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Abstract 
In this study we explore a method which provides an insight into the effec-
tiveness of various hydrologic models’ routing components based on their 
ability to accurately represent flood peak times and shapes. The method is 
based on using Cross-Wavelet Transforms to estimate the phase (time) dif-
ference between the time series of the observed and the simulated discharges. 
In this article we evaluate two routing components, the Routing Application 
for Parallel Computation of Discharge (RAPID), which is based on the simpli-
fied Muskingum routing method, and the routing component of the non-  
linear Hillslope-Link hydrologic Model (HLM) produced in the Iowa Flood 
Center (IFC). Both routing components are driven by the same source of ru-
noff and used the same channel network to ensure that the discrepancies be-
tween the simulated stream discharges are due to channel routing alone. We 
also explore the suitability of different wavelet shapes for our application, and 
how the difference in wavelet shape can affect our evaluation results. Unlike 
the conventional statistical skill scores used to evaluate model performance 
(e.g. Root Mean Squared Error, correlation coefficient, and Nash Sutcliff effi-
ciency index), which give an estimate of the overall hydrograph performance, 
our method conveniently provides time-localized information with higher 
resolution at peak location. We perform our evaluation at multiple stream 
gauge locations, covering a wide range of scales (700 to 16,862 km2), located in 
the eastern part of the state of Iowa. Our results show that the proposed 
wavelet method is effective in evaluating the performance of the routing 
components in simulating peak times across spatial scales. Generally, the 
non-linear routing method employed in the HLM outperformed the Muskin-
gum based method employed in RAPID. In addition, our results suggest that 
the Paul wavelet is more effective in detecting and separating individual peaks 
than the Morlet wavelet, which in turn leads to a more accurate evaluation of 
the routing components. 
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1. Introduction 

Distributed hydrologic models usually consist of two major components that 
together produce stream discharge estimates. The first component is a Land 
Surface Model (LSM) that decomposes the terrain into a regular (e.g. rectangular 
or triangular) or irregular (e.g. terrain-fit polygons outlining hillslopes) grid 
where the energy and mass exchange between the land and the atmosphere are 
modeled. This process produces estimates of the potential excess surface and 
subsurface runoff depths that will enter the stream channels. It also provides es-
timates for evapotranspiration (ET), snowmelt, and the amount of water that is 
stored in the soil, and would affect the discharge estimates in the short or the 
long term. The second component is a water routing component, which is re-
sponsible for delivering the excess runoff into the channels through surface and 
subsurface lateral flow motions, then transporting the runoff downstream as 
stream discharge ([1] [2]). 

In this article we evaluate two hydrologic routing components: first, the 
Routing Application for Parallel Computation of Discharge (RAPID) introduced 
in ([1] [3]), which is a storage-based simplified Muskingum linear routing me-
thod. Similar to other hydrologic routing approximations, the Muskingum me-
thod relies on discharge continuity alone and does not take the momentum equ-
ation into account. The Muskingum method uses the two parameters k and x to 
accumulate the discharge downstream, where k is a storage parameter that has 
units of time, and x is a weighting parameter that is relative to the discharge in-
puts and outputs of the channel. The estimation of these parameters is explained 
in [1] and [4] and the estimated values can be improved through optimization. 
Examples of possible cost functions that can be used to optimize these parame-
ters are found in [1] [3] and [5]. The second routing component we evaluate in 
this study is the one implemented in the Hillslope-Link hydrologic Model 
(HLM) developed and used by the Iowa Flood Center (IFC). This routing com-
ponent is nonlinear and accounts for the momentum equation in a simplified 
form ([6] [7] and [8]), and the stream velocity is determined based on the non-
linear relationship between the discharge and the served area ([9] [10]). Similar 
to [1] [11] and [5] we do not account in this study for lateral flows to the chan-
nel in our calculation for the sake of simplicity and since our sub-catchment siz-
es are small. This means we assume the runoff depth immediately enters the 
streams in their corresponding upstream junctions before the channel routing 
takes place. 

Our study area is a moderately monitored average-sized basin called the Ce-
dar River Basin located in the eastern part of the state of Iowa in the United 
States. The stream discharges of the basin are not affected by any artificial sto-
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rages (e.g. dams and reservoirs) and are monitored by eleven United States Geo-
logical Survey (USGS) stream gauges that cover various connected and uncon-
nected sub-catchments located within our basin of interest. In order conduct in-
ter-comparisons between the observed and simulated stream discharges (hour-
ly), we obtained the output of the two routing components at these USGS gauge 
locations for a whole warm season (March through October with a two month 
spin-up period). Both routing components were derived by the same runoff es-
timates which were generated by the community Land Surface Model (LSM) 
called Noah Multi-Parameter (Noah-MP) [2], the model inputs are discussed 
later in this article. Afterwards, the discharge is aggregated over the same stream 
network by each routing component; for our application we used the digital 
stream network called the National Hydrography Dataset Plus Version 2 
(NHDPlus V2, available at http://www.horizon-systems.com/nhdplus/). 

Statistical skill scores such as root mean squared error, correlation coefficient, 
and Nash Sutcliff efficiency index are widely used to evaluate the performance of 
hydrologic models. However, comparing two time series with such indices re-
duces the features of the complete time series to one value that does not provide 
information about the variation of the model’s performance across the time se-
ries. One can decide to inspect individual parts of the time series separately, but 
this division of the time series can be either arbitrary if done using a fixed time 
window, or difficult to automate if the important features in the time series are 
to be located precisely in time. This implies that detecting features of interest in 
the time series is also a significant part of the evaluation problem. In this article 
to evaluate our routing components we use a method that offers solutions to 
both of these problems: first, detecting features of interest, and second, evaluat-
ing the model’s performance during the time period when they occurred. 

We perform this time-based evaluation using Continuous Wavelet Transform 
(CWT) and Cross-Wavelet Transform XWT ([12] [13]). Wavelet transform 
analysis provides information about a given time series by filtering its frequen-
cies in a time-localized manner. This information cannot be obtained using the 
traditional statistical skill scores such as RMSE and correlation coefficient due to 
their generality and inability to locate time series’ significant features in time. 
CWT provides information about the significant frequencies that exist in a time 
series and XWT provides information about where these detected frequencies 
coincide in two time series. This event matching is determined by computing the 
phase difference between the CWTs of the different time series. [12] and [14] are 
excellent references for a detailed description of CWT and XWT. We will briefly 
review the concepts behind CWT and XWT and elaborate on the use of different 
wavelets, and their advantages and disadvantages in our application. 

Accurate peak time prediction for stream discharge is crucial in hazardous 
situations such as flash floods. Our method and results provide an insight re-
garding a more effective procedure to evaluate routing components in particular 
and hydrologic models in general based on their ability to forecast peak times. 
The evaluation framework we propose in this study should help decision makers 

http://www.horizon-systems.com/nhdplus/
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and ground responders in making a more informed decision regarding peak 
time occurrence based on the performance of the hydrologic model which they 
receive their information from. 

The rest of this article is organized as follows. First, we introduce our study 
area and describe the data obtained from the two routing components. Second, 
we review CWT and XWT and different types of wavelets that we used in this 
study and why we used them. Third, we show the results of the study. Lastly, we 
discuss our conclusions and findings. 

2. Study Area, Data Inputs, and Routing Components 
2.1. Study Area 

We apply our wavelet-based evaluation method to the stream discharge esti-
mates from RAPID and HLM routing components at eleven USGS gauge loca-
tions in the Cedar River basin. A map of the stream gauge locations is shown in 
Figure 1 and the areas they serve are listed in Table 1. As represented in Figure 
1, our study area mostly fall in the “dry land crop” USGS land cover category, 
with a small area under “developed with low intensity category”. There is little to 
no river regulation effect at our basin, this insures that there is no delay in dis-
charge due to storage. The areas served by the USGS stream gauges range from 
766 km2 at Little Cedar River near Ionia, IA (USGS ID 05458000) to 16,862 km2 
covered by the station at the basin outlet Cedar River at Cedar Rapids, IA (USGS 
ID 05464500). In this study we used hourly stream gauge observations to com- 

 

 
Figure 1. USGS Land cover is plotted over the study area. The USGS stream gauges are 
represented by green dots. The legend of the four major land cover types is shown in the 
top right corner where 1 is dry land crop, 2 is urban and built-up, 3 is cropland/grassland, 
and 4 is water body. The labels of the USGS gauges correspond to the rankings in Table 
1. 
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Table 1. A list of USGS gauges and their served area. 

Rank USGS ID Area (km2) 

1 05459500 1342 

2 05457700 2792 

3 05458000 766 

4 05463000 911 

5 05458900 2213 

6 05458500 4338 

7 05458300 4044 

8 05463500 780 

9 05464000 13,333 

10 05464220 773 

11 05464500 16862 

 
pare to our hourly model outputs, and stream gauge observation were available 
throughout our study period. 

2.2. Data Inputs 

We applied the same runoff estimate which we obtained from the WRF-Hydro 
hydrologic framework [15] to both routing components. WRF-Hydro utilizes 
the Noah-MP LSM [2] to estimate the runoff depths. We used the Stage IV [16] 
product as the rainfall input to WRF-Hydro; the rainfall estimates are projected 
on an HRAP [17] grid with a spatial resolution of approximately 4 km × 4 km 
and a temporal resolution of 1 hour. We also used the NLDAS V2 atmospheric 
forcings [18] [19] to drive WRF-Hydro; the dataset is available in a spatial reso-
lution of 1/8˚ and hourly temporal resolution. We ran the model for the whole 
2014 warm season (March through October), allowing a proper spin-up period 
starting from December 2013 with a proper initialization for channel states. We 
then ingested this runoff in both routing components allowing two months of 
spin-up period for routing. Consequently, our stream discharge estimates cover 
the period between May through October, 2014. 

2.3. Routing Components 

The methodologies on which each routing component is based can be found in 
[6] [7] and [3]. In short, RAPID is based on the linear Muskingum routing me-
thod, which is a storage-based method that does not account for flow momen-
tum. The finite difference form of the Muskingum method can be written as 
shown in [1]. This method relies on two key parameters, k  and x , where k  
is a storage parameter and has units of time and x  is a dimensionless weight-
ing parameter. The k  and x  parameters were determined as described in [4]. 

On the other hand, the HLM is based on the methodology described in [8]. In 
this method the channel velocity exhibits non-linear behavior in relationship 
with the upstream served area. As a simplification for the momentum equation 
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the velocity v corresponding to a discharge q  can be determined as follows, 

( ) 1 2
0 linkq q Aλ λν ν=                         (1) 

then the flow transport can be described as 

( ) ( )
( ) ( ) ( )( ) ( ) ( )

1 2
0

1

d
d 1

link link
h runoff baseflow link up

q t q t A
a q t q t q t q t

t l

λ λν
λ

 = + − + −
    (2) 

where at a certain time t  the corresponding surface and subsurface lateral in-
flows are runoffq  and baseflowq  respectively. The discharge inflow into a stream 
channel (link) from the upstream served area A  is upq  and the total discharge 
at the outlet junction of a stream is linkq . The parameters 0v , 1λ , 2λ  are glob-
al parameters that are equal to 0.3, 0.2, and −0.1 respectively and correspond to 
the USGS hydraulic measurements and the methodology described in [9] and 
[8]. 

3. Methodology 

Wavelet transform is a useful tool to extract information about time localization 
of certain frequencies in a time series, unlike Fourier transform which does not 
provide any time localization information ([12] [13]). One can consider wavelet 
transform as an extension to the Windowed Fourier Transform (WFT), where 
CWT extracts information about the signal structure through a filter of scaled 
and translated wavelet instead of an infinite sinusoid. 

3.1. Continuous Wavelet Transform 

Decomposing a signal into its constituent frequencies can be done in multiple 
ways. First, one can perform the Discrete Fourier Transform, (DFT) on the sig-
nal.DFT can give us an accurate measure of all the frequencies in a discrete sig-
nal 'nx , as shown in Equation (3) by multiplying the signal by infinite harmon-
ics 2πe ikn N− , which are also called sinusoid, and then calculating the integration 
of this multiplication from −∞  to ∞ . The result kx  is the magnitude and 
phase of this particular harmonic with frequency k in the time series. If a har-
monic with a frequency is in fact a constituent of the signal, the integral will 
show its amplitude and phase in the signal. If however, this particular frequency 
does not contribute to the time series, the summation in Equation (7) will be 
equal to zero. Most natural signals are comprised of waves with various frequen-
cies, amplitudes, and phase angles, which in turn result in different integral val-
ues. The DFT equation for a discrete time series nx  is given as: 

1 2π
0

eN ikn N
k nn

X x− −
=

⋅= ∑                       (3) 

where k  is the frequency of the harmonic; i  is the imaginary unit; n  is the 
location index in the time series; and N is the total number of samples to be 
analyzed in the signal. The main disadvantage of DFT is that although it is effi-
cient in filtering the frequencies, it does not provide any information about 
where this particular frequency appeared and lasted in the signal. The difference 
in representation between a frequency which lasted throughout the whole signal 
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and another that contributed to the signal for a short time period is that Fourier 
transform calculated for the latter will be dilated in the frequency domain. In 
other words, DFT lacks any information regarding time localization. To over-
comes this problem, researchers came up with a more advanced way of per-
forming the DFT called the Windowed Fourier Transform (WFT), which relies 
on moving a box function which can take different shapes, e.g. a simple rectan-
gle or a Gaussian window (Kaiser 1994), and calculating the transform over the 
location of that box as seen in Equation (4), 

[ ] [ ] [ ]1 2π
0

, eN ikn N
nn

X n k x n w n τ− −
=

= ⋅ − ⋅∑                (4) 

where [ ]w n τ−  is the window function shifted at time τ ; and [ ],X n k  is the 
WFT at a particular location τ  and a particular frequency k . However, the 
WFT still has its disadvantages. This is because WFT uses a fixed size window 
which forces us to sacrifice either detecting the accurate time localization by 
choosing a large window (one can think of DFT as WFT with an infinite size 
window); or on the other hand, one can choose a very small window which will 
allow for better time localization but poor frequency detection. This brings us to 
the Continuous Wavelet Transform (CWT), which offers a compromise between 
frequency and time localization detection. Continuous wavelet transform is per-
formed through translating scaled versions of a wavelet of a certain functional 
form, called “mother wavelet”, over the time domain of a signal (a hydrograph 
in our case) and calculating the resulting power from the convolution between 
the discrete signal and the wavelet. In order to detect different frequencies in the 
signal, the wavelet is compressed or stretched through scaling. The lower the 
value of the scale the tighter the wavelet becomes, and this in turn amplifies the 
effect of high frequencies in the signal. On the other hand, the higher the value 
of the wavelet scale the more stretched and dilated it becomes, which is good for 
detecting smoother low frequencies in the signal. 

The compliance of CWT with the window size uncertainty is done by offering 
good time localization for the important sharp features by using low scale wave-
lets. Similarly the mild features that cover the wide range of the signal will be 
detected by high scale wavelets that do not offer good time localization. Another 
advantage of using wavelet analysis rather than Fourier transform is the ability 
to use confined “mother wavelets” that can have different shapes based on their 
functional form, and not an infinite sinusoid. As shown in Figure 2, some 
wavelets such as the Morlet wavelet are more suitable for detecting frequency 
properties, while others such as the Derivative of Gaussian (DOG) wavelet or 
Paul wavelet are better for detecting sharp features. One of the main goals of this 
article is to stress the significance of the selected wavelet shape, and that it can 
lead to a different interpretation of the properties of our signal. 

One can use either directional wavelets (a wavelet with an imaginary compo-
nent), such as the Morlet or Paul wavelets, or a real valued wavelet such as the 
DOG wavelet to estimate the CWT. This is not the case for XWT since it solely 
relies on estimating the phase difference between two CWTs. Given a mother  
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Figure 2. Unscaled wavelet function ( )0ψ η  for the Mexican hat wavelet (left), Paul wavelet (middle), and Morlet 

wavelet (right).The solid lines represent the real component of the wavelets, while the dashed line represents the im-
aginary components (Morlet and Paul only). 

 
wavelet ψ  that is equal to the original unscaled function 0ψ  shown in Equa-
tions (6)-(8), but instead normalized to have unit energy. The CWT of a discrete 
signal 'nx  can be calculated as follows: 

( ) ( )1 *
1 'n

x
'n

N
n

' n t
W s x

n
s

δ
ψ−

=

− 
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 
∑                  (5) 

where s  is the wavelet scale and n  is a wavelet location parameter which de-
termines the wavelet location during the translation across the time domain of 
the signal. The asterisk assigned to *ψ  denotes the complex conjugate, and tδ  
is the time step; finally W  is the wavelet spectrum and the wavelet power is 
obtained by calculating 2W . It is important to note that in the case of a direc-
tional wavelet, power is generated from both the real and imaginary part. This 
means the imaginary peak would move the location of maximum power if it 
overlaps with a similar feature in the signal. As described in [12], we normalize 
the power by the variance ( 2σ ) in order to have a measure relative to that of a 
white noise process. 

For our CWT analysis we chose three of the most commonly used wavelets. 
The first is the real DOG wavelet in the second order (also called the Mexican 
hat wavelet or Marr wavelet), given by the equation 

( ) ( ) 21

2
0

1 d e ,
d1

2

m m

m

m

η

ψ η
η

+
− −

 =
    Γ + 

 

                 (6) 

where m is the derivative and is equal to 2 and Γ  is the gamma function and 
η  is a time parameter. Second is the directional Paul wavelet in with order of 
four, 

( )
( )

( ) ( )1
0

2 ! 1
π 2

,
!

m m
mi m i

m
ψ η η − += −                   (7) 



M. ElSaadani, W. F. Krajewski 
 

731 

where m is the order and is equal to 4. Lastly is the directional Morlet wavelet, 

( )
2

0

1
4 2

0 π e ei
η

ω ηψ η
−

−
= ,                      (8) 

where 0 6ω =  to achieve wavelet admissibility. 
We estimated the 5% significance levels of the wavelets power spectrum fol-

lowing [12] by comparing the power spectrum to a background red noise. In 
short, the significance levels were estimated based on the hypothesis that our 
signal can be modeled as a univariate autoregressive with lag-1 AR(1) process. 
Before we proceed with the significance level calculation we had to test our sig-
nal’s power spectrum decay against that of a theoretical red noise with the same 
lag-1 correlation. As an example, we present in Figure 3 the power spectrum 
decay of our signal (hydrograph) at the outlet of the basin (Cedar River at Cedar 
Rapids), where the blue line represents our signal and the red line represents the 
theoretical red noise, the lag-1 auto correlation was estimated from the data. 
One can see that a red noise process is a good approximation for our process; 
this was expected since many geophysical processes follow a red noise model. 
The Fourier power spectrum of the wavelets and the corresponding confidence 
intervals are then calculated as described in [12]. 

Another important feature in our CWT calculations is the Cone of Influence 
(COI).Similar to [12], in order to perform the integral in Equation (5) efficiently 
we chose to perform our calculations in the Fourier space, then calculate the 
wavelet transform using a reverse Fourier transform of the convolution of the 
Fourier transform of the signal over the Fourier transform of the wavelet. We 
followed a zero padding procedure (adding zeros with a proper length to both 
ends of our series) since our signal is confined in time, which in turn results in 
artifacts in the wavelet transform at the edges of our signal. The COI helps us 
know where the effect of these artifacts is negligible, where all values outside of 
the COI are reliable. In this article, the COI as well as the transform-normalized  

 

 
Figure 3. Power spectrum decay of a theoretical AR1 process (red) plotted against the 
power decay obtained from the data. Lag one correlation was estimated using the hourly 
hydrographs data. 
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powers are plotted against the Fourier periods of the wavelets and not their 
scales. The Fourier period λ for the same scale s is different from one wavelet 
shape to another; for the Morlet wavelet the Fourier period λ = 1.03 s, while for 
the Paul wavelet λ = 1.4 s, and finally for the Mexican hat wavelet λ = 3.97 s. For 
the sake of consistency in our analysis we are going to refer to the Fourier pe-
riods instead of the scales of the wavelets. 

3.2. Cross-Wavelet Transform and Phase-Time Analysis 

The next step after calculating the CWT is to relate these CWTs to each other to 
detect the similarities between our signals. This is done by calculating the CWT 
of the observed and simulated stream discharges, and then the XWT between 
each simulated flow and the observed flow. The XWT is calculated using Equa-
tion (9): 

( ) ( ) ( )*
,XY X Y

n n nW s W s W s=                     (9) 

the Cross-Wavelet power is ( )XY
nW s , and as we mentioned earlier the XWT is 

complex with an amplitude and phase. Therefore, we only used the Paul and 
Morlet wavelets for this application. The XWT power is an indicator of the loca-
tions where both signals had similar transform behavior. This is where the 
wavelet shape plays an important role, since if the CWT wasn’t able to detect or 
merely detected a certain feature in the signal due to the wavelet shape, the XWT 
power will be weak at the location of this feature. The phase difference between 
the two signals, which is equal to the phase of the XWT, is shown in Equation 
(10): 

( )( )
( )( )

1( ) tan
XY

nXY
n XY

n

I W s
s

R W s
φ −

 
 =
  

                 (10) 

where I  denotes the imaginary component, and R  is the real component. 
We then convert this phase difference φ  to obtain the time difference t∆  us-
ing the Fourier period λ  as follows: 

( ) ( )
2π

XY XY
n nt s s λφ∆ = ∗                     (11) 

As shown in Equation (11), the time differences are associated with certain 
scales. However, some scales are more important than others based on the mag-
nitude of the XWT at this scale over the locations of our interest. Similar to [20] 
we decided to represent the time difference between the simulated and observed 
signals using the t∆  at the scale of maximum power. 

Naturally, we are interested in the performance of the routing components 
during extreme events; thus, we estimate the time difference between simulated 
and observed flows at peak locations. This also makes sense since as we have ex-
plained earlier, the wavelet transform offers good time localization for small 
scales and not large scales, where small scales are associated with sharp peaks. 
We also had to add more constraints to make sure we are getting reliable time 
difference estimates. First, we only consider the periods corresponding to the  
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Figure 4. Morlet wavelet (top) and Paul wavelet (bottom) with Fourier periods of 400 hours plotted against the 
observed hydrograph at Cedar River at Cedar Rapids (black line). The vertical grey line shows the location of 
center of the wavelet, which coincides with a hydrograph peak. 

 
maximum power at the peak locations and within the COI. In Figure 4 we show 
both the Paul and Morlet wavelets with Fourier period 400 on top of the hydro-
graph at the outlet of the basin, where both the wavelets and the hydrographs are 
normalized to have maximum value of 1. One can see that at this Fourier period, 
the wavelet is intersecting with multiple features in the hydrograph, and as the 
period increases the resulting power will have very poor time localization. In 
other words, the incoming power will result from the convolution of the wavelet 
with multiple features. For this reason we impose our second condition, which is 
limiting our search for maximum power to a maximum Fourier periods of 400 if 
the COI is not already covering this region. This seemed as a good limit as 
shown in Figure 4, since the peaks presented in it are the largest peaks, and all 
other peaks upstream must be smaller. 

4. Results 

We start our evaluation of RAPID and the HLM routing by visually comparing 
their CWTs against the CWT we obtained from the observed flow. In this article 
we only show the CWT for the hydrographs at the outlet of the basin in order to 
show the effect of the wavelet shape. This example will enable us to observe the 
different resulting power spectra associated with the hydrograph peaks and their 
time localization with regard to wavelet shape. The reasons we only show the 
CWT at the basin outlet are: first, CWT is only implicitly included in our main 
evaluation method, which is the time difference between simulated and observed 
flows; second, since we have eleven stations to analyze, this will result in an 
overwhelming amount of figures. Therefore, the details of the CWT perfor-
mance across scales can be indirectly explained by our time difference analysis. 
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In Figure 5 we show the observed and simulated hydrograph at the outlet (a), 
the CWTs of the observed (b), HLM routing (c), and RAPID (d), using the 
Mexican hat wavelet. One can see in Figure 5(b) that the two peaks in the hy-
drograph were accurately detected: the first peak ranges between periods of 128 
hours to 400 hundred hours and the second peak is wider with period ranging 
from about 150 to 500 hours. Starting from the period of about 500 hours, we 
can see that the power spectrum from both peaks becomes connected, since at 
this time scale both peaks are covered with one large wavelet. This is a good ex-
ample to show why we enforced our second restriction by not considering pe-
riods larger than 400. The power spectrum values around 1000 hours and 2000 
hours on the x axis, before and after the peaks, are caused by the negative corre-
lation between the sinking parts of the wavelet and the peaks. If we look at the 
wavelet transform value alone, these regions have negative wavelet transform 
value. However, it is important to understand that we look at the wavelet trans-
form power instead of the transform original value because in the case of direc-
tional wavelets there is an imaginary component that we will either have to look 
at separately from the real component, or otherwise combine the two compo-
nents together by calculating the power. By looking at the HLM routing hydro-
graph, it is clear that the first peak is larger and occurred earlier in comparison 
to the observed flow; the second peak, however, is smaller in magnitude and du-
ration. This is reflected in the CWT power values in Figure 5(c): the first spike 
in power occurred earlier than that of the observation and the signal is much 
stronger all the way to the period of 500. On the other hand, the second peak is 
located approximately between the 128 and 300 periods. For RAPID, we can see 
that the wavelet power occurred earlier for the first peak which is in agreement 
with the hydrograph, and the second peak caused a larger than observation spike 
in the CWT power. Interestingly, because the two RAPID peaks are well sepa-
rated, due to a very early first peak and generally flashy behavior, the connection 
between the two peaks in CWT occurred in a much larger period (about 700 in-
stead of 500). 

Figure 6 and Figure 7 are the same as Figure 5 but for the Morlet and Paul 
wavelet CWT respectively. These figures suggest the same qualitative conclu-
sions derived from Figure 5. However, one can see that the Morlet wavelet 
maximum power is located between the two peaks, since the maximum correla-
tion between the Morlet wavelet and the hydrograph occurs when two humps 
from the wavelet are co-located with the two hydrograph peaks. Nevertheless, 
this power is shifted to the left because when the wavelet is far left (e.g. the first 
major wavelet hump is located over the second peak), the rest of the wavelet 
peaks do not correlate with the rest of the hydrograph. In the case of the Paul 
wavelet, we can see that the peaks are well confined with a weak connection re-
sulting from the imaginary part of the wavelet. It is also interesting to observe 
how the negative correlation due to the sinking part of the wavelet is not sepa-
rated from the positive part happening over the peak, contrary to what happened 
in the Mexican hat wavelet case. This is due to the overlapping of the sinking 
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part of the wavelet with the rising imaginary part of the wavelet. This however 
resulted in a wider continuous base of power values at large period. Also, the 
power peaks are slightly shifted to the left because the imaginary component is 
always ahead of the real component. 

Before we proceed to the XWT calculation, it is important to keep in mind 
that the XWT estimates common power activity locations in both CWTs involved,  

 

 
Figure 5. CWT power outside the COI for the Mexican hat wavelet, observed (top), HLM routing (middle), and 
RAPID (bottom). The x axis unites are Time in hour, and the color bar unit is normalized square power. 

 

 
Figure 6. CWT power outside the COI for the Morlet wavelet, observed (top), HLM routing (middle), and RAPID 
(bottom). The x axis unites are Time in hour, and the color bar unit is normalized square power. 
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Figure 7. CWT power outside the COI for the Paul wavelet, observed (top), HLM routing (middle), and RAPID 
(bottom). The x axis unites are Time in hour, and the color bar unit is normalized square power. 

 
regardless of how strong these activities are. So even if we focus our interests on 
the 95% significant values within the COI and a period less than 400, we still 
have quite a range of agreement between the two CWTs. In order to decide 
which XWT value at the peak locations is going to be used in time difference es-
timation, we follow the approach described in [20]. The challenge in choosing 
the appropriate Fourier period to estimate the time difference at is the fact that 
the larger the wavelet is, the more power it produces. This means that if the peak 
was not strongly detected at the proper smaller period (e.g., due to the simulated 
peak looking very different from the observed peak in small periods or due to 
the wavelet shape), the agreement will instead be reached at a large period with 
bad time localization (this is why we stop our search at Fourier period of 400). In 
most cases agreement between the CWTs of the observed and simulated flows 
was reached in the proper scales, but in a few instances however we had to 
choose the power at period 400 or near the edge of the COI. Nevertheless, this 
limitation will not affect our conclusions, because we are not intending to use 
the time difference values to modify the simulated hydrographs, e.g. [20]; the 
values we get will still be an accurate representation of the relative performance 
between the two routing components. 

We now focus our attention to the major peaks in the hydrograph. As shown 
in previous figures, the 2014 season experienced two major events at the Cedar 
River basin. We have estimated the XWT transform at each station using both 
directional wavelets. In Figure 8 we show the hydrographs (top), time difference 
estimated using Equation (11) (middle), and the XWT (bottom) at the basins 
outlet. The two vertical grey lines over the hydrograph peak locations are where 
we extracted the power and time information. The left column is for RAPID re- 
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Figure 8. Morlet wavelet XWT analysis. The hydrographs (top) with their corresponding estimated time differ-
ences in hours (middle), and the log2 of the XWT power (bottom). The left column represents RAPID results and 
the right column represents the HLM routing results. 

 
sults and the right column represents the HLM routing results. We can see how 
the maximum power is located around the 256 period band for both routing 
components. Also, it is clear that the corresponding time difference from RAPID 
at this region at peak locations is much higher in RAPID that it is in HLM 
routing. We show a detailed cross section at peak locations in Figure 9. The top 
panel is for the first event’s cross section and the bottom panel is for the second 
event’s cross section. The dashed lines represent RAPID and the solid lines 
represent the HLM routing; we represent the power with blue color and the cor-
responding time difference with the red color. We see that maximum power 
convergence for both routing components in both events occurred at periods 
less than 300. Additionally, one can see how the behavior of the time (phase) 
difference is unstable in regions apart from the maximum power. Another im-
portant observation is how the magnitude of the power is generally larger for the 
first event than it is for the second event, and how the maximum power occurred 
in a larger period in the first event than it did in the second event. As we have 
mentioned earlier, the power profile indicates common activity between the ob-
served and simulated flows; although we have only picked one point (maximum 
power) to estimate the time difference, it is evident that the HLM routing per-
formed better across a wide range of periods. 

We then expanded our analysis using the Morlet wavelet upstream by doing 
the same analysis shown in Figure 8 and Figure 9 at all ten upstream gauge lo-
cations. Figure 10 and Figure 11 show the time difference (top), Maximum 
power (middle), and corresponding scale (bottom) for the first and second 
events respectively using the Morlet wavelet at all stream gauge location. The red  
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Figure 9. Morlet wavelet XWT analysis. Cross-section profile at the event 1 top and event 
2 bottom for power (blue) and time difference (red). The solid lines represent the HLM 
results while the dashed lines represent RAPID results. 

 

 
Figure 10. Morlet wavelet XWT analysis. Time differences in hours (top), XWT power 
(middle), corresponding period (bottom) for event 1 at all stations. The x-axis is the sta-
tion number, and the green color represents RAPID, while the red color represents the 
HLM routing. 

 

 
Figure 11. Morlet wavelet XWT analysis. Time differences in hours (top), XWT power 
(middle), corresponding period (bottom) for event 2 at all stations. The x-axis is the sta-
tion number, and the green color represents RAPID, while the red color represents the 
HLM routing. 
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color represents the HLM routing and the green color represents RAPID. Al-
though the chosen periods are the same or similar at all stations for both routing 
components, the time differences are sometimes significantly different with the 
HLM outperforming RAPID in both events at all locations. We plot the final es-
timates of the time differences using the Morlet wavelet spatially in Figure 12, 
where positive values indicate that the simulated flow is ahead of the observed 
flow and vice versa. The results show that both routing components performed 
better in the second event, compared to their performance during the first event. 
What is curious, however, about Figure 12 is how the time difference values ob-
tained for the first and the second event are not as different as one would have 
expected them to be by visually inspecting the hydrographs. This is of course 
because one can judge by looking at the hydrographs that both routing compo-
nents performed much better in simulating the peak time during the second 
event than they did for the first event, especially in the case of RAPID.As we will 
see later, this is not the case with the Paul wavelet and is mainly caused by the 
shape of the Morlet wavelet. This is due to the fact that the Morlet wavelet at this  

 

 
Figure 12. Morlet wavelet XWT analysis. Spatial plot of time differences. Top row represents the HLM routing while the bottom 
row represents RAPID routing. The left column shows the results of the first event while the right column is for the estimates of 
the second event. 
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range of periods (200 to 300) intersects with both peaks, and the phase difference 
at the location of one peak is affected by the performance at the other peak as 
well. 

Figure 13 and Figure 14 are the same as Figure 8 and Figure 9 respectively 
but for the Paul wavelet. In this case we can see how the difference between the 
time difference estimates of the two events is enlarged. This is due to the better 
time localization of the Paul wavelet where the effect of one event on the XWT at 
the location of the other event is small. On the other hand one can also see in 
Figure 15 and Figure 16 that the maximum power did not occur before the pe-
riod of 400 in few locations. Although the time differences are different from 
those obtained for the Morlet wavelet (Figure 10 and Figure 11), generally we 
reach the same conclusions by using the Paul wavelet. We lay down the time 
difference spatially in Figure 17. In this case the performance between the first 
and second events is distinguished properly. We can see how RAPID performed 
much better in the second event in comparison to the first event; similar beha-
vior is observed for the HLM routing as well. One can also see how the perfor-
mance for the first event deteriorated when using the Paul wavelet as the con-
tribution from the well-detected second peak diminished. 

5. Conclusions and Recommendations 

In this article we introduced a wavelet-based evaluation method of two hydro-
logic routing components. By looking at the hydrographs it was clear that the 
simplified Muskingum-based routing component RAPID exhibits flashy beha-
vior with sharp peaks in comparison to the non-linear HLM routing component.  

 

 
Figure 13. Paul wavelet XWT analysis. The hydrographs (top) with their corresponding estimated time differences 
in hours (middle), and the log2 of the XWT power (bottom). The left column represents RAPID results and the 
right column represents the HLM routing results. 
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Figure 14. Paul wavelet XWT analysis. Cross-section profile at the event 1 top and event 2 bottom 
for power (blue) and time difference (red). The solid lines represent the HLM results while the 
dashed lines represent RAPID results. 

 

 
Figure 15. Paul wavelet XWT analysis. Time differences in hours (top), XWT power (middle), cor-
responding period (bottom) for event 1 at all stations. The x-axis is the station number, and the 
green color represents RAPID, while the red color represents the HLM routing. 

 

 
Figure 16. Paul wavelet XWT analysis. Time differences in hours (top), XWT power (middle), 
corresponding period (bottom) for event 2 at all stations. The x-axis is the station number, and the 
green color represents RAPID, while the red color represents the HLM routing. 
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Figure 17. Paul wavelet XWT analysis. Spatial plot of time differences. Top row represents the HLM routing while the bottom row 
represents RAPID routing. The left column shows the results of the first event while the right column is for the estimates of the 
second event. 
 

Traditional statistical skill scores such as RMSE and correlation coefficient can 
characterize the overall performance of a time series without providing any loca-
lized information in time about the significant features in the time series. In ad-
dition, these skill scores do not provide any information regarding the ability of 
the models to predict an accurate peak time, and peak time prediction is of great 
value to decision makers. Thus, we used the wavelet analysis which is widely 
used in the application of signal processing. CWT allowed us to filter the consti-
tuent frequencies of the hydrographs and also provided us with the locations of 
high frequency activities which correspond to significant peak locations. We also 
calculated the XWT, which provided us with the locations where both the ob-
served and simulated discharges from each routing component experience simi-
lar power activity. The XWT also has a phase component which is the same as 
the phase difference between the CWTs of the observed and simulated flows. 
Then we calculated the time difference between the simulated and observed 
flows at peak locations using the Fourier period of the wavelet. A unique aspect 
of our study is that have analyzed the same hydrographs using different wavelet 
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shapes. Although we have reached the same qualitative conclusion that the HLM 
routing outperformed RAPID in simulated peak times, there were differences in 
the interpretation of the routing component performance event wise. The signi-
ficance of these differences is solely dependent on the shape of the hydrograph. 
For example, if we only had one peak in the hydrograph or if the peaks were well 
separated, the choice of wavelet would have been of less importance. On the 
other hand if we had many closely located peaks, the results from the Morlet 
wavelet would have been very hard to analyze since the computed power at one 
peak location is affected by the performance at surrounding peaks. Nevertheless, 
although the Paul wavelet offers better time localization, the location and Fouri-
er period of the maximum power does not exactly correspond to the location 
and width of the feature we would like to detect due to the wavelet shape (the 
imaginary component of the wavelet). Hence, it is recommended to always look 
at the XWTs from different wavelets, especially for the purpose of applications 
such as the time series modification performed in [20]. 
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