plicated as the *
i sπ ′  are defined implicitly. Numerical procedures are simplified 

by using penalty function methods and will be discussed in Section 4. With this 
approach, it suffices to perform unconstrained minimization with respect to k + 
p variables given by , 1, , , , 1, ,j ij k i pλ β= =   with k p>  using a suitably 
defined objective function. Therelationships between the vector λ  and the 
vector β  are given by 

( ) ( )( )*
1 , ; 0, 1, ,n

i j ii g x j kπ
=

= =∑ λ β β             (19) 

will be used to build the penalty function part of the new objective function. 
Imbens ([37], p.501-502) also advocated the use of a specific version of pen-

alty function approach to obtain the MEEL estimators. Chong and Zak ([38], 
p.564-571) give details on how to construct penalty function to handle optimiza-
tion under equality and inequality constraints and can be a good reference for 
using penalty methods. We choose to follow more closely penalty methods of 
nonlinear optimization used in the literature as given by Chong and Zak ([38]) 
and suggest strategy to identify the global minimizer vector which is the vector 
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of the estimators. 
The identification of the global minimizer in nonlinear estimation which gives 

the estimates is an important one as most of the algorithms only give local 
minimizers and therefore are vulnerable to starting points used to initialize the 
algorithm, see Davidson and McKinnon ([39], p.232-233) for a strategy using 
different starting points. Andrews [40] proposes to use the criterion functions of 
goodness of fit test statistics to limit the search for the global minimizer in a 
suitable restricted parameter space, this can be handled easily with penalty func-
tion methods with inequality constraints. For performing a global random 
search based on simulated annealing, see Robert and Casella ([41], p.140-146). 

3.2. Asymptotic Properties 
3.2.1. Asymptotic Covariance 
The regularity conditions for the MEEL estimators β̂  to be consistent and to 
follow an asymptotic normal distribution have been given by Assumption 1 in 
Schennach ([26], p.645) who also provides proofs for consistency and asymp-
totic normality of the MEEL estimators. The regularity conditions are repro-
duced below. Also, see Expressions (13.2.10), (13.2.11) of the book by Mittel-
hammer et al. ([29], p.323). 

Assumption 
Assume that: 
1) The true parameter given by the vector 0β  is an interior point of the pa-

rametric space θ  which is assumed to be compact. 
2) 0β  is the unique vector which satisfies ( )( )0 0, 0E x =gβ β . 

3) ( ),xg β  is differentiable with respect to β  and ( )0

2sup h
iE g + < ∞β β  

for some 0, 1, ,h i k> =  . 

4) The derivatives of ( ),xg β , , 1, , ,i

j

g i k
β
∂

=
∂

  also satisfy the local bounde- 

ness condition 
0

2

sup i

j

g
E

δ

β

+ ∂  < ∞
 ∂
 

β β  for some 0δ > when β  is restricted 

to some neighbor- hood of 0β . 

5) The covariance matrix Σ  of ( ),xg β  has rank k . 
Under Assumption 1, then the MEEL estimators given by the vector β̂  is 

consistent and have a multinormal asymptotic distribution, 0
ˆ p→β β , 0β  is 

the vector of the true parameters, ( ) ( )0
ˆ 0, ,pn N− →β β Ω  

( ) ( ) ( ) ( )
00 0

11
, ,

,, ,
x x

E E x x E

−−

== =

     ∂ ∂ ′    =     ′ ∂ ∂         

g g
g g

β ββ β β β

β β
β β

β β
Ω  (20) 

( ) ( ) ( )( ) ( ) ( ) ( )
0

1 0, ; , , ; , , , .kx g x g x E x x
=

 ′ ′= =   
g g g

β β
β β β β β βΣ  

An estimator Ω̂  for Ω  can be defined, 
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( ) ( ) ( )

( )

1

1 1 ˆˆ

1

1
ˆ

,ˆ ˆ ˆ , ,

,
ˆ ,

n ni
i i i ii i

n i
ii

x
x x

x

π π

π

−

= =
==

−

=
=

 ∂   =  ∂    

 ∂
 

′∂ 

′

 

∑ ∑

∑

g
g g

g

β ββ β

β β

β
β β

β

β
β

Ω

 

( )* ˆˆ , 1, , .i i i nπ π= = β  If we let 1ˆ , 1, ,i i n
n

π = = 
,we have another consistent 

estimator for Ω . 
Note that Ω  is identical to Expression (5) which shows the asymptotic 

equivalence between optimum quasi-likelihood estimation and MEEL estima-
tion. Both methods do not need full specifications of the model but only require 
moment conditions of the true model. 

3.2.2. Goodness-of-Fit Test Statistics 
The use of the KL distance also allows construction of a goodness-of-fit test sta-
tistics which follows an asymptotic chi-square distribution. The validity of the 
original model is reduced to the validity of moment conditions, we might want 
to test the null hypothesis specified as ( )( )0 : , 1, ,jH E h x j k= β , the expecta-
tions are under the true parametric model. 

The following test statistics given below is a chi-square test statistics with 
r k p= −  degree of freedom, i.e., 

( )( )
( ) ( ) ( )

*

* * 2
1

ˆ2 ,

1ˆ ˆ2 ln ln .

n

n L
i ii

nKL

n k p
n

π π χ
=

   = − → −      
∑

pπ β

β β
      (21) 

3.3. An Estimate for the Overall Relative Efficiency 

It is clear that only under special circumstances that MEEL methods are as effi-
cient as ML methods due to the use of a finite basis. This can only happen when 
the true score functions belong to the linear space spanned by a finite basis. 
Therefore, it appears to be useful to be able to quantify the loss of efficiency 
when using MEEL methods despite the model density has no closed form ex-
pression to check whether MEEL methods are appropriate for a specific field of 
applications. Fourier series expansion can be useful to approximate the density 
function and will be introduced below. 

The density function can be expanded using Fourier cosine series in the range 
0 x b< < , see Expressions (7-11) given by Fang and Osterlee ([42], p.6), Powers 
([43], p.62), i.e., 

( ) ( ) ( ) ( ) ( )0 1

π~ , cos .a a
jj

jf x f x f x F F x
b

∞

=

 = +  
 

∑β β β β β  

The coefficients ( ) , 0,1, 2,jF j = β  are Fourier coefficients, 

( ) ( )0 0

1 πcos d , 0,
b jF x f x x j

b b
 = = 
 ∫ ββ  
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( ) ( )
0

2 πcos d , 1, 2, .
b

j
jF x f x x j

b b
 = = 
 ∫ ββ  

Regularity conditions for uniform convergence of Fourier series are also given 
by Powers ([43], p.72-73). The derivatives of these coefficients with respect to 

, 1, ,l l pβ =   are given by 

( ) ( )
0, 0

1 πcos d
l

b

l

f xjF x x
b bβ β

∂ ′ =   ∂ ∫ ββ  

( ) ( ), 0

2 πcos d , 1, , , 1, 2,
l

b
j

l

jF x f x x l p j
b bβ β

∂   ′ = = =  ∂   
∫  ββ  

If b  is chosen sufficiently large, we have the following approximations of the 
coefficients using either the characteristic function (CF) or LT, 

( ) ( ) ( )
0

2 π 2 πcos d , 1, 2,j j
j jF F x f x x Re L i j

b b b b
∞     ≈ = = − =    

    
∫ β ββ β  

and ( )0
1F
b

=β . Similarly, 

( )

( )

, ,

0,

2 π ,

0, 1, , , 1, 2, , ,

l l

l

j j
l

jF F Re L i
b b

F l p j M

β β

β

β
∂   ′ ′≈ = −  

  
′ = = = 

ββ

β
 

( )...Re  is the real part of the complex number inside the parenthesis and most 
of the computer packages can handle complex numbers computations. In prac-
tice, we can only use a finite cosine series expansion with M terms. The formulas 
for the coefficients given by Fang and Osterlee ([42], p.6) make use of the cha-
racteristic function but they can be converted easily to expressions using LT. 
Using these truncated series, it leads to approximate the score functions by 

( )
( )

( )
log

, 1, ,

a

a
l

l a

f x
f x

l p
f x
β

β

∂
∂ ∂

= =
∂

  

with 

( ) ( )1

1 πcosa M
jj

jf x F x
b b=

 = +  
 

∑ β , 

( )
,1

πcos , 1, , .
l

a
M

jj
l

f x jF x l p
bββ =

∂  ′= = ∂  
∑   

Therefore, if β  is estimated by β̂ , the Fisher information matrix ( )ˆI β  
can be estimated by ( )ˆ ˆI β  using the original sample or simulated samples from 
the distribution with ˆ=β β . If the original sample is used, 

( ) ( ) ( )

ˆ

1

ln ln1ˆ .ˆ
a a

n i i
i

f x f x
n =

=

′  ∂ ∂
=     ∂ ∂  

∑I

β β

β
β β

 

The estimate overall relative efficiency can be defined based on Expression (20) 
as 
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( ) ( )( )
( )( )

ˆdet

ˆt
ˆ ,

ˆde

ˆ
ARE =

U

I

β
β

β
                    (22) 

( ) ( ) ( )1ˆ ˆˆˆ ˆ−′=U S Sβ β βΣ , det(.) is the determinant of the matrix inside the 
paranthesis, see Expression (3.7) given by Bhapkar ([44], p.471) for overall rela-
tive efficiency using determinants of matrices. Instead of determinants of ma-
trices, the traces of matrices can also be used, this leads to alternative measure of 
overall relative efficiency. Fang and Osterterlee ([42]) show that finite cosine 
Fourier series converge at an exponential rate which suggest that with M ≥ 500, 
the approximation should be quite accurate if the model density is continuous 
using examples given by their paper. The value M can be increased for more ac-
curacy if needed. 

For the value of b, we can let , 10 15,b X Ls L= + ≤ ≤  X  and 𝑠𝑠 are respec-
tively the sample mean and sample standard deviation. Note that ( )ˆARE β  
despite its simplicity can give an idea whether MEEL methods are approriate for 
the data set and the parametric model being considered. 

4. Numerical Implementations 

We shall use penalty function approaches to convert the problem of minimiza-
tion with constraints to a problem of minimization without constraints by in-
troducing a surrogate objective function which is defined suitably. The tech-
niques of penalty function are well described in Chong and Zak ([38], p.560-567). 
They can handle both equalities and inequalities constraints. The new objective 
function can be minimized using a precise direct search based on Nelder-Mead 
simplex methods for example. The simplex methods are derivative free and 
converge to local optimizers, see Chong and Zak ([38], p.274-278). The package 
R has built-in functions to perform simplex algorithm with constraints. 

For illustration, we start with a simple example and extend it to the problem 
for finding MEEL estimators. 

Suppose that we wish to minimize a function ( )1 2,f x x  with two variables 

1x  and 2x  subject to a constraint ( )1 2, 0c c x x= = .The numerical solutions of 
this problem can be found by minimizing the following unconstrained objective 

function given by ( ) ( )( )2
1 2 1 2, , , .

2
Kf x x c x x K+ →∞    In practice setting a 

value for K  being very large gives solutions with numerical accuracy. The pe-
nalty function which makes use of the square function is the second component 
of the objective function. The minimization procedures can give exact solutions 
with the use of a more complicated nondifferentiable penalty function, see 
Chong and Zak ([38], p.570-571). 

For the MEEL minimization problem, we have , 1, ,j j kλ =   depend on β  
and *

iπ  are given by 

( )
( )( )( )
( )( )( )

1 1*

1 1 1

exp ;
, , 1, , .

exp ;

k n
j j ij i

i n k n
j j ii j i

g x
i n

g x

λ
π

λ

= =

= = =

−
= =

−

∑ ∑

∑ ∑ ∑


β
λ β

β
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The vectors λ  and β  are related by the equality constraints given by 

( ) ( ) ( ) ( )* *
1 11 1, , 0, , , , 0.n n

i i k i k ii ic g x c g xπ π
= =

   = = = =   ∑ ∑λ β β λ β β  (23) 

Therefore, we can perform unconstrained minimization using the following 
objective function with respect to 1, , kλ λ  and 1, , pβ β , 

( ) ( ) ( ) ( )( )
( ) ( )( )

2
* * *

11 1

2
*

1

, ln , , ,
2

, , .

n n
i i i ii i

n
i k ii

K g x

g x

π π π

π

= =

=

  + + 
 +   

∑ ∑

∑

λ β λ β λ β β

λ β β
    (24) 

The penalty constant K is a large positive value, setting K = 500000 for exam-
ple. If the absolute value function is used to construct the penalty function then 
we can only use direct search algorithms which are derivative free. 

It is worth to note that only a local minimizer is found each time using these 
algorithms, some strategies are needed to identify the global minimizer. The fol-
lowing procedures can be used: 

1) We might need a starting vector being close to the estimators to initialize 
the algorithm, this is important when working with real data. For example, we 
might want to consider starting the algorithm with simple but consistent esti-
mators given by ˆ

sβ  obtained by minimizing ( )( )2

1 1 ;k n
j ij i g x

= =∑ ∑ β . 
If the number of parameters are not large, global random search can be per-

formed. Simulated annealing (SA) or particle swarm optimization (PSO) are 
commonly used global random search technique, see Chong and Zak ([38], p. 
279-285) to supplement local search algorithm. This problem is less severe for 
local search algorithm using simulated data since the true vector 0β  is known. 
The simple estimators can be considered as quasi-likelihood estimators which 
can make use of a larger basis than the one used to generate MEEL estimators 
since there are less numerical difficulties to compute the simple estimators, there 
is no need to estimate 1−Σ . However, these quasi score functions are no longer 
orthogonal projections on the larger basis used. Based on remark 2.4.3 given by 
Luong and Thompson ([22], p.245) which gives the asymptotic covariance ma-
trix of Sβ , the overall relative efficiency can be defined as  

( )
( )( )
( )( )1

det
,

ˆt
ˆ

de

S S

S

S

ARE
−

=
V

I

β
β

β
 

( ) ( ) ( )1 11
S S

− −−′ ′ ′=V S S S S S Sβ Σ , 

evaluated at 

S=β β . 
2) For finding the global minimizer Andrews ([40], p.919-921) has suggested 

the use of the criterion function of a goodness of fit test statistics to identify good 
starting vectors by requesting a good staring vector ( )0β  must satisfy the ine-
quality 

( ) ( )( )( ) ( )0 0* 2
0.952 , , ,nnKL k pχ≤ −pπ λ β              (25) 

( )2
0.95 k pχ −  is the 0.95 percentile of the chi-square distribution with k p−  
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degree of freedom, k p> . We might want to minimize not only with the equal-
ity constraints given by Expression (23) but also with the inequality constraint 
given by Expression (25) 

( )( ) ( )* 2
0.952 , , .nnKL k pχ≤ −pπ λ β  

With penalty function methods, we can define a penalty function to handle 
the inequality constraint as 

( )2

2
H c+ , ( )( ) ( )2

*max 2 , , , 0q
n

k p
c KL

n
χ

+

 −
= −  

 
pπ λ β , 

H is again a penalty constant. 
This leads to find the global minimizer of a new objective function given by 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

2
* * *

11 1

2 2*
1

, ln , , ,
2

, , .
2

n n
i i i ii i

n
i k ii

K g x

Hg x c

π π π

π

= =

+
=

  + + 
 + +  

∑ ∑

∑

λ β λ β λ β β

λ β β
   (26) 

We might also want to repeat the procedures with different starting vectors 
and identify the global minimizer as the value of the vector which yields the 
overall smallest value of 

( ) ( )* *
1 , ln , .n

i ii π π
=∑ λ β λ β                   (27) 

5. Simulations 
5.1. Simulations from the PTS Distribution 

The representation of a new distribution created by performing operation on LT 
of the original distribution often suggests how to simulate from the new distri-
bution if we can simulate from the original distribution. For example, to simu-
late from the tilted density ( )tf x  obtained by applying the Esscher operation 
on ( )f x , it suffices to simulate from the original density ( )f x . Since we have 

( ) ( )
( )

e x
t f x

f x
θ

κ θ

−

= , ( )sκ  is the LT of the density ( )f x , we have the following 

inequality ( ) ( ) ( )
1, .tf x cf x c

κ θ
≤ =  

Therefore, if we know how to simulate an observation from the density ( )f x , 
we can apply the acceptance and rejection method to obtain simulated observa-
tions from ( )tf x . This is known as the acceptance and rejection method, see 

Robert and Casella ([41], p.51-57) for example. The constant ( )1
c

κ θ=  is the 

acceptance probability which is useful for planning the sample size which is ob-
tainable from the simulations. Note that this probability decreases as θ  in-
crease making it difficult to obtain a large sample from ( )tf x  for large values 
of θ . 

The acceptance and rejection method allows a simple way to simulate obser-
vations from a positive tempered stable (PTS) as it is easy to simulate from 
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the positive stable distribution, see Devroye ([45], p.350). Consequently, 
with a simple algorithm to simulate from the PTS distribution, it allows us to 
test the performance of the MEEL estimators versus the moment estimators 
originally proposed by Hougaard ([1], p.392) for the PTS distribution. The 
moment estimators were proposed since it is difficult to obtain the density 
function for the PTS which prevents the use of likelihood estimation. 

5.2. A Limited Simulation Study 

In this section, we illustrate the implementation of the inferences techniques 
by considering the MEEL estimators versus the moment estimators for the 
PTS family using simulated samples. The PTS distribution was introduced by 
Hougaard [1] with Laplace transform given by Expression (6) as 

( ) ( ) ( )exp , , 0, 0 1, ., ,L s s α αδ θ θ δ θ α δ α θ
α

  ′= − + − > < < =  
β β  

Hougaard ([1], p.392) suggested the following moment methods to estimate 
the parameters. Let 1 2 3, ,c c c  be respectively the first, second and third empiri-
cal cumulants, i.e., 1c X=  is the sample mean and  

( )1 , 2,3.
jn

ii
j

X X
c j

n
=

−
= =∑  

Define 
2
2

3 1

cR
c c

= , if 2 0c >  and define 0R = , if 2 0c = . The moment esti-  

mators obtained by matching cumulants for the parameters ,α θ  and δ  are 
given respectively by 

( ) ( )11
1

2

112 , ,
1

.
c

c
R c

αα
α θ δ θ

−−
= − = =

−



  

  

We compare the performance of the moment estimators with the MEEL esti-
mators using the base 

( ) ( ) ( ) ( ){ }2 2, , e , , ex m xB x E x x E x L L mτ ττ τ− −= − − − −β β , 

5, 0.01.m δ= =  
We can only have access to laptop computer so the study is limited. The sam-

ple size used is approximately with n = 5000 and we draw M = 100 samples in 
our simulation. The focus is on the following ranges for the parameters, we fix 

1θ = , 0.2 0.8α< < , 1 10δ≤ ≤ . Overall the MEEL estimators are much more 
efficient than the moment estimators for the range of the parameters considered. 
The moment estimators do not seem to perform well either for all the parame-
ters values selected outside the range. The overall relative efficiency is defined as 

( ) ( ) ( )
( ) ( ) ( )

ˆ ˆˆ
.

MSE MSE MSE
ARE

MSE MSE MSE

δ α θ

δ α θ

+ +
=

+ + 



 

The mean square errors (MSE) are estimated using simulated samples. The 
mean square error of an estimator π̂  for 0π  is defined as 
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( ) ( )2
0ˆ ˆ .MSE Eπ π π= −  

The simulation study is not extensive and more should be done but it does 
suggest the potential of the MEEL methods. 

Some results are summarized using Table 1 to keep the paper within a 
reasonable length and they are displayed below to give an idea on the gains 
on using the MEEL method instead of moment methods. 

Based on the theory the MEEL estimators cannot be as efficient as the ML 
estimators over the entire parameter space since only finite number of ele-
ments in the base is used. Howewer, the theory suggest that the methods 
might still have high efficiencies on subspaces where parameters are subject 
to inequality bounds. The estimate of overall relative efficiency given by Ex-
pression (22) might give some ideas whether the methods are recommended. 
The following considerations might be useful to assess whether the use of 
MEEL methods are appropriate for a parametric model and data sets which 
come from a specific field of applications: 
 
Table 1. Asymptotic relative efficiencies comparisons between MEEL estimators and 
moment (MM) estimators. 

α = 0.4 

δ θ  0.01 0.02 0.03 0.04 0.06 0.08 0.10 

1 0.000 0.006 0.006 0.014 0.030 0.038 0.033 

2 0.002 0.001 0.001 0.002 0.027 0.050 0.038 

3 0.002 0.040 0.038 0.069 0.069 0.103 0.048 

4 0.001 0.067 0.029 0.027 0.091 0.128 0.113 

6 0.014 0.072 0.117 0.112 0.084 0.160 0.119 

8 0.016 0.004 0.000 0.001 0.005 0.001 0.004 

10 0.000 0.000 0.004 0.003 0.000 0.002 0.0018 

 

α = 0.6 

δ θ  0.01 0.02 0.03 0.04 0.06 0.08 0.10 

1 0.008 0.017 0.030 0.028 0.087 0.145 0.195 

2 0.009 0.009 0.018 0.011 0.040 0.056 0.081 

3 0.010 0.024 0.041 0.040 0.045 0.073 0.087 

4 0.028 0.094 0.139 0.053 0.118 0.176 0.187 

6 0.068 0.112 0.157 0.182 0.186 0.202 0.399 

8 0.065 0.116 0.111 0.164 0.192 0.094 0.075 

10 0.007 0.006 0.004 0.006 0.005 0.005 0.003 

( )
( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆMSE MSE MSE
ARE MEEL  MM .

MSE MSE MSE
vs

θ δ α

θ δ α

+ +
=

+ + 



 Legend: Tabulated values are estimates of ARE 

(MEEL vs MM) based on simulated samples from the chosen parameters δ, θ with α = 0.6. 
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1) Define a restricted space based on the fields of applications, also obtain Sβ  
and use the estimate for overall relative efficiency to evaluate the loss of effi-
ciency of MEEL methods in a neighborhood of Sβ  which in general should be 
nested inside the restricted space of interest. 

2) For efficiencies of MEEL methods, we shall try to include as many elements 
in a finite base as possible subject to numerical limitations and try different value 
for τ  which control the spacing of the functions in the basis to see whether 
there is any improvement on efficiency in a neighborhood of Sβ . 

6. Actuarial Applications 

Pricing of insurance contracts is one of the main objectives in actuarial sciences. 
A contract defines a random loss function ( )g x , X  is the individual loss 
random variable for one unit of time often assumed to be nonnegative and fol-
low a parametric model with distribution function ( )F xβ  and LT ( )L sβ . The 
pure premium is the following expectation under the true vector 0β , i.e., 

( ) ( )( )00 .P P E g x= = ββ  

P must be estimated using data and therefore, 0β  needs to be estimated first 
then subsequently analytical methods or simulation methods can be used to ap-
proximate the premium. If MEEL methods are used, the parametric families 
with closed form LT can be validated by means of goodness-of-fit tests. 

For insurance, the stop loss premium is defined as ( ){ }0
P E X d

+
= −β , 

( ) ( )max ,0X d X d
+

− = − . The stop loss premium can be expressed using 
means of distribution functions instead of expectations, see Expression (8) given 
by Luong ([8], p.543) for analytical methods to evaluate the stop loss premium. 

If sampling from the distribution is possible then the pricing of the contracts 
can also be approximated using simulations based on an estimate of 0β , it in-
volves drawing sample based on the estimated parameters. For example, it is not 
difficult to simulate from a compound Poisson distribution despite its compli-
cated density function which can only be expressed in series. Clearly, once the 
parameters for the compound Poisson distribution are estimated pricing of in-
surance contracts can be done via simulations. 

7. Conclusion 

We conclude here that MEEL methods appear to be useful for inferences and 
have been considered to be active fields of research for the last twenty years in 
econometrics yet they do not seem to receive much attention in actuarial 
sciences. When the methods are oriented toward actuarial applications and since 
LT is widely used in actuarial sciences, it is natural to consider extracting mo-
ment conditions from LT. It is shown that MEEL estimation is equivalent to QL 
estimation based on the best quasi score functions obtained by projecting the 
true score functions on the linear space spanned by a basis specified by the mo-
ment conditions. Based on these considerations, two families of bases are pro-
posed in this paper to generate MEEL methods with the objective to achieve high 
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efficiencies for actuarial applications. In general the MEEL methods using these 
bases are more efficient than QL methods based on quadratic estimating func-
tions and methods of moments. With finite bases, in general the MEEL methods 
can attain near full efficiency on restricted parameter spaces only. MEEL meth-
ods can still be very attractive if depending on the fields of applications; we es-
sentially work with these restricted spaces and it is important to measure the loss 
of efficiency to verify the appropriateness of the methods for the field of applica-
tions. The methods can easily be adapted for estimation of continuous distribu-
tions with support on the real line encountered in finance by using constraints 
extracted from model moment generating function instead of LT. 
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