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Abstract 
This paper considers the problem of the HIV/AIDS Infection Process filtering 
characterized by three compounds, namely, the number of healthy T-cells, the 
number of infected T-cells and free virus particles. Only the first and third of 
them can be measurable during the medical treatment process. Moreover, the 
exact parameter values are admitted to be also unknown. So, here we deal with 
an uncertain dynamic model that excludes the application of classical filtering 
theory and requires the application of robust filters successfully working in 
the absence of a complete mathematical model of the considered process. The 
problem is to estimate the number of infected T-cells based on the available 
information. Here we admit the presence of stochastic “white noise” in cur-
rent observations. To do that we apply the Luenberger-like filter (software 
sensor) with a matrix gain, which should be adjusted at the beginning of the 
process in such a way that the filtering error would be as less as possible using 
the Attractive Ellipsoid Method (AEM). It is shown that the corresponding 
trajectories of the filtering error converge to an ellipsoidal set of a prespecified 
form in mean-square sense. To generate the experimental data sequences in 
the test-simulation example, we have used the well-known simplified HIV/ 
AIDS model. The obtained results confirm the effectiveness of the suggested 
approach. 
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1. Introduction 

Many aspects of phenomena critical to our lives cannot be measured directly. 
Fortunately, models of these phenomena, together with more limited obser- 
vations frequently allow us to make reasonable inferences about the state of the 
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systems that affect us. The process of using partial observations and a stochastic 
model to make inferences about an evolving system is known as stochastic state 
estimation (or filtering). In this paper, we consider the problem of the HIV/ 
AIDS Infection Process filtering characterized by three compounds: the number 
of healthy T-cells, the number of infected T-cells and free virus particles. Only 
the first and third of them can be measurable during the medical treatment 
process. The problem is to estimate the number of infected T-cells (to create a 
software sensor) based on the available information. Here we admit the presence 
of stochastic “white noise” in current observations as well as in the dynamics of 
other components. 

1.1. HIV/AIDS Infection Process  

Human Immunodeficiency Virus (HIV) stands for human immunodeficiency 
virus. If left untreated, HIV can lead to the disease AIDS (acquired immuno- 
deficiency syndrome). Unlike some other viruses, the human body can’t get rid 
of HIV completely. So once you have HIV, you have it for life. That’s why the 
problems of HIV/AIDS are very important from medical and human points of 
view. HIV attacks the body’s immune system, specifically the CD4 cells (T-cells), 
which help the immune system fight off infections. If left untreated, HIV reduces 
the number of CD4 cells (T-cells) in the body (directly and indirectly destroys 
CD4 + T-cells), making the person more likely to get infections or infection- 
related cancers. Over time, HIV can destroy so many of these cells that the body 
can’t fight off infections and disease. These opportunistic infections or cancers 
take advantage of a very weak immune system and signal that the person has 
AIDS, the last state of HIV infection. The medicine used to treat HIV is called 
antiretroviral therapy or ART. If taken the right way, every day, this medicine 
can dramatically prolong the lives of many people with HIV, keep them healthy, 
and greatly lower their chance of transmitting the virus to others. Today, a 
person who is diagnosed with HIV, treated before the disease is far advanced, 
and stays in treatment can live a nearly as long as someone who does not have 
HIV. 

The dynamic HIV/AIDS have been studied by many researchers (see, for 
example, [1] [2]). Experimental data show that the treated disease progression 
rate is significantly varied between individuals: from two weeks up to 20 years. 
Figure 1 shows the natural history of HIV infection dynamics. One can see that 
if an individual has been received HIV virus as primary infection, a number of 
HIV virus will dramatically increase in the first 30 days (resulting CD4 + T-cell 
reduction). Then after the primary infection period, a body builds HIV anti- 
bodies for agent virus so that, the infection still stabilizes an approximate steady 
state. In fact, up to now no effective cure for HIV exists, but nevertheless by 
some proper treatment and medical care, HIV can be controlled. To realize these 
treatments on-line information data are extremely required. The special physic 
equipment for these on-line measurements is very expensive and unavailable in 
many health clinics. So, the problem of designing the cheap and easy realizable  



H. Alazki, A. Poznyak 
 

41 

 
Figure 1. The HIV infection dynamics. 
 
on-line software sensors seems to be very actual. 

The model is proposed to include the activation process of CD4 + T-cells and 
their intervention in the HIV infection dynamics. Let T be the average number 
of CD4 + T-cells at time t, aT  the average number of CD4 + T-cells activated 
and specialized in identifying viral proteins, T ∗  the average number of infected 
CD4 + T-cells at time t and V the average HIV concentration at time t. Assume 
that cells increase at a constant rate σ  and die in proportion to their size with 
death rate µ , so the average number of cells that die at time t is given by Tµ . 
Similarly, the specialized CD4 + T-cells are activated at a mean dTV , a term 
that describes the encounter of the T cells with infectious viral particles. It is 
assumed that specialized CD4 + T-cells also die at an average aTµ . If the 
population of Tes cells infected by the virus with a probability β , the principle 
of mass action allows to establish that the average number of cells that are 
infected at a time t is TVβ , corresponding to a classical consideration in this 
type of models. In the same way CD4 + T-cells Specialized aT  are susceptible 
to infection and are infected at an average of aTψ  at a time t. 

Based on the results of ([1] [2]) we may conclude that the current of an AIDS 
person state at time 0t ≥  can be characterized by the following three com- 
pounds: 
• ( )1x t -the number of healthy white blood cells (known as T-cells), 
• ( )2x t -the number of infected T-cells, 
• ( )3x t  represents free virus particles (viruses are not classified as living 

organisms because they can not replicate without a help of a host cell).  
The states ( )1x t  and ( )3x t  are measurable during the treatment process, 

but ( )2x t  not. 
Problem. Based on the available measurements ( ) ( ) [ ]{ }1 3, : 0,x x tτ τ τ ∈  

obtain the state estimate ( )2x̂ t  which would be sufficiently closed (in some 
probabilistic sense) to the real state ( )2x t . In other words our aim is to design a, 
so-call, software sensor for the on-line estimation (or filtering) the unmeasured 
coordinate ( )2x t . 

Remark 1. Notice that any real mathematical model describing the exact 
behavior of the state vector ( ) ( ) ( ) ( )( )1 2 3: , ,x t x t x t x t=

  is not available now. 



H. Alazki, A. Poznyak 
 

42 

Some simplified mathematical model, given in [1], we will use here to generate 
( )x t  during the test-numerical simulation but not for the filter designing.  

1.2. Briefly on the Most Popular Filtering Methods  

All classical filtering methods require the exact knowledge of the dynamic model 
which components are intended to be estimated. The main of them are as 
follows. 

The Wiener (frequency domain) filtering. The origins of the filtering problem 
in discrete time can be traced back to the works [3] and [4]. In the continuous 
time case the first analysis of the optimal state estimation of dynamic systems in 
the presence of noise was given in [5]. The results were included in a classified 
National Defense Research Council report issued in January/February 1942. 
Subsequently declassified, it appeared as a book in 1949. 

The Kalman-Busy-Stratonovich (time-domain) filtering. The next major deve- 
lopment in stochastic filtering was the introduction of the linear filter. In this 
case, the signal satisfies a stochastic differential equation with linear coefficients 
and Gaussian initial condition. The linear filter can be solved explicitly in a 
finite-dimensional format: the distribution of the state estimate is shown to be 
Gaussian, and hence completely determined by its mean and its covariance 
matrix. These were the reasons for the linear filter’s widespread success in the 
1960s. Bucy and Kalman were the pioneers in this field. Kalman was the first to 
publish in a wide circulation journal. In [6], he solved the discrete time version 
of the linear filter. Bucy obtained similar results independently [7]. Stratonovich 
suggested the same filter, but for another type if stochastic integrals [8]. 

The extended Kalman filter (EKF). Following the success of the linear filter, 
scientists started to explore different avenues. Firstly they extended the appli- 
cation of the Kalman filter beyond the linear/Gaussian framework. The basis of 
this extension is the fact that, locally, all systems behave linearly. So, at least 
locally, one can apply the Kalman filter equation. This gave rise to a class of 
algorithm called the extended Kalman filter [9]. At the time of writing these 
algorithms, most of which are empirical and without theoretical foundation, are 
still widely used in a variety of applications. 

The ensemble Kalman filter (EnKF). The progress in data assimilation is 
related with both increased computational power and the introduction of 
techniques that are capable of handling large amounts of data and more severe 
nonlinearities. The EnKF has been introduced to petroleum science recently [10] 
and, in particular, has attracted attention as a promising method for solving the 
history matching problem. 

The singular evaluative interpolated Kalman filter (SEIKF). Inherent data and 
model uncertainties render the history-matching inverse problem extremely 
non-unique. Therefore, a reliable uncertainty quantification framework for pre- 
dicting dynamic performance requires multiple models that match field pro- 
duction data. An efficient variant of the ensemble Kalman filter, namely, 
Singular Evaluative Interpolated Kalman Filter (SEIKF) is applied to the multi- 
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model history-matching problem [11]. 
Advanced developments in the time domain filtering. In the mid-1960s in 

[12], [13] there were derived and analyzed the stochastic models using the Itô 
(and not Stratonovich) calculus. In [14] there was provided the first rigorous 
derivation in the case of a general observation process where the signal and 
observation noises may be correlated. In 1968, in [15] there was introduced the 
innovation approach to linear filtering. This new method for deducing the 
filtering equations was extended in the early 1970s in [16] and [17]. Similarly, 
the other type of the filtering equation was introduced in the same period in [18] 
[19] [20] [21], is consequently referred to as the Zakai or the Duncan-Mor- 
tensen-Zakai equation. The stochastic partial differential equations (SPDEs) 
associated with the filtering equations were rigorously analyzed and extended in 
the late 1970s in [2] [22] [23]. This research was continued in [1] [24] [25]. 
Much of the work carried out in the 1990s has focussed on the numerical 
solution of the filtering problem. 

H ∞  stochastic filtering. The problem of applying H ∞  filters on stationary, 
continuous-time, linear systems with stochastic uncertainties in the state-space 
signal model was considered in [26] [27] [28]. 

1.3. Main Contribution of the Paper  

In this paper we follows the approach suggested in [29] [30]. 
• This paper considers the problem of designing a robust model-free filter for a 

respectively wide class of uncertain nonlinear stochastic system where 
classical filtering theory can not be applied. 

• The behavior of these systems is given in Itô form and contains both a 
regular part, which assumed to be the Quasi-Lipschitz type but unknown 
exactly, as well as a stochastic part generated by a standard vector Wiener 
process. 

• Filtering itself is suggested to be realized by a Luenberger-like filter with a 
matrix gain which should be adjusted in the beginning of the process in such 
a way that the filtering error would be as less as possible. 

• It is shown that the corresponding trajectories of the filtering error converge 
(in the mean-square sense) to an ellipsoidal set of a prespecified form. 

• We show that the HIV/AIDS infection process can be effectively realized by 
the suggested model-free technique based on the, so-called, Attractive Elli- 
psoid Method [31].  

2. Filtering Problem for a Class of Nonlinear Systems and Its  
Solution  

2.1. Class of Possible Dynamics for the Main State Variables of HIV 
Dynamics  

The HIV dynamics (human immunodeficiency virus (HIV) causes the acquired 
immune deficiency syndrome, knows as AIDS) were analyzed in [32] [33] [34]. 
It captures the time rate of healthy, infected white blood cells (T-cells) and the 
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number of HIV viruses. The presented analysis is limited in the sense that it 
“cannot take into the account patient factors as physiological/genetic level, 
physicochemical factors at cell-protein-viral interactions level, and viral factors 
that relate to the various HIV strains and clades”. Based on the corresponding 
numerical data it is possible to conclude that the dynamics of the HIV/AIDS 
Infection Process can be completely (without consideration the limiting factors 
mentioned above) described by the following systems of stochastic differential 
equations: 

( )
( )

0 0, ,

,
t t t

t t t

x f x t x x

y g x t

σ

η

= + =

= +








                    (1) 

where 

( )1, ,, , n
t t n tx x x= ∈   is the state vector of the system in time 0t ≥  which 

may contain unmeasurable components, 

( )1, ,, , p
t t p ty y x= ∈ 


 is the output vector of the system in time 0t ≥  

which is completely measurable components (available), 
the vector functions : ,n nf +× →    : n pg +× →    and the matrices 

: m nσ →   and : k pη →   are nonlinear mappings which are admitted to 
be exactly known a priory, 

m
t ∈  and k

t ∈  are standard vector white noises with independent 
components, that is,  

{ } { }
{ } { }

E 0, E 0

E , E
t t

t t m m t t k kI I× ×

= =

= = 

 

  
                (2) 

Notice that in our case of the HIV/AIDS Infection Process we have 

3, 2n m p k= = = =                         (3) 

Remark 2. The system (1) is written in the, so-called, engineering format. 
The rigorous mathematical description (which we are working with) is given in 
Appendix. It is represented by the system of stochastic differential equations of 
the Itô type.  

2.2. The Class of Uncertainties  

Here we suppose that the uncertain vector functions ( ),f x t  and ( ),g x t  
belong to the class of the quasi-Lipschitz functions, that is, 

( ) { ( ) }
( ) { ( ) }

2 2
0 1 0 1

2 2
2 3 2 3

, , : : , ,

, , : : , ,

n n n

n p n

f A c c f f x t Ax c c x x t

g C c c g g x t Cx c c x x t

+ +

+ +

∈ = × → − ≤ + ∀ ∈ ∈

∈ = × → − ≤ + ∀ ∈ ∈

    

    




 (4) 

The physical sense of the “linear represents” A and C of the classes ( )0 1, ,A c c  
and ( )2 3, ,C c c  is discussed in [30] and [31]. The parameters of these are 
supposed to be known. If a considered dynamics is bounded (exactly this case we 
have in our problem) then 1 3 0c c= = . 

To clarify the parameters of the Quasi-Lipschitz mapping class: 
-The parameters A, 0c  and 1c  (the same as for 2,C c  and 3c ) have the 
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following interpretation: 
-A characterizes the gradient of a linear mapping Ax  and may be considered  

as an approximation of ( )f x
x
∂
∂

 within the region with large enough x , 

- 0c  is the upper estimate of ( ) 2
0f , or in other words, the upper estimate 

of possible velocity of the plant at the origin, 
- 1c  characterizes the growth rates of ( )f x  as x →∞  which is not faster 

than linear function of x . 
The following properties will be required hereafter: 
The pair of matrices ( ),C A  is observable.  
The stochastic system (1) is quadratically stable, that is, 

{ }2lim sup t
t

E x X +

→∞
≤ < ∞                     (5) 

2.3. The Structure of the Filter  

The state vector tx  will be estimated by the Luenberger-type filter 

( ) 0 0
d ˆ ˆ ˆ ˆd d d ,
d t t t tx Ax t L y Cx t x x
t

= + − =                  (6) 

where ˆtx  is referred to as the “state estimate” of tx  and n pL ×∈  is called 
the observer-gain matrix to be designed. Here the initial condition of the 
dynamic filter 0x  (6) may differ from the initial conditions 0x  of the system 
(1). 

Now our problem can be formulated in the following manner: find the ob- 
server-gain matrix L which provides the closeness of ˆtx  to tx  in some 
probabilistic sense. Below we will give the formal formulation. 

2.4. The Best Selection of the Observer-Gain Matrix  

The next definition will be in use hereafter. 
Definition 1. The ellipsoid 

( ) { }0, : : 1nP x x Px= ∈ ≤   

(with the center point in 0 and the ellipsoidal matrix 0 n nP P ×< = ∈  
(positive definite)) is said to be attractive for the stochastic trajectories { }tx , 
defined on filtered probability space { }( )0

, , ,t t≥
Ω     (where σ-algebra 0  

contains all the P-null sets from  ): 
1) In mean-square sense, if 

{ }lim sup 1t t
t

E x Px
→∞

≤  

2) With probability one (or almost sure), if for any time-subsequences { }kt  
( )0,1,k = 

 almost all random sequences { }kt
x  leave this ellipsoid only a 

finite number of times, that is,  

( )
. .

0
: 1

k k

a s

t t
k

x Pxχ ω
∞

=

> < ∞∑   

where ( )χ   is the characteristic function of the event  , namely, 
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( )
1 if is true
0 if if not

A
χ


= 


  

Let us introduce the “measure of closeness” ( )tJ L  as the filtering-error 
ˆ:t t te x x= −  weighted covariation matrix, namely, 

( ) { }: Et t filt tJ L e P e=                         (7) 

where the weighting matrix should be done as much as possible satisfying  

0 filt filtP P< =                            (8) 

(the biggest eigenvalues of filtP  correspond the smallest attractive ellipsoid 
semi-axis). So, we intend to obtain the gain-matrix L which asymptotically guar- 
antee the boundedness (in mean-square sense) of all trajectories in an attractive 
region containing the origin, and, moreover, which minimize the “size” (in this 
case, the trace of the inverse ellipsoidal matrix) of the attractive ellipsoid, con- 
taining this bounded region. 

Below we formulate the 1-st main result. 
Theorem 1 (on the mean-square attractive ellipsoid). If the assumptions 

H1-H2 are fulfilled and additionally, the following matrix inequality holds for 
some L, 0P P= >  and some positive scalars ,α ε   

( )
( )

2 2
, | , : 0

0
0

p p

n n

P A LC I A LC I P PL P
W P L

PL I
P I

α α

α ε
ε

ε
×

×

    − + + − + −    
    = ≤ − 

 − − 



  (9) 

then the ellipsoid 

( ) { }0, : | 1n
filt filtP e e P e= ∈ ≤                   (10) 

with the center in the origin 0e =  with  

( )
( ) ( ) ( )

( ) { }
( ) ( ) ( )

0

2 2
0

0 2 1 3

, ,

, , ,

, : tr

:

filtP P
P L

P L P L

P L L PL P

c c c c X

α
β ε

β ε β γ ε

β η σ

γ ε ε +

=

= +

= +

 = + + + 



                (11) 

is attractive in mean-square sense, that is, 

( )
2

1 0t tJ L →∞+
 − →                       (12) 

where 

[ ] if 0
:

0 if 0
z z

z
z+

≥
=  <

                       (13) 

The proofs of this and the next theorem are in Appendix. 
The 2-nd main result is as follows: 
Theorem 2 (on the best observer-gain matrix) The best observer-gain ma 
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matrix L∗  is given by 

( ) 1
L X Y

−∗ ∗ ∗=                            (14) 

where X ∗  and Y ∗  are the solution of the following constraint optimization 
problem  

( ) ( ){ } ( )( )2 21

>0, >0, >0, ,
, | , : ln tr max

2 2
0

0
0

0

X Y H
S X H H X

X A I A I X YC C Y Y X

Y I
X I

H Y
Y X

α ε
α ε α η σ γ ε

α α

ε
ε

−

= − + + →

     + + + − − −          ≤  −   − −  

  
≥  

  

  





 (15) 

2.5. On the Numerical Solution of the Constraint Optimization  
Problem  

The solution of the suboptimal constraint optimization problem (15) can be 
obtained by the SEDUMI and YALMIP toolboxes of MATLAB which effectively 
use the Interior Point Method (see, for example, the details in [31]). These 
toolboxes are used at each step of the following iterative procedure: 

1) First, we fix the scalar parameters ,α ε  and solve the problem (15) varying 
only the matrix variables ,X H  and Y  using the toolboxes mentioned above; 

2) Second, for the found matrix variables ,X H  and Y  we solve the 
problem (15) with respect to the scalar parameters α  and ε ; 

3) Then the process iterated up to the iteration which has no solution (the 
toolboxes mentioned above provide this information); 

4) Returning one-step back we declare this iterative approximation as a 
solution  

, , , andX H Yα ε∗ ∗ ∗ ∗ ∗  

of the considered optimization problem (15).  
For the numerical implementation, then we consider the approximation of the 

Gaussian noise signal tW  by the noisy signal in Simulink is given in terms of a 
Gaussian noise signal generator tW , using the following approximation:  

, 0 1t t t hW W W h
t h

−∆ −
≈ <

∆
  

3. Filtering of HIV/AIDS Infection Model  
Mathematical Model of HIV/AIDS  

The Mathematical models of HIV dynamics (human immunodeficiency virus 
(HIV) causes the acquired immune deficiency syndrome, knows as AIDS) were 
derived several years ago. In this study the third-order model of HIV dynamics 
is considered. It captures the time rate of healthy and infected white blood cells 
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(T-cells) and the number of HIV viruses. 
There are more complex models of HIV dynamics that can be found in the 

literature (see, for example, and. The methodology presented in these papers can 
be applied with minor modifications to the other models of HIV dynamics. 
However, as indicated by an anonymous reviewer of the manuscript, it should be 
emphasized that the presented analysis is limited in the sense that it “cannot take 
into the account patient factors as physiological/genetic level, physicochemical 
factors at cell-protein-viral interactions level, and viral factors that relate to the 
various HIV strains and clades." 

Consider now the simplified nonlinear HIV-dynamics model (see [32] [33] [34]) 

( )

1, 0 1, 1, 3, 1 1,

2, 2 2, 1, 3, 2 2,

3, 2, 1 3, 3 3,

1, 2, 3,

d

d

d

, , ,

1 0 0
0 0 1

t t t t t

t t t t t

t t t t

t t t t t t

x d x x x s t

x x x x t

x kx x t

y Cx x x x x

C

β σ

µ β σ

µ σ

 = − − + + 
 = − + + 
 = − + 

= =

 
=  
 













                (16) 

The constant parameters in (16) are as follows: 
- 10s =  mm3 per day is the constant source of healthy T-cells (thymus); 
- 0 0.02d =  per day represents the death rate of healthy T-cells; 
- 1 0.24µ =  per day represents the death rate of viruses; 
- 2 2.4µ =  per day represents the death rate of infected T-cells; 
- 52.4 10b −= ×  per (mm3·day) is the infectivity rate of free viruses; 
- 100k =  per cell is the rate of virons (free virus particles) produced per 

infected T-cell. 
Here C corresponds to the real situation when only the first and the third 

states, corrupted by the random noises, are available in time. The random va- 
riables ( ), 1, 2,3i t i =  are the standard white noises. According to the des- 
cription (18) we have 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0 1 1 3 1

2 2 1 3 2

2 1 3 3

0 0
, 0 0

0 0

d x t x t x t s
f x x t x t x t

kx t x t

β σ
µ β σ σ

µ σ

− − +   
   = − + =   

  −   

 

so that 3, 2, 3n p k m= = = = . This implies  

( )
( ) ( )

d d d d

,

d d

t t t t

t t

y C x Cf x t C W

g x Cf x C

B W

σ

η σ

 = = +
 

= = 
 = 

 

1) In (18) select 1A A=  as  
5

5 5
1

0.02 0 2.4 10
2.4 10 2.4 2.4 10

0 100 2.4
A

−

− −

 − − ×
 

= × − × 
 − 

 

and 
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0 2 1 30, 1

1 3 , 1 2i i

c c c c

σ η

= = = =

= =
 

Here ,i t  is a standard white noise, modeled in Simulink by a pseudo- 
random generator such that ,sup 1i t

t
= . The optimization procedure des- 

cribed above gives 

0.00326, 0.567, 1.51α β ε∗ ∗ ∗= = =  

1.3524 0.0000
0.0000 2.0680

H  
=  
 

 

The matrix parameters P and L, obtained by the application of the suggested 
approach and realizing the robust output linear controller, are as follows: 

0.0033 0.0000 0.0000 8.2089 0.0000
0.0000 0.0409 0.0030 , 0.0000 3.0783
0.0000 0.0030 0.0035 0.0000 17.5199

P L∗ ∗

   
   = − =   
   −   

     (17) 

The Figures 2-4 show the state trajectories 1 2 3, ,x x x  and their estimates 

1 2ˆ ˆ,x x  and 3x̂ . 
The corresponding zoom-images are given in Figure 5 and Figure 6. It can be 

seen from these figures that the filtering process has a good performance 
maintaining the filter estimates close to their real states. 

Figure 7 and Figure 8 show the entrance of the corresponding state esti-  

mation errors to the attractive ellipsoid 0; Pα
β

∗
∗

∗

 
 
 
  in different plains:  

( )1 2;e e  and ( )1 3;e e .  

We also have 

{ }1 : tr tr 0.0477filtP Pα
β

∗
∗

∗

 
Θ = = = 

 
 

 

 
Figure 2. The state 1x  and its estimate 1̂x . 
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Figure 3. The state 2x  and its estimate 2x̂ . 

 

 
Figure 4. The state 3x  and its estimate 3ˆ .x  

 
2) To demonstrate that the suggested approach is sufficiently robust with re- 

spect to selection of matrix A, let us repeat the numerical example with another 
filter corresponding the following linear represents with 2A A= : 

5

5 5
2

0.0122 0.0000 1.53 10
1.53 10 1.53 1.53 10
0.0000 89.5 1.53

A

−

− −

 − − ×
 

= − × − − × 
 − 

 

The results are as follows: 

0.00235, 0.698, 1.42α β ε∗ ∗ ∗= = =  

1.3223 0.0000
0.0000 1.9044

H  
=  
 

 

and  
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Figure 5. Zoom-image of 1x  and its estimate 1̂.x  

 

 
Figure 6. Zoom-image of 3x  and its estimate 3ˆ .x  

 

{ }2 : tr tr 0.0486filtP Pα
β

∗
∗

∗

 
Θ = = = 

 
 

One can see that  

1 2Θ Θ  

4. Conclusions 

In this paper, the proposed Attractive Ellipsoid Method can be successfully 
applied to the filtering process of nonlinear uncertain stochastic models given in 
Itô form, where the Luenberger-like filter, whose gain matrix should be de- 
signed, is suggested to be applied to the estimation process and the Itô calculus  
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Figure 7. The attractive ellipsoid in the plain ( )1 2;e e . 

 

 
Figure 8. The attractive ellipsoid in the plain ( )1 3;e e . 

 
should be used to derive the corresponding attractive ellipsoids where almost all 
trajectories of the state estimation errors converge. 

To minimize the size of this ellipsoid the standard technique, under the LMI 
constraints, may be applied, also the suggested method is respectively robust 
with respect to the selection of the linear represents participating in the filter 
structure. Finally, the well-working of the suggested method is illustrated by the 
application to the filtering of the HIV/AIDS infection model. 
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5. Appendix  
5.1. The Mathematical Description of the Considered System: The  

Itô-Type Model  

Consider a filtered probability space { }( )0
, , ,t t≥

Ω     where σ-algebra 0  
contains all the P-null sets from  , the filtration { } 0t t≥

  is right continuous, 
that is, :t s ts t+ >

= =


   . Let ( ){ } 0
,t t t

W
≥

 , ( ){ }
0

,t t t
B

≥

   be two m and k di- 
mensional independent standard Brownian motions, ,t t ⊂    and ,m k ∈ . 
That is, t  is independent of t

  for all 0t ≥ . t ⊂   stands for the smallest 
σ-algebra containing σ-algebras t  and t

 . 
We are interested in the following nonlinear stochastic differential equations  

( )
( )

d d d

d d d

,

t t t

t t t

n p
t t

x f x t W

y g x t B

x y

σ

η

= +
= + 


∈ ∈ 



 

                     (18) 

Here tx  and ty  are the state vector and the measured output of the model 
(18) at the time 0 0t t≥ = . The functions : ,n nf →   : n pg →   are non- 
linear mappings and n mσ ×∈  and p kη ×∈ . The variables ,t tW B  are standard 
m and k vector valued Brownian motion characterizing external random 
perturbations to the vector-state dynamics satisfying (18); in engineering 
applications it is referred as a “white noise” external perturbation affecting the 
given model dynamics. The vector valued Brownian motions tW  and tB  have 
the following properties: 

( ) ( )
0 0

E d 0, E d 0
t t

t t

s x W s x Bτ τ τ τ
τ τ= =

      = =   
      
∫ ∫   

for any integrable function ( )s x  and 

( ) ( )
0 0

0

0 0d d , d d

d d 0

t t

m m k k
t t

t

k m
t

E W W t t I E B B t t I

E B W

τ τ τ τ
τ τ

τ τ
τ

× ×
= =

×
=

      = − = −   
      
   = 
  

∫ ∫

∫

 



 



 

5.2. Proof of Theorem 1 

First, let us represent the system (18) in the, so-called, quasi-linear format: 

( )
( )

( ) ( ) ( ) ( )

d d d

d d d

: , :

t t t t

t t t t

x Ax f x t W

y Cx g x t B

f x f x Ax g x g x Cx

σ

η

 = + ∆ +   = + ∆ +  


∆ = − ∆ = − 

              (19) 

For the estimation error ˆ:t t te x x= −  which (in view of (6) and (19)) we have 

( ) ( ) ( )( )

( ) [ ]

°

°

d d d

:

d
d : d d

d

t t t

t t t t

t
t t t

t

e r t W

r A LC e L g x f x

B
W L B W L

W
η σ η σ

= +

= − + ∆ − ∆

 
= + =  

 





             (20) 
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For the storage function 

( ) , 0V e e Pe P P= = >   

using the Itô formula (see, for example, [?]) we obtain 

( ) { }{ }
[ ] [ ]

° °

°

d 2 d E tr d

d d d d
2 d d E tr d

d d d d

t t t t t

t t t t
t t

t t t t

V e e P e W W P t

B B B W
e P r t W L L P t

W B W W
η σ η σ

= +

      = + +           

  



 

 


 

 

In the integral form this relation can be expressed as 

( ) ( )

[ ] [ ]

[ ] [ ]
=

=

°

°

d d d d
2 d d E tr d

d d d d

0
2 d d tr

0

2

t t t

t t t t

t t

t t
k k k m

m k m mt

t t

t

V e V e

B B B W
e P r W L L P

W B W W

I
e P r t W L L P t

I

e

τ τ τ τ
τ τ τ

τ τ τ τ τ τ

τ τ τ
τ

τ

τ η σ η σ τ

η σ η σ

+∆

+∆ +∆

= =

+∆
× ×

× ×

+∆

−

      = + +           
    = + + ∆       

=

∫ ∫

∫

∫

  



 


 



[ ][ ]{ }

{ }

°

°

d d tr

2 d d tr
t t

t

P r t W L L P t

e P r t W L L P t

τ τ τ

τ τ τ
τ

η σ η σ

ηη σσ
+∆

=

 + + ∆ 

   = + + + ∆  ∫



   

 

Using the property of the Itô integral 

( )
0=

°E d 0
t

t

f x Wτ τ
τ

   = 
  
∫  

applying the operator {}E ⋅  of the mathematical expectation to both side of the 
previous identity, dividing by t∆  and taking t →∞ , for  

( ){ }: Et tV V e=  

we get  

( ) [ ] ( )
( )

{ }
( ) ( ) [ ] ( )

( )

{ }

E 2

tr

E 2

tr

t
t t t

t

t
t t t

t

g x
V e P A LC e L I

f x

L L P

g x
e P A LC A LC P e e P L I

f x

L L P

ηη σσ

ηη σσ

   ∆ = − + −    ∆     

 + + 

  ∆  = − + − + −      ∆   

 + + 









  

 

  

 

Since 

{ } { }
{ }
( )

1 2 1 2

1 2 1 2 1 2 1 2

0

tr tr

tr

,

L L P P L L P

P L L P P P

P L

ηη σσ ηη σσ

ηη σσ

β

   + = +   

= +

≤

     

    

we obtain 

{ }0 0t t tV E z W z β≤ +
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where 

( ) ( )( )t t t tz e g x f x= ∆ ∆
   

and  

( )
( ) ( )

( )

( ) ( ) ( )

0

0 2 1 3

, : 0 0
0 0

, | , t t

P A LC A LC P PL P

W P L PL
P

W P L e Pe c c c c Xα ε α ε +

 − + − −
 
 =
 

−  
 = − + + + + 







 

Then, finally we get 

{ } ( ), ,t t t tV E z Wz V P Lα β ε≤ − +

                 (21) 

and if 0W ≤ , from (21) we may conclude that 

( ), ,t tV V P Lα β ε≤ − +  

Then from (21) for the function  
2ˆ : , 0t tV V µ µ
+

 = − >   

it follows: 

d ˆ
d

t t
t t t

t t

t

t
t

V VV V V
t V V

V
V

V

α βµ µ

β
αα µ

+ +

+

− +   = − ≤ −   

 − 
  = − − 



 

Taking βµ
α

=  from the last differential inequality we obtain 

( ) ( )

( ) ( )2
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d

ˆ ˆ

t
t t t

t

t t
t t t

tt

V
V V V

t V

V V
V V V

VV

µ
α µ µ

µ µ
α µ α α

+

+

+
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+ +
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implying 

0
0

ˆ ˆ ˆd and e 0 whent
t t

t

V t V V tα
∞

−

=

< ∞ ≤ → →∞∫  

In view of 

( )
2 1 ˆ1 0t t tJ L V

µ →∞+
 − = →   

we conclude the proof. 

5.3. Proof of Theorem 2  

The “best” gain matrix L of the filter is a solution of the following optimization 
problem: 
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( ) { } ( )
0, 0, 0,

tr max , | , 0
, P L

P W P L
P L α ε

α α ε
β > > >

→ ≤  

This problem is equivalent to the following one  

( )
( ) { } ( )

0, 0, 0,

,
ln tr ln ln tr max , | , 0

, P L

P L
P P W P L

P L α ε

βα α ε
β α > > >
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Notice that 
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0 0 2 1 3

2 21
0 2 1 3

2 21

,
ln ln ,

ln tr

ln tr
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H P

S P H

β εβ
α α

εα η σ
α

α η σ γ ε

α ε

+

− +

−

    − = − + + + +      
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where the matrices H satisfies 

( ) ( )1L PL L P P PL H−= ≤   

or, equivalently, by the Shour’s lemma  

0
H L P
PL P
 

≥ 
 



 

Finally, in new variables  

: , :X P Y PL= =  

our problem (with the supporting functional ( ( ), | ,S P H α ε )) has the form (15). 
Theorem is proven. 
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