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under contraction rule of integral type in metric space by altering distance func-
tion, first for self map and second for a pair of sub compatible maps. Our results
are motivated by V. R. Hosseni, Neda Hosseni.

Definition 1.1: A function y:R" > R" = [0,1) is an altering distance func-
tions if y is continuous with monotone increasing in all variables and
WX % Xg o, %, ) =0 if X =X, =X, =--=X, =0.

The collection of all altering distance is denoted by ¥, .

Now let us define a function m(y) by m(y):z//(y, VoV Y, y) for
ye [0,00), clearly m(y) =0 ifand onlyif y=0.

Examples of y are l//(fl, f,, f,eee, fn):ymax{fl, f,, T30, fn}, for
u>0, (1)

w(f,f foe f) =2+ f2+ f5 44 f> a,a,,-a 21 (2)

n

Definition 1.2: The maps p,q:E — E of metric space (E, 0') are called as
sub compatible if and only if the sequence {en} in E'such that
limp, =limg, =t,t € E and which satisfies lim G( pae,, qpen) =0.
n—o0 n— n—oo

Examplewl.S: Let E= [0, oo) we define p & g with metric o as follows

N e e S B

Let us define the sequence {en} in Fas ¢, = 3+£, for n=0,1,2,--- then
n

im b, =lime: =9 =lim, = s, +6). 2

and lim pa(e,)= lim p(e, +6)= !i_m(en +6)" =81 when n — oo, (5)
lim qpe, = lim qe; = (€2 )2 =lim (e, )" =81 when n - o (6)

Thus, we have !L'EG( poe,, qpe, ) =0. (7)

Hence maps pand g are sub-compatible.
On the other hand, we have pe=gqe ifandonlyif e=3,
pq(3)=p(9)=81 and qp(3)=q(9)=9+6=15.
Then p(3)=9=q(3) but pg(3)=81=15=qp(3), hence p and g are not
OWC (Oscillatory weakly commuting).

2. Main Result

Theorem 2.1: Let us consider the mappings U,V :E — E of complete metric
space (E, O') be such thatforall c,d e E
1 1

I:l(a(UC,Vd )) n ( y) dy < I;yl[a(c,d )o(Ue,.c)o(vd .d) 2{0‘(Vd,C)+o‘(UC,d)} z{a(c,d )+O‘(UC,C)}] n ( y) dy

d U vd ,d L vd Uc,d L d U (8)
~ IOW(U(C‘ ) (Ue,c)o(Vd d) {o(vd ) o(Ue.d)} Ho(c.d)rof ac)}jn(

y)dy,
where y,,w, €WV, with ¢ = y/(e,e,e,e,e) , ee [0,00) and Lebesgue-integr-
able mapping 7:R" — R", which is positive, sum able, and for each

e> 0,j:n(y)dy >0, then there exist a unique common fixed point in E for U

K2
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and V.
Proof: Consider arbitrary point €, of £, for n=1,2,3,--- we have

e2n+l = UeZn
and e,,, =Ve,, .

Let 1, =0o(e,.€,.) )

n!>n+l

Substituting c=e,, and d =e, , in Equation (8), then forall n=12,3,--

we have

Iﬁ(a(UEzn vV92n+1)) n ( y) dy < J‘O/ﬁ(o'(eznﬂvezmz))n ( y)dy

0

V1 ‘7(92nv92n+1)v°'(U92nv92n):O'(V92n+1:92n+l)-£{°'(V92n+l:62n)*G(UeZn:92n+l)}v£{°'(82nv92n+1)+°'(U92nv92n)}
< [ 2 2 j77(y)dy

1 1
J“/’Z(U(evaEZnﬁ)vO’(UeZnvezn)'G(Ve2n+1veZn+1)!§{O_(veZn+1veZn)+G(U52nveZn+1)}'§{°'(92nv92n+1)+°'(U92nv92n)}j (
0

n(y)dy
1| o (2n-22nin).0(e2ni2.20).0 (E2ni2 €2n11) 20 (€2ni2 20 )+ (E2nis €2nia)} 210 (E2n 2mia )+ (E2n1 €20)
S"‘[31[221 204162 22212{222 2121}2{221 212}](y)dy
V2 o_(evaeZnﬂ)vo_(eZmlveZn)vo_(e2n+2veZn+1)vl{o'(le\+2ve2n)+U(92n+1ve2n+1)}v1{0(92nveZn+1)+U(e2n+1vezn)}
- ( 2 2 ) (y)dy

Using Equation (9) forall n=1,2,3,--- we get

1 1,
J‘jl("2n+1) n ( y) dy < .[;/1(%x"2nvf2n+1§{"2n+1+f2n+0}31’2n+r2n}) n ( y) dy o

1 1
J"I’Z[an xf2n~f2n+15{r2n+1+f2n+°}~§{r2n+fzn}j (
0

n(y)dy
As 1, >Tr,, impliesthat r, ,+1, <2, ,s0 wehave

J"h(rznu) n ( y) dy < J‘(;Vl(l?nvrznvr2n+1|'2n+1vr2n) n ( y) dy = .[(;h(fzml) 7 ( y) dy (11)

0

Now by monotone increase of y, in all variables and using the property that
W, (n Do Tansts ons By ) 20 whenever 1, #0, we get a contradiction ie.

r,,, notgreater than r, .Hencewehave &,  <r, ,for

n=0123,: (12)
Substituting c=e,,,,d =e,, in Equation (8) we have
[ (y)dy < [ty () gy - [, () gy (1)
By using (12) we consider
Doniz S Tona (14)
From (10) and (12) we obtain

r,<r (15)

n+l — 'n
From (8) & (11) for all n=1,2,3,---, we have
.[th(’ml)n(y) dy < J‘(;//l(rn)n(y) dy _ .[(;Vz(rn)’] ( y)dy
then

J‘f(rml)n(y)dy < .[:‘l(rn)n(y)dy _ J‘jl(rnu)n(y) dy

%%
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Taking summation in above equation we obtain
Z-.‘:Z("nu)n(y)dy < J'(;ﬁ(ro)n(y)dy <w,
0

which implies ¢2(r)—>0 as N—oo. (16)

Now from (13) sequence {I’n} is convergent and as N—>o, r, —>r. We
know that ¢ is continuous and from Equation (14) we obtain ¢,(r)=0

which implies that r=0, ie as
n—>o, r=oc(e,.e)—>0. (17)

We now show that the sequence {en} is a Cauchy sequence in E. Keeping in

mind Equation (15) it is require to show that {e,}”
quence. If {e, }:1 is not a Cauchy sequence of natural number
{Zm(k)},{Zn(k)} such that n(k)>m(k), o-(e e )Ze

2m(k)’ ~2n(k)

c{e,} is a Cauchy se-

a(eZm(k),eZn(k)_l) <e (18)
Hence using (16)
SR CRICHAY
<0 (Eam an2) + O (Eanty o)
<t oo )

Taking k — oo in the inequality above & by result of Equation (15), we ar-

rive at

lim o (€4 €2000 ) = € (19)
Forall k=123,

& (€oneor Bam ) < & (Earigo Ban )+ & (B Eamit)) (20)
Also for k=1,2,3,--

& (€2 €ant) < 7 (Earsy Earigo) + 0 (BanparEanct ) (21)

Making k — oo in (18) & (19) respectively by using (15) & (17) we have

Em O'(EZn(k)w e2m(k)) <e

and e< I!ED: O'<e2n(k)+l' e2m(k))

Therefore, l!im G(GZn(k)+l, eZm(k)) =e, for k=123, (22)

O-(eZn(k) ' eZm(k)—l) so (eZn(k) +om(k) ) +o (eZm(k) ' e2m(k)—1)’

o (ezn(k) ' eZm(k)) < O-(EZn(k) ' eZm(k)—l) + O-(eZm(k)—l’ €om(x) )
Taking k — oo in the above two inequalities and using (15) & (17) we obtain

M o (€, €y 1) = € (23)

n—o
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Putting ¢ :eZn(k)’d €om(k)1 in (8), forall k=1,2,3,---, we obtain

J.%U(ezn(k)wezm(k))?](y)dy _ J-:N(Uezn(k)vVezm(k)A)n(y)dy

0

gJ'O'//l[o'(eZnvezm(k)—l)va(eZn(k)ﬁ'92n) (eZm(k) €2m(k)- )1{ (eZm eZn(k))+5(92n(k)+1'eZm(k)—l)}%{U(EZn(k)'eZm(k)—1)+°'(92n(k)+1'52n(k))}J77(y)dy

_ J“/’Z(‘T(ezn*eZm(k)—l)’o_(SZn(k)A'92n)’J(SZm(k)’GZm(k)fl)’%{o'(EZm(k)'92n(k))*O_(eZn(k)A’eZm(k)fl)} 1{ (eZn(k) €2m(k)- )+0(92n(k)+1162n(k))})77(y)dy

0

Now in above inequality if we take k — oo and by using results of (15), (20)
& (21) we get

j@(e)n(y)dysjm(e,o,o,g e] y)dy- !W(EOOE E]n(y)dy.

0 0

Then ¢ () <y, (E,O, 0, e,% e) -, (E, 0,0, E% Gj = ¢ (e).

This is due to monotone increasing fact of y, in its variable and by using
property of w, that v, (yl, Yo Yau Yas y5) =0, ifand only if

Y1=Y2=Y3=Ys=Y¥5=0.
From the above inequality we get a contradiction. So that = 0. This estab-

lishes convergent sequence in (E, o).

Let ¢, >z as n—oo. (24)

Substituting c=e,, d=z in(8)forall n=123,-

J‘ﬁ(‘f(eznn-vz)) n ( y) dy

0

. Iwl[cr(em,z),c(emez"»a(Vaz)é{a(Vz,ezﬂ)m(ezﬂﬂ,z)}%{o(ezﬂz)w(ezm,ezn)}] n(y)dy

0

B jV/Z( e 2)0(Eans1 €21, (Vz,z)%{o'(VZ,EZn)+o'(€2n+1,z)}%{0'(92n-Z)+U(€2n+l:ezn)}J n ( y) dy

Taking limit n tends to infinity in the above inequality and using continuity of
v, and y, and Equations (15), (22) we get

[y (U(Z’VZ))ﬂ(y)dy

I ( 22) o(V2,2), ;{ (Vz,z)},ojn(y)dy B J‘:/z(a(z,z):"(z,z)vU(Vz,z)%{"(Vz,z)},oj77(y)dy
Jo

IA

(OOO'VZZ o(vz z)}oj ( )d _J-wz[oo(;(Vz z);{ (Vz,z)},O]

IA

n(y)dy

If (Vz,z)#0 then monotone increasing y, and y, are monotone in-

creasing and ‘//z(yllyz’ya’ym)’s) 0, ifand onlyif y,=y,=y; =Y, =Y, =0,

we obtain
#(o(zVz) H(o(zVz)
[ n(y)ay <[ (y)ady.
This contradiction, hence we obtain (Vz,2)=0. (25)
In similar way we prove that z=Uz. Hence z=Uz=Vz. (26)

Hence (25) & (26) shows that zis a common fixed point of Uand V.
Theorem 2.2: Let (E,O') be a complete metric space and p, ¢, Uand V be

four mappings from E'to itself such that

%%
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[ (y)dy

< j|//1(o-(Us,Vt),a(Us,qt),a( pS,Vt)‘o'(US,pS),o‘(Vt,qt)%{o'(qt,US)+0‘( ps,Vt)}%{a(Us,Vt)Jra( ps,Us)}] (
0

n(y)dy  (27)
1

B .[WZ(O'(US,\/I),U(US,QI),U( psVt),o(Us, ps),a—(Vt,qt)é{o—(qt Us)+o( ps ,Vt)},E{a(Us,Vt)Jrcr( ps,Us)}
0

In(y)ay,

forall s,teE,where y,p,e¥,, ¢ = y/(e,e,e,e,e,e,e) ,for ee [0,00).

i: One of the four mappings p, ¢, Uand Vis continuous.

ii: (p, U) & (g, V) are sub compatible.

iii: The pairs p(s) cV (S) and q(s) cu (S) .

iv: Where 7:R* — R" is Lebesgue-integrable mappings, which is sum able,
non negative and such that for each €>0, I:n(y)dy >0.

Then p, ¢, Uand V'have a unique common fixed point in £.

Proof: Consider arbitrary point €, € E, we construct the sequence {en} and
{w,} in Esuch that

peZn =Ve2n+1 = W2n and qe2n+1 = Ue2n+2 =W

n+l?

n=0,12,---
Let f, =0 (W,,W,,), Substitution s=e, and t=e,,, in(27)we have

Juqﬁ(a'( pesn xqeznﬂ)) n ( y) dy — J'(;ﬁ(o'(emﬂvezmz))n ( y)dy

0
V’l(J(UGZn vV92n+1)v0'(UeZn vqun+l)v0'( Pe2n+1 vV92n+1)v5(U92n 1 P2n )vg(veZnﬂvqunﬂ)v

1 1
<J‘ E{U(q92n+lvue2n)+‘7(pevaVEZnJrl)}vE{o(UeZnvV92n+1)+U(pe2anEZn)})
0

2] (10(U92n Vezni1).o(Uean,Qeanaa ) o p:leZn+1vveZn+l)vU(U92n +Pe2n )0 (Veania G€ansa ),
I E{U(qezmxuezn )J+o(pezn xVezn+1)}-§{U(U92n Veznig)+a(pezn ‘Uezn)})
0

¢(O_(W nW2n+ ))
J‘O 2n:W2n+1 ﬂ(y)dy
w1(0(Wan1Wan ), o(Wan_1.Wans1 )0 (Wanat Wan )0 (Wan-1,Wan ). (Wan Wanaa )s

1 1
<j E{U(W2n+1vwzn)+o_(W2nvWZn)}'EU(WZH—leZH)+O_(W2nvWZn—l))
0

n(y)dy

w2(o(Wan1.Wan )0 (Wan_1,Wans1),0(Wanat , Wan )0 (Wan-1,Wan ). (Wan ;Wanaa )

1 1
J‘ E{O'(WZnA-WZn)*O'(WZnvWZn)}*EO'(WZn—l-WZn)+°'(W2n:WZn—l))
0

J‘(’&(Qn)n ( y) dy < J'(;//l[fzmv"zm*% +12n,"2n-1:"2n %{Qn}%{&n—l”ml}j n ( y) dy

1 1
‘['//2 Fan-1:F2n-1+T2n P20 n-1:F2n o420 o5 {Fn-1+T2n 1}

-1, 2 2 n(y)dy

If r,,,<r, then r,,+1, <2r, and

1
Iﬁ(rzn)n(y)dy < J'(;//l[rzn—lvern:r2n,r2n—1xr2nvE{r2n}vr2n—1)77(y)dy

0
1
_ :/Z(an—lxernvr2n,r2n—1vr2nYE{an}ern—lj77(y)dy (28)
A(r2n)
< jo n(y)dy.
Thus we arrive at a contradiction. Hence r,, <r, ,, similarly by substituting

S=1,,,,t=r,,, in (27) we can prove that, Iy 4 <r,,, for Nn=0,1,2,---. Thus
. <r,for =012, Hence the sequence {I,} is sequence of positive real

numbers, which is decreasing and convergesto r €R.

Let m= Iim%d (W,,W,,,). Taking n— oo in (27) we have

n—o0

K2
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1721 r,r,r,r,r,r,r

[ (y)dy < [ y)dy - |. n(y)dy
< J-(;,ﬁl(r) (y)dy_I://Z(r,r,r,r,r,r,m)n(y)dy.

Thus y, (r,r,r,r,r,r,m)=0So that r =m=0.

wo(r.r,r.r.rr,m)

Hence limd (y,, Y,..)=0 (29)

In view of (29), to prove sequence {Wn} is a Cauchy sequence it is sufficient
to prove the subsequence {WZn} of sequence {Wn} is a Cauchy sequence. If
{WZn} is not a Cauchy sequence there exist € >0 & sequence of natural num-
bers {2m (k)} & {Zn (k)} which are monotone increasing such that
n(k)>m(k).

O'(WZm(k) , W2n(k)) >ec & G(WZm(k) , WZn(k)—Z) <e. (30)
Then from (29) we have
e< O-(WZm(k)’ W2n(k))
< O'(WZm(k) Wan(k)-2 )+o(w (k)fl,WZH(kH)+a(w2n(k)fl,wm(k)) (31)
<40 (W1 Moy ) 0 (Mo W)
Taking k — oo and using (29) we have
M & (W) Wors)) = - (32)
Taking k — oo using (29) & (30) in

s O-(WZn(k)’ 2n(k)+1) (33)

‘O-(WZm(k) , W2n(k)+l) -o (WZm(k) ' WZn(k))
We get !EDOU(WZn(k)+1- W2m(k)) =e€. (34)
Letting K — oo and from Equations (29) & (30) in

‘U(WZm(k)—l’ Wan(k) ) - U(WZm(k)’ W2n(k))

We get l!mo-(WZm(k)’WZm(k)—l) =e. (35)

< O-(WZm(k)’WZm(k)—l)'

Putting s= X2m(k)'t = Xon(k)1 in (27), forall k=1,2,3,--- we obtain

J?(szm(k):qXZn(k)A) n ( y) dy
'/’( (UXZm( ) VXom(k)- ) (UXZm( k) M2n(k)- 1) (pXZm(k)'VXZH(k)fl)'O'(UXZm(k)'pXZm(k))’O'(VXZn(k)—l’qXZn(k)fl)

<J~ qXZn (k)-1:Uam k))+G(Psz k) V¥an( )1)} %{U(UXZm(k)'VXZn(k)—l)"'U(pXZm(k)!UXZm(k))}]

("(UXZm(k) Von(ky 1) (UX2m<)qX2n<>1)"(P (k) Van(iy-) o Usam() Do ) o (Veangh 1 Peangr 1)

I %{J(qXZn(k) szm(k))+0(PX2m(k VXon(k)-1 } { (UXZm (k) VX2n(k)- 1)+U(szm(k) UXZm(k))}
0

l//1( (WZm(k) 1:W2n(k)-2 ) (WZm(k)—17W2n(k)—1)'°'(W2m(k)'WZn(k)72)'U(WZm(k)—lvwzrn(k))'U(WZm(k)—Z'WZn(k)—l)v

<J~ W2n -1 Wam(k 1)+J(W2m(k)’Wzn(k)—z)}%{G(WZm(k)—l'WZn(k)—2)+°'(W2m(k)’Wzn(k)fl)}J

V/z( (WZm(k -1 Wan(k) ,2), (WZm(k)—l'WZn(k)—l)'G(WZm(k)'W2n(k)—2)!°'(W2m(k)—1'W2m(k))!°'(W2m(k)—2'W2n(k)—1)!

J- %{O_(Wzn(k)—lvwzm(k)—l)+‘7(w2m(k)'WZn(k)—Z)}'%{U(WZm(k)—l'WZn(k)—z)*U(WZm(k)'WZn(k)fl)}
0

%%
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Taking k — o0 & using (29), (30), (32), (33) & (35) we get

1 1 1 1
Jujl(e)n(y)dy < J'(;lll(e,E,s,O,O,E[ere],Eej77(y)dy_.[:/2(6,6,5,0,0,5[64&]:55)77(y)dy
- .[(;//l(e,e,e,e,e,e,e)n(y)dy _ j:l(e)n(y)dy.

This is contradiction. Hence {WZn} is a Cauchy sequence and is convergent.
Since Eis complete there exist ze E suchthatas n—o wehave w, > z.

Case I: Assume that Uis continuous then Upe,, —Uz, U’e, —Uz. Since
(p, U) is sub compatible, we have pUe,, — Uz.

Step I: Substituting s=Ue, ,t =e,, , in (27), we have

J‘:IU(PUGZn:qezm)T](y)dy

V’l(U(U %ern ,Vele),o(U %ern vq92n+l)va( pUez, ~V92n+1)vU(U Zern, pueZn)vG(VeZnﬂxquml)’

< J. %{U(qunA:U %ey, )*U( pUezn vV92n+1)}%{U(U %ern xV92n+1)+f7( pUespn U Zep, )}]

0 n(y)dy
V2 (G(U %ern -V92n+1\)x0(U %ern ~q92n+1)~0( pUezn :V92n+1)~U(U Zepn. PUesp )-U(Vezm \9€2n41)s
1 1
J- E{J(qeznﬂ e, )“7( pUezn Vezniy )}E{U(U Zen Ve n+1)+<7( PUesn U %6, )})
0

n(y)dy,

J‘(:’ﬁ("’(uzvz))n ( y) dy

<le[o(Uz,z),a(Uz,z),c(Uz,z),a(Uz,Uz),a(z,z)%{a(z,Uz)Jro(Uz,z)}%{a(Uz,zﬁa(Uz,Uz)}j (
—Jo

n(y)dy
_-[ylz[o'(UZ,Z),U(UZ,Z),o‘(UZ,Z),o’(UZ,UZ),O’(Z,Z)%{o’(Z,UZ)+0‘(UZ,Z)},%{U(UZ,Z)Jra'(UZ,UZ)}] (
0

n(y)dy

o
<[ o o(U22)0(02.2)0U2.2)0.0(Ue.2) S Z)})n(y)dy

< J-;ﬁl(cr(uzz))n(y)dy

It is contradiction if Uz # z. Hence Uz =z

Step II: Substituting s=z,t=e, , in (27) and taking limit as 2 tends to in-
finity we get pz=1z.

Step III: We know that z=pze p(e) cV (e) then there exist ue E such
that z=Vu. Substituting s=e, ,t=uU in(27) weget qz=1z.Hence
gz=z=Vz and gVu=Vqu, which gives qz=Vz.

Step IV: Substituting s=2z,t=z in(27) wehave qz=1z so that
q(z) =17=Vz.Hence p, g U& Vhave a common fixed point zin E.

Case II: Assume that U is continuous then p’e,, — pz, pUe,, — pz. Si-
milarly we can prove that zis common fixed point of p, g U& V. When gor V
is continuous, then the uniqueness of common fixed point follows easily from

7).

Example: Let E=[0,1] with the usual metric G(S,t)=%|5—t|. Define

p,q,U,V:E — E suchthat ps=—, qt:%, Us=s, Vt=t.

FN 7

Let l//l(yllyZ’y31y4’y5ly61y7):max(yllyzly31y4’y5!y6!y7)l gp(y):Zy,
1
vy =7vy then yy(y)=y,vye[0,)
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For all s,t e E, it follows that the condition (27).
Let {e,} be a sequence in Esuch that pe, >z & Ue, -z for some zin
E.Then z=0, o(pUe,,Upe,)—>0.Hence {p,U} issub compatible. We have

common fixed point in E.

3. Conclusion

In this paper, we proved the fixed point theorem for four sub compatible maps
under a contractive condition of integral type. These results can be extended to
any directions and can also be extended to fixed point theory of non-expansive

multi-valued mappings.
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