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Abstract 
In this paper, we estimate two stochastic volatility models applied to interna-
tional equity markets. The two models are the log-normal stochastic volatility 
(SV) model and the two-regime switching model. Then based on the one-day- 
ahead forecasted volatility from each model, we calculate the Value-at-Risk 
(VaR) in each market. The estimated VaR measures from the SV are higher 
than those obtained from the regime-switching model for all markets and 
over all horizons. The exception is the Japanese market, where the stochastic 
volatility model generates low VaR estimates. Comparing those estimates with 
the unconditional return distribution, the two models generate smaller VaR 
measures; an evidence of the two models capturing volatility changes in in-
ternational equity markets. Finally, we backtest each model and find that the 
performance of both models is the worst for the Canadian stock market, while 
the regime switching model does poorly for Germany. The results have signif-
icant implications for risk management, trading and hedging activities as well 
as in the pricing of equity derivatives. 
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1. Introduction 

Volatility is a key ingredient for derivative pricing, portfolio optimization and 
value-at-risk analysis. Hence, accurate estimates and good modeling of stock 
price volatility are of central interest in financial applications. The valuation of 
financial instruments is complicated by two characteristics of the volatility 
process. First, it is generally acknowledged that the volatility of many financial 
return series is not constant over time and exhibits prolonged periods of high 
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and low volatility, often referred to as volatility clustering [1] [2]. Second, vola-
tility is not directly observable1. Two models have been developed which capture 
this time-varying autocorrelated volatility process: the GARCH and the Stochas-
tic Volatility (SV) model. GARCH models define the time-varying variance as a 
deterministic function of past squared innovations and lagged conditional va-
riances whereas the variance in the Stochastic Volatility model is modeled as an 
unobserved component that follows some stochastic process. Stochastic volatility 
models are also attractive because they are close to the models often used in fi-
nancial theory to represent the behavior of financial prices. Furthermore, their 
statistical properties are easy to derive using well-known results on log-normal 
distributions. Finally, compared with the more popular GARCH models, they 
capture the main empirical properties often observed in daily series of financial 
returns (see, for example, Carnero et al., [23]). For surveys on the extensive 
GARCH literature we refer to Bollerslev et al. [5], Bera and Higgins [6] and Bol-
lerslev et al. [7] and for stochastic volatility we refer to Taylor [8], Ghysels et al. 
[9] Shephard [10], and Broto and Ruiz [11]. Both models are defined by their 
first and second moments. The Stochastic Volatility model introduced by Taylor 
[8] provides an alternative to the GARCH model in accounting for the time-  
varying and persistent volatility as well as for the leptokurtosis in financial re-
turn series. The stochastic volatility models present two main advantages over 
ARCH models. The first one is their solid theoretical background, as they can be 
interpreted as discretized versions of stochastic volatility continuous-time mod-
els put forward by modern finance theory (see Hull and White [12]). The second 
is their ability to generalize from univariate to multivariate series, as far as their 
estimation and interpretation are concerned. On the other hand, stochastic vola-
tility models are more difficult to estimate than ARCH models, due to the fact 
that it is not easy to derive their exact likelihood function. For this reason, a 
number of econometric methods have been proposed to solve the problem of es-
timation of stochastic volatility models. 

The stochastic volatility model defines volatility as a logarithmic first-order 
autoregressive process. It is an alternative to the GARCH models which have re-
lied on simultaneous modeling of the first and second moment. For certain fi-
nancial time series such as stock index return, which have been shown to display 
high positive first-order autocorrelations, this constitutes an improvement in 
terms of efficiency; see Campbell et al. [13]. The volatility of daily stock index 
returns has been estimated with stochastic volatility models but usually results 
have relied on extensive pre-modeling of these series, thus avoiding the problem 
of simultaneous estimation of the mean and variance. Koopman and Hol Us-
pensky [14] proposed the Stochastic Volatility in Mean model (SVM) that in- 
corporates volatility as one of the determinants of the mean. This modification 
makes the model suitable for empirical applications between the mean and va-
riance of returns. The SVM model can be viewed as the SV counterpart of the 

 

 

1For a comprehensive review of volatility measures and their properties see Andersen, Bollerslev and 
Diebold [3] and for forecasting financial volatility see the survey by Poon and Granger [4]. 
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ARCH-M model of Engle et al. [2] with the main difference between the two 
models is that the ARCH-M model intends to estimate the relationship between 
expected returns and expected volatility, whereas the aim of the SVM model is to 
simultaneously estimate the ex ante relation between returns and volatility and 
the volatility feedback effect. 

Another way of modeling financial time series is to define different states of 
the world or regimes, and to allow for the possibility that the dynamic behavior 
of financial variables to depend on the regime that occurs at any given point in 
time. That means that certain properties of the time series, such as its mean, va-
riance and/or autocorrelation, are different in different regimes. Regime switch-
ing models were first introduced by Goldfeld and Quandt [15] to provide a sim-
ple way to model endogenously determined structural breaks or regime shifts in 
parameters. Hamilton [16] generalizes this setting by allowing the mixing prob-
ability to be time-varying function of the history of the data. To illustrate the 
importance of stochastic regime switching for financial time series, for example, 
LeBaron [18] shows that the autocorrelations of stock returns are related to the 
level of volatility of these returns. In particular, autocorrelations tend to be larger 
during periods of low volatility and smaller during periods of high volatility. The 
periods of low and high volatility can be interpreted as distinct regime—or, put 
differently, the level of volatility can be regarded as the regime-determining 
process. In this setup, the level of volatility is not known with certainty and what 
we can do is to make a sensible forecast of this level, and hence, of the regimes 
that will occur in the future, by assigning probabilities to the occurrence of the 
different regimes. 

Markov switching models have been found to provide a flexible framework to 
handle many features of asset returns. In particular, they allow for nonlinearities 
arising from persistent jumps in the model parameters and have several appeal-
ing features. First, they provide a convenient framework to endogenously iden-
tify regime shifts that are commonplace in financial data. Regimes are treated as 
latent processes which are not observable, but can be inferred from the estima-
tion algorithm using observable data, such as the history of the asset’s returns. 
Second, as Markov switching models belong to the mixture-of-distributions class 
of stochastic processes, they are as versatile as mixture models in capturing sa-
lient features of financial data such as time-varying volatilities, skewness, and 
leptorkurtosis. A detailed study of the statistical properties of Markov switching 
models by Timmerman [18] shows the Markov switching models can indeed 
approximate general classes of density functions with a wide range of condition-
al moments. Ang and Bekaert [19] show that Markov switching models with 
state-dependent means and variances can match exceedance correlations better 
than do standard GARCH models or bivariate jump diffusion processes. 

Related to the two models, returns on equity markets were also found to be 
characterized by jumps, and these jumps tend to occur at the same time across 
countries, implying that conditional correlations between international equity 
returns tend to be higher in periods of high market volatility or following large 
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downside moves. Evidence on jumps is provided by Jorion [20], Akgiray and 
Booth [21], Bates [22], and Bekaert et al. [23], and Asgharian and Bengtsson 
[24]2. For example, Asgharian and Bengtsson [24] studied the jump spillover 
between equity indexes using a Bayesian approach and found the probabilities 
that jumps in large countries cause jumps or large returns in other countries. 
They also found significant evidence of jump spillover, particularly large be-
tween countries that belong to the same regions and have similar industry 
structure3. 

In this paper, we extend on the existing literature by modeling the interna-
tional equity markets according to two volatility models: the log-normal SV 
model and the two-regime switching model. The log-normal SV model will be is 
estimated by quasi-maximum likelihood with the kalman filter while the two- 
regime switching model will be estimated by maximum likelihood with the 
Hamilton filter. The results provide new evidence on the dynamics of risk and 
return in equity markets with the possible existence of regimes in these markets. 
Then based on the one-day-ahead forecasted conditional volatility from each 
model, we calculate the one day Value-at-Risk (VaR). Then, we backtest those 
results from each model using unconditional and conditional tests. We find that 
the value at risk estimates are higher for the SV model than those obtained un-
der the regime-switching model for all markets and over all horizons. The ex-
ception is for the Japanese market. The stochastic volatility model generates 
lower VaR values than those of the regime switching model. A characteristic that 
reflects the performance of the Japanese market during the sample period, when 
Japan was hit by a real estate bubble and a banking crisis that made the volatility 
in that market lower than those observed in other markets. Then, considering 
the value at risk measures obtained directly from the two models and comparing 
them to those obtained from the unconditional return distribution, the two 
models provide smaller value at risk measures. Finally, comparing how the Val-
ue-at-Risk behaves with the time horizon, value at risk measures increase more 
slowly with horizon under the regime switching model than those obtained un-
der the stochastic volatility model4. The performance of both models are then 
backtested using conditional and unconditional tests and we find that the Cana-
dian equity market represented by the S & P/TSX performs the worst among all 
markets, while the DAX seems to be better modeled by the stochastic volatility 
model as opposed to that of the regime switching model. 

Our results deviate from those obtained by the above mentioned literature in 
the following aspects: 1) the sample size is longer than previously studied; 2) the 
previous literature either focuses on one single market or few (i.e, Kuester et al. 
[31]) we provide a forecasted one day ahead volatility based on each model and 

 

 

2For evidence on changing conditional correlations see, for instance Ang and Chen [25], Longin and 
Solnik [26], Karolyi and Stulz [27], and Chakrabarti and Roll [28]. 
3Other studies using copula functions were used to study diversification benefits and dependence 
between American and developed markets as done by Chollete et al. [29], and Buraschi et al. [30]. 
4Our result fall in line of those conducted by Kuester et al. [31]. Yet their study is made only on the 
NASDAQ, while ours cover more markets and a larger sample period. 
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consequently use that to calculate value at risk measures; and finally 4) we find 
that the Canadian and Japanese markets appear to have different features than 
those obtained in previous results, whether in terms of the risk measures ob-
tained by the two models or in terms of the suitability of each model when we 
backtest them. 

The paper is organized as follows. Section 2 introduces the two models: the 
regime switching model and the stochastic volatility model. Section 3 describes 
the available data and presents the stylized facts of the corresponding realized 
volatility. Section 4 presents the estimation results from the two models. Section 
5 provides the Value at Risk measures and backtesting results. Section 5 con-
cludes. 

2. Models of Volatility 

The empirical regularities of asset returns (i.e., volatility clustering; squared re-
turns exhibit prolonged serial correlation; and heavy tails and persistence of vo-
latility) suggest that the behavior of financial time series can be captured by a 
model which recognizes the time-varying nature of return volatility as follows: 

t t t ty µ σ ε= +                          (1) 

,1
1

k

t i i
i

a b xµ
=

= +∑                        (2) 

with tε  follows NID(0, 1). tµ  represents the mean and depends on a constant 
a and regression coefficients 1, , kb b . The explanatory variables 1, ,, ,t k tx x

 
may also contain lagged exogenous and dependent variables. The disturbance 
term tε  is IID with zero mean and unit variance and a usual assumption of a 
normal distribution. 

Following Shephard [10], models of changing volatility can be usefully parti-
tioned into observation-driven and parameter-driven models and both can be 
expressed using a parametric framework as: t ty z  follows a ( )2,t tN µ σ . In the 
first class, the autoregressive heteroskedasticity (ARCH) models introduced by 
Engle [32] are the most representative example. In the second class, tz  is a 
function of an unobserved or latent component. The log-normal stochastic vola-
tility model created by Taylor [8] is the simplest and best known example: 

1t t th hα β η−= + +                         (3) 

with t ty z  following a N(0, exp(ht)) and ηt being ( )20,NID ησ . 
Where ht represents the log-volatility, which is unobserved but can be esti-

mated using the observations. One interpretation for the latent ht is to represent 
the random and uneven flow of new information, which is difficult to model di-
rectly, into financial markets. The most popular model from Taylor [8], puts 

( )exp 2t t ty hε=  and 1t t th hα β η−= + +              (4) 

where εt and ηt are two independent Gaussian white noises, with variances 1 and 
2
ησ , respectively. Due to the Gaussianity of ηt, this model is called a log-normal 

SV model. Although the assumption of Gaussianity of ηt can seem ad hoc at first 



A. Assaf   
 

496 

sight, Andersen et al. [33] [34] show that the log-volatility process can be well 
approximated by a Normal distribution. 

Another possible interpretation for ht is to characterize the regime in which 
financial markets are operating and then it could be described by a discrete va-
lued variable. The most popular approach to modelling changes in regime is the 
class of Markov switching models introduced by Hamilton [16]. In that case the 
model is where ( )exp 2t t ty hε=  and t th sα β= +  where st is a two state first- 
order Markov chain which can take values 0, 1 and is independent of εt. The 
value of the time series st, for all t, depends only on the last value st−1 for i, j = 0, 
1: 

( ) ( )1 2 1| , , |t t t t t ijP s j s i s i P s j s i p− − −= = = = = = =         (5) 

The probabilities ( ) , 0,1ij i j
p

=
 are called transition probabilities of moving 

from one state to the other. These transition probabilities are collected in the 
transition matrix P: 

00 11

00 11

1
1

p p
p p

 −
 − 

                        (6) 

which fully describes the Markov chain and also we get: 00 01 10 11 1p p p p+ = + = . 
A two-state Markov chain can be represented by a simple AR(1) process as fol-
lows: 

( ) ( )00 00 11 11 1t t ts p p p s υ−= − + − + + +               (7) 

where ( )1 2 ,| ,t t t t ts E s s sυ − −= −   and the volatility equation can be written the 
following way: 

( ) ( )00 00 11 11 1t t t th s p p p sα β α β υ− = + = + − + − + + +         (8) 

or 

( ) ( ) ( )00 11 00 00 11 1

1

2 1 1t t t

t t

h p p p p p h
a bh

β βυ
ϖ

−

−

= − − + − + − + + +

= + +
      (9) 

which implies the same structure of the stochastic volatility model but with a 
noise that can take only a finite set of values. 

3. Estimation Methods 

A variety of estimation procedures has been proposed for the stochastic volatility 
models, including for example the Generalized Method of Moments (GMM) 
used by Melino and Turnbull [35], the Quasi Maximum Likelihood (QML) ap-
proach followed by Harvey et al. [36] and Ruiz [37], the Efficient Method of 
Moments (EMM) applied by Gallant et al. [38], and Markov-Chain Monte Carlo 
(MCMC) procedures used by Jacquier et al. [39] and Kim et al. [40]. In this pa-
per, the parameters of the SV model are estimated by the exact maximum like-
lihood method using Monte Carlo importance sampling techniques. We refer 
the reader to Koopman and Hol Uspensky [14] for more explanation. The like-



A. Assaf 
 

497 

lihood function for the SV model can be constructed using simulation methods 
developed by Shephard and Pitt [41] and Durbin and Koopman [42]. For the SV 
model we can express the likelihood function as: 

( ) ( ) ( ) ( ) ( ), d , dL p y p y p y pψ ψ θ ψ θ θ ψ θ ψ θ= = =∫ ∫     (10) 

where ( ), ,η εψ ϕ σ σ= ′ , ( )1, , Th hθ = ′
 . An efficient way of evaluating such ex- 

pressions is by using importance sampling; see Ripley [43], Chapter 5). A simu-
lation device is required to sample from an importance density ( ),p y θ ψ  
which is preferred to be as close as possible to the true density ( ),p y θ ψ . A 
choice for the importance density is the conditional Gaussian density since in 
this case it is relatively straightforward to sample from ( ) ( ), ,p y g yθ ψ θ ψ=  
using simulation smoothers such as the ones developed by de Jong and Shephard 
[44] and Durbin and Koopman [42]. All models were estimated using programs 
written in the Ox language of Doornik [45] using SsfPack by Koopman, She- 
phard and Doornik [46]. The log-normal SV model which is estimated by qua-
si-maximum likelihood with the kalman filter, and the two-regime switching 
model which is estimated by maximum likelihood with the Hamilton filter. The 
Ox programs were downloaded from  
http://personal.vu.nl/s.j.koopman/SJresearch.html. 

The log-normal SV model is represented by Equation (4) with εt and ηt inde-
pendent Gaussian white noises. Their variances are 1 and 2

ησ , respectively. The 
volatility equation is characterized by the constant parameter α, the autoregres-
sive parameter β and the variance 2

ησ  of the volatility noise. The mean is either 
imposed equal to zero or estimated with the empirical mean of the series. Since 
the specification of the conditional volatility is an autoregressive process of order 
one, the stationarity condition is |β| < 1. Moreover, the volatility ση must be 
strictly positive. In the estimation procedure the following logistic and logarithm 
reparameterizations: 

( )
( )

exp
2 1

1 exp
b

b
β

 
= −  + 

 and ( )expn sησ =              (11) 

have been considered in order to satisfy these conditions. 
The second model is a particular specification of the regime switching model 

introduced by Hamilton, with the distribution of the returns is described by two 
regimes with the same mean but different variances and by a constant transition 
matrix: 

0

1

if 0
if 1

t t
t

t t

s
y

s
µ σ ε
µ σ ε
+ =

=  + =
                    (12) 

and 

00 11

00 11

1
1

p p
p p

− 
 − 

 

where st is a two-state Markov chain independent of εt, which is a Gaussian 
white noise with unit variance. The parameters of this model are the mean μ, the 
low and high standard deviation σ0, σ1 and the transition probabilities p00, p11 

http://personal.vu.nl/s.j.koopman/SJresearch.html
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(also called regime transformations probabilities). As for the log-normal SV 
model, the logarithm and the logistic transformations ensure the positiveness of 
the volatilities and constrain the transition probabilities to assume values in the 
(0, 1) interval. Further, for the log-normal SV model the returns are modified as 
follows: ( )* log 1.27t t ty y y= − +  where ty  is the empirical mean. Thus, for the 
log-normal SV model the mean is not estimated but is simply set equal to the 
empirical mean. For the estimation, the starting values of the parameters are 
calculated considering the time series analyzed. For example, the sample mean is 
used as an approximation of the mean of the switching regime model and the 
empirical variance multiplied by appropriate factors is used for the high and low 
variance. However, for the log-normal SV model, a range of possible values of 
the parameters were fixed and a value is randomly extracted. 

4. Estimation Results 

We examine the behavior of the following equity markets. These are the S & 
P500 for USA, FTSE100 for United Kingdom, CAC40 for France, S & P/TSX for 
Canada, Nikkei225 for Japan, DAX for Germany, and Swiss Market for Switzer-
land. We use a sample from 11/4/1996 to 12/10/2008 resulting in 3158 data 
points. The price data was obtained from Datastream. Each of the price indices 
was transformed via first differencing of the log price data to create a series, 
which approximates the continuously compounded percentage return. The stock 
index prices are not adjusted for dividends following studies of French et al. [47] 
and Poon and Taylor [48] who found that inclusion of dividends affected esti-
mation results only marginally. Returns are calculated on a continuously com-
pounded basis and expressed in percentages, they are therefore calculated as 

( )( )1100 logt t tr P P−= ∗ , where Pt denotes the stock index in day t. 
The summary statistics are presented in Table 1. We observe that the Swiss 

Market shows the highest mean returns followed by CAC40 and then the DAX. 
All the indices exhibit similar patterns of volatility represented by the standard 
deviation, with Nikkei225 having the highest variability and S & P/TSX having 
the lowest. We further observe that the returns are highly autocorrelated at lag 1, 
with S & P/TSX maintaining the highest autocorrelation. The high first-order 
autocorrelation reflects the effects of non-synchronous or thin trading, whereas 
highly correlated squared returns can be seen as an indication of volatility clus-
tering. The Q(12) and Qs(12) test statistics, which is a joint test for the hypothe-
sis that the first twelve autocorrelation coefficients on returns and squared re-
turns are equal to zero, indicate that this hypothesis has to be rejected at the 1% 
significance level for all return series and squared return series. A number of 
empirical studies has found similar results on market returns distributional cha-
racteristics. Kim and Kon [49] showed similar results for 30 stocks in DJIA, S & 
P500, and CRSP indices. Campbell, Lo and Mackinlay [13] concluded that daily 
US stock indexes show negatively skewed and positive excess kurtosis. The au-
tocorrelation of squared returns is consistent also with the presence of time-  
varying volatility such as GARCH effects. As pointed out by Lamoureux and  
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Table 1. Summary statistics of daily returns. 

 S & P500 FTSE100 NIKKEI225 DAX S & P/TSX CAC40 SM 

Mean −0.0089 0.017 −0.026 0.020 −0.007 0.029 0.037 

S.D 1.008 1.089 1.495 1.080 0.745 1.002 1.200 

Skewness −0.205 −0.069 0.123 −0.506 −0.632 0.358 −0.237 

Kurtosis 7.538 5.684 5.051 8.248 9.174 6.448 7.486 

J.B. 2731* 950* 561* 3757* 5225* 1631* 2678* 

ρ₁ 
ρ₂ 
ρ₃ 

0.052 
0.005 
0.064 

0.020 
−0.041 
−0.085 

−0.028 
−0.050 
0.018 

0.078 
−0.013 
−0.016 

0.117 
−0.012 
0.019 

0.074 
0.040 

−0.024 

0.051 
−0.004 
−0.041 

Q(12) 60.04* 59.04* 15.87* 72.17* 87.72* 87.41* 29.57* 

ρs1 

ρs2 
ρs3 

0.182 
0.244 
0.191 

0.214 
0.302 
0.255 

0.099 
0.123 
0.153 

0.107 
0.165 
0.160 

0.129 
0.173 
0.110 

0.165 
0.188 
0.141 

0.232 
0.268 
0.212 

Qs(12) 1186* 2173* 373* 796* 687* 113* 1691* 

The table contains summary statistics for the international equity markets. J.B. is the Jarque-Bera normality 
test statistic with 2 degrees of freedom; ρk is the sample autocorrelation coefficient at lag k with asymptotic 

standard error 1 T  and Q(k) is the Box-Ljung portmanteau statistic based on k-squared autocorrela-
tions. ρsk are the sample autocorrelation coefficients at lag k for squared returns and Qs(12) is the Box-Ljung 
portmanteau statistic based on 12-squared autocorrelations. * indicates significance at 99%. ** indicates 
significance at 95%. *** indicates significance at 90%. 
 

Lastrapes [50] and confirmed by Hamilton and Susmel [51], regime shifts in the 
volatility process can also induce a spuriously high degree of volatility cluster-
ing5. 

The estimation results of the two models are reported in Table 2 and Table 3. 
Table 2 presents the results of estimating the regime switching model in the dif-
ferent markets. For this model, we can judge the persistence of the volatility 
from the values taken by the transition (or persistence) probabilities p00 and p11, 
they are all high and higher than 0.90, confirming the high persistence of the vo-
latility in all markets. The parameter which govern the mean process is also re-
ported in the first column of Table 2 with the corresponding standard errors. 
The mean parameter is positive and statistically significant for all series, except 
being negative for Nikkei225. The Japanese market is the exception since it had 
gone through major structural changes during the sample period, in terms of its 
risk and return characteristics. The estimation results of the log-normal SV 
model are reported in Table 3. For this model, the standard errors are calculated 
following Ruiz [37] for the log-normal SV model and as the inverse of the in-
formation matrix for the switching model. In both cases the z-statistics asymp-
totically follow an N(0, 1) distribution. All markets show strong persistence, 
since all the estimated autoregressive coefficients of the volatility equation (β) 
are higher than 0.90. Also all the volatility estimates are all highly significant and  

 

 

5Before estimating the models, we test whether there are indeed regime shifts in the stock markets 
and whether a stochastic volatility model fits the data well. To do so, we apply Hansen’s [52] mod-
ified likelihood ratio test for regimes and Kobayashi and Shi [53] tests. Results are available upon 
request. 



A. Assaf   
 

500 

Table 2. Results of the regime switching model applied to international equity markets. 

Stock index μ Low Persis. Pr. High Persis. Pr. LowV High V FV LogL 

S & P500 
0.00055** 
0.000143 

0.986* 
0.0037 

0.981* 
0.0049 

0.00618* 
0.000156 

0.0144* 
0.0034 

0.00725 −10278.7 

FTSE100 
0.00027* 
0.00016 

0.993* 
0.0022 

0.981* 
0.0057 

0.0075* 
0.00015 

0.0166* 
0.0005 

0.0076 −10158.3 

NIKKEI225 
−0.00017*** 

0.00023 
0.980* 
0.0046 

0.964* 
0.0085 

0.0204* 
0.0003 

0.108* 
0.0006 

0.0204 −8974.4 

DAX 
0.00064*** 

0.0002 
0.990* 
0.0027 

0.981* 
0.0052* 

0.0091* 
0.0002 

0.0221* 
0.0006 

0.0091 −9284.9 

S & P/TSX 
0.00054*** 

0.0002 
0.987* 
0.0032 

0.976* 
0.0062 

0.0052* 
0.00012 

0.0137* 
0.00036 

0.0053 −10907.2 

CAC40 
0.00035* 
0.00021 

0.994* 
0.0018 

0.977* 
0.0075 

0.0108* 
0.0002 

0.0229* 
0.0008 

0.0108 −9260.85 

SM 
0.00076*** 

0.00016 
0.986* 
0.0030 

0.959* 
0.0093 

0.0079* 
0.00018 

0.0197* 
0.0007 

0.0181 −9942.67 

The table reports the estimation results of the two regime switching model. A two-regimes switching model 
introduced by Hamilton is applied to equity markets and estimated by maximum likelihood with the Ham-
ilton filter. In this model the returns are distributed with the same mean and different variances and a con-
stant transition matrix. The standard errors are calculated following Ruiz [37] as the inverse of the informa-
tion matrix for the switching model and result in z-statistics asymptotically following an N(0, 1) distribu-
tion. μ is the mean value and LogL represents the loglikelihood. * indicates significance at 99%. ** indicates 
significance at 95%. *** indicates significance at 90%. 

 
Table 3. Results of estimating the log-normal SV model applied to international equity 
markets. 

Stock index Constant AR part SD Forecasted volatility Loglik 

S & P500 
−0.0513** 
(0.0261) 

0.996* 
(0.00195) 

0.0711* 
(0.0143) 

0.0013 −4252.87 

FTSE100 
−0.131* 
(0.048) 

0.990* 
(0.0035) 

0.1066* 
(0.0171) 

0.0008 −4104.7 

NIKKEI225 
−0.240* 
(0.0823) 

0.981* 
(0.0062) 

0.122* 
(0.0227) 

0.0014 −4232.73 

DAX 
−0.118* 
(0.0426) 

0.990* 
(0.0032) 

0.1228* 
(0.0186) 

0.0017 −4159.45 

S & P/TSX 
−0.0522*** 

(0.0277) 
0.996* 
(0.002) 

0.074* 
(0.0144) 

0.0006 −4128.85 

CAC40 
−0.054** 
(0.0254) 

0.993* 
(0.0028) 

0.067* 
(0.0138) 

0.0113 −4193.88 

SM 
−0.235* 
(0.0722) 

0.982* 
(0.0053) 

0.156* 
(0.0235) 

0.0009 −4201.88 

The table reports the estimation results of the log-normal SV model. The log-normal SV model is applied to 
equity markets and estimated by quasi-maximum likelihood with the kalman filter. The volatility equation 
is characterized by the constant parameter α (constant), the autoregressive parameter β (AR part) and the 
variance 2

ησ  of the volatility noise (SD). The standard errors are calculated following Ruiz [37] for the 

log-normal SV model and result in z-statistics asymptotically following an N(0, 1) distribution. * indicates 
significance at 99%. ** indicates significance at 95%. *** indicates significance at 90%. 
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quite similar for all markets. In practice, for many financial time series this coef-
ficient is often found to be bigger than 0.90. This near-unity volatility persistence 
for high-frequency data is consistent with findings from both the SV and the 
GARCH literature. Among all the markets, the Swiss market, FTSE100, Nik-
kei225 and DAX show the highest variability in their volatility noise. For exam-
ple, the standard deviation of the volatility noise in the FTSE100 is 0.1066, while 
that in the S & P500 is 0.071. 

A graphical representation is provided from both models, yet we only include 
a sample of the Japanese market to save space. In the case of the log-normal SV 
model, the estimated volatility is obtained by using the Kalman smoother which 
is not very useful. Thus, a first-order Taylor expansion of is considered and 
compute the conditional mean and estimated the volatility. In the case of the 
switching model, we present historical return series, the estimated volatility and 
the estimated switches between regimes. Figure 1 and Figure 2 present the Jap-
anese market. It can be seen from the graphs how the two models are able to 
capture some major market crises during the sample period, like the 1997 Asian 
financial market crisis, the collapse of LTCM in 1998, the tech bubble in 2000 
and the 911 in 2001. All the other graphs are available from the author for in-
spection and capture those events. 

The Japanese market is a special case where volatility forecasted from the re-
gime switching model is the highest among all markets, an indication of some 
structural changes that took place during the sample period. Equity price volatility  
 

 
Figure 1. Weighted volatility and regime shifts based on the regime switching model for Japan. 
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Figure 2. Estimated and simulated volatility based on the log-AR stochastic volatility model for Japan. 

 
has trended up since the mid-1990s, and has been particularly high since 2000, 
as the Technology bubble burst, followed by shocks such as the events of Sep-
tember 11, 2001, the Enron and WorldCom accounting scandals. In the after-
math of the Louvre Accord, the Bank of Japan kept interest rates down to sup-
port the value of the dollar and to boost Japan’s domestic economy, stimulating 
demand for equities. Easy monetary conditions encouraged leveraged invest-
ment, aggressive equity financing, and excessive borrowing. The stock market 
were also amplified by portfolio insurance products and by arbitrage activities 
between stock and futures markets. Lending based on land and, to a lesser ex-
tent, equities as collateral amplified Japan’s financial bubble and the subsequent 
burst. Further, in February 1999, to abate deflationary pressures, the Bank of Ja-
pan adopted the zero interest rate policy. At the same time, a series of deregula-
tions was introduced to improve the efficiency of the financial system and the 
government promoted financial consolidation. Mark-to market accounting was 
introduced and several agencies were established by the government to purchase 
nonperforming loans and shares held by banks. Consequently, the financial sys-
tem became more volatile6. 

5. Value-at-Risk Results 

Value-at-Risk (VaR) indicates the maximum potential loss at a given level of 
confidence (p) for a portfolio of financial assets over a specified time horizon 

 

 

6We thank a referee for pointing out at this point. 
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(h). The VaR is a solution to the following problem: 

( )( ),
d

VaR h p
t hp f x x+−∞

= ∫                    (13) 

with x being the value of the portfolio. Different methods have been proposed to 
calculate the VaR. One of them is the parametric model that can be used to 
forecast the portfolio return distribution, if this distribution is known in a closed 
form and the VaR simply being the quantile of this distribution. In the case of 
non-linearity we can use either Monte Carlo simulation or historical simulation 
approaches. The advantage of the parametric approach is that the factors can be 
updated using a general model of changing volatility. Having chosen the asset or 
portfolio distribution, it is possible to use the forecasted volatility to characterize 
the future return distribution. Thus, a conditional forecasted volatility measure, 

1ˆT Tσ +  can be used to calculate the VaR over the next period. In our case, a dif-
ferent approach using both models, the stochastic volatility and regime switch-
ing models, is to devolatize the observed return series and to revolatilize it with 
an appropriate forecasted value, obtained with a particular model of changing 
volatility. This approach is considered in several recent works (Barone-Adesi et 
al. [54]; Hull and White [12]; and Christoffersen [55]). This method is labeled 
also under the filtered historical simulation method to investigate the nonpara-
metric distribution-based VaR7. 

The idea is to consider a portfolio which perfectly replicates the composition 
of each stock market index. Given the estimated volatility of the stochastic vola-
tility model, the Value-at-Risk of this portfolio can be obtained following the 
procedure proposed in Barone-Adesi et al. [54]. The historical portfolio returns 
are rescaled by the estimated volatility series to obtain the standardized residuals 

t t tu y σ= , 1, ,t T=  . This historical simulation can be performed by boos- 
trapping the standardized returns to obtain the desired number of residuals *

ju  

for 1, ,j M=  , where M can be arbitrarily large. To calculate the next period 
return, it is sufficient to multiply the simulated residuals by the forecasted vola-
tility * *

1 1ˆ ˆ:T T j j T Ty uσ σ+ +=  and then the VaR for the next day, at the desired 
level of confidence h, is calculated as the Mth element of these returns sorted in 
ascending order. 

To make the historical simulation consistent with empirical findings, we use 
the two models: the log-normal SV model and the regime switching model to 
describe the volatility behavior. Then, past returns are standardized by the esti-
mated volatility to obtain the standardized residuals. We obtained those resi-
duals and our statistical tests confirm that these standardized residuals behave 
approximately as an iid series which exhibit heavy tails. Then we use the histori-

 

 

7The historical simulation method discards particular assumptions regarding the return series and 
calculates the VaR from the immediate past history of the returns series (Dowd, [56]). However, the 
filtered historical simulation method is designed to improve on the shortcomings of historical simu-
lation by augmenting the model-free estimates with parametric models. For example, Prisker [57] 
asserts that filtered historical simulation method compares favorably with historical simulation, the 
historical simulation method may not avoid the many shortcomings of purely model-free estimation 
approaches. When historical return series include insufficient extreme outcomes, the simulated val-
ue at risk may seriously undersestimate the actual market risk. 
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cal simulation to calculate the Value-at-Risk measures. Finally, to adjust them to 
the current market conditions, the randomly selected standardized residuals are 
multiplied by the forecasted volatility obtained from the stochastic volatility and 
regime switching models. 

The VaRs measures from the two models are presented together with the re-
sults obtained from the unconditional returns in Table 4 and Table 5. An ex-
amination of the results reveals that the VaR estimates, in general, are higher for 
the stochastic volatility model than those for the regime-switching model for 
almost all markets and over all horizons. The exception is that of Japan repre- 
sented by the Nikkei225 index, where in both cases, whether using historical 
 
Table 4. VaR measures obtained by using historical simulation method. 

Time Horizon 5 10 15 5 10 15 5 10 15 

 Unconditional Distribution Conditional Distribution Conditional Distribution 

Stock Index Historical returns Log-normal SV Regime Switching 

S & P500 11.28 15.95 19.54 9.78 13.84 16.95 5.68 9.04 9.84 

FTSE100 10.88 15.39 18.84 5.52 7.81 9.56 4.96 7.02 8.60 

NIKKEI225 13.32 18.83 23.07 1.44 2.04 2.50 13.33 18.08 23.09 

DAX 14.42 20.39 24.97 12.80 18.08 22.17 6.11 8.64 10.59 

S & P/TSX 13.93 19.70 24.12 13.04 9.02 11.05 5.37 7.59 9.30 

CAC40 13.04 18.45 22.59 9.66 13.67 16.74 7.60 10.75 13.17 

SM 12.78 18.08 22.15 7.13 10.08 12.35 11.78 16.67 20.41 

The table reports the value-at-risk VaR estimates based on conditional and unconditional distribution of 
the returns and calculated by historical simulation method. The VaR are calculated for 5-, 10- and 15-days 
holding period with the significance level is 1%. Unconditional distribution measures are based on histori-
cal returns, while conditional distribution are those obtained by weighting the standardized residuals by the 
forecasted volatility. Values reported are in percentage terms. 

 
Table 5. VaR obtained by delta-normal approximation. 

Time Horizon 5 10 15 5 10 15 5 10 15 

 Unconditional Distribution Conditional Distribution Conditional Distribution 

Stock Index Historical returns Log-normal SV Regime Switching 

S & P500 5.52 7.81 9.56 4.82 6.81 8.34 3.66 5.18 6.35 

FTSE100 5.66 8.01 9.81 3.68 5.21 6.38 3.86 5.46 6.69 

NIKKEI225 7.77 11.00 13.47 0.84 1.19 1.46 10.29 14.52 17.78 

DAX 7.76 10.98 13.44 7.27 10.28 12.59 4.59 6.49 7.95 

S & P/TSX 4.74 6.71 8.22 2.99 4.24 5.19 2.67 3.77 4.62 

CAC40 7.33 10.36 12.69 6.11 8.65 10.59 5.53 7.82 9.57 

SM 6.24 8.82 10.82 4.07 5.75 7.05 7.07 12.83 15.71 

The table reports the VaR estimates based on historical data. The significance level is 1% and VaR are cal-
culated based on 5-, 10- and 15-days time horizons. Unconditional distribution measures are based on his-
torical returns, while conditional distribution are those obtained by weighting the standardized residuals by 
the forecasted volatility. Values reported are in percentage terms. 
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simulation or delta-normal approximation, the stochastic volatility model gene-
rates lower VaR values than those obtained from the regime switching model. 
Then comparing the VaRs calculated directly from the two models with those 
obtained from the unconditional distribution of returns, we find that the two 
models generate smaller VaRs. When we consider the time horizon and its im-
pact on the calculation of the Value-at-Risk measures, we find that VaRs in-
crease with the time horizon; generally, and according to the regime switching 
model, VaRs increase more slowly with horizon than the SV approach. 

6. Backtesting the VaR Results 

The Value-at-Risk 1
p

tVaR +  measure promises that the actual return will only be 
worse than the 1

p
tVaR +  forecast p * 100 of the time. Given a time series of past 

ex-ante VaR forecasts and past ex-post returns, we can define the “hit sequence” 
of VaR violations as: 

, 1 1
1

, 1 1

1, if
0, if

p
pf t t

t p
pf t t

R VaR
I

R VaR
+ +

+
+ +

 < −=  >
                 (14) 

The hit sequence returns a 1 on day t + 1 if the loss on that day was larger 
than the VaR number predicted in advance for that day. If the VaR was not vi-
olated, then the hit sequence returns a 0. When backtesting our models, we con-
struct a sequence { }1 1

T
t t

I + +  across T days indicating when the past violations 
occurred. We implement the following three test statistics derived from Christo- 
ffersen [58]: the unconditional, independence, and conditional coverage8. Chris- 
toffersen [58] idea is to separate out the particular predictions being tested, and 
then test each prediction separately. The first of these is that the model generates 
the “correct” frequency of exceedances, which is in this context is described as 
the prediction of correct unconditional coverage. The other prediction is that 
exceedances are independent of each other. This later prediction is important in 
so far as it suggests that exceedances should not be clustered over time. To ex-
plain the Christoffersen [58] approach, we briefly explain the three tests. 

6.1. Unconditional Coverage Testing 

According to this test, we are interested in testing if the fraction of violations 
obtained from our models, call it π, is significantly different from the promised 
fraction, p. We call this the unconditional coverage hypothesis. To test this, we 
write the likelihood of an i.i.d. Bernoulli (π) hit sequence as: 

( ) ( ) ( )1 01 11

1
1 1t t

T
I TI T

t
L π π π π π+ +−

=

= − = −∏             (15) 

where T0 and T1 are the number of 0s and 1s in the sample. π can be estimated 
from 1T Tπ = —that is, the observed fraction of violations in the sequence. 
Plugging the estimate back into the likelihood function gives the optimized like-

 

 

8For other methods and elements in backtesting VaR models, see Christoffersen and Diebold [59], 
Christoffersen and Pelletier [60], McNeil and Frey [61], Diebold, Gunther, and Tsay [62], and Di-
ebold, Hahn, and Tsay [63]. 
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lihood as: 

( ) ( ) ( )0 1
1 11 T TL T T T Tπ = − . 

Under the unconditional coverage null hypothesis that π = p, where p is the 
known VaR coverage rate, we have the likelihood: 

( ) ( ) ( )1 01 11

1
1 1t t

T
I TI T

t
L p p p p p+ +−

=

= − = −∏  

The unconditional coverage hypothesis using a likelihood ratio test can be 
checked as: 

( ) ( )ˆ2 lnucLR L p L π= −                       (16) 

Asymptotically, as T goes to infinity, this test will be distributed as a χ2 with 
one degree of freedom. Substituting in the likelihood functions, we write: 

( ) ( ) ( ){ }0 0 11
1 12 ln 1 1T T TT

uc T T T TLR p p = − − −  
          (17) 

which follows a χ2. The VaR model is rejected or accepted either using a specific 
critical value, or calculating the P-value associated with our test statistic. 

6.2. Independence Testing 

According to this test, the hit sequence is assumed to be dependent over time 
and that it can be described as a so-called first-order Markov sequence with 
transition probability matrix: 

01 01
1

11 11

1
1

π π
π π

− 
Π =  − 

. 

These transition probabilities simply mean that conditional on today being a 
nonviolation (that is, It = 0), then the probability of tomorrow being a violation 
(that is, It+1 = 1) is π01. The probability of tomorrow being a violation given today 
is also a violation is: π11 = Pr(It = 1 and It+1 = 1). Accordingly, the two probabili-
ties π01 and π11 describe the entire process. The probability of a nonviolation fol-
lowing a nonviolation is 1 − π01, and the probability of a nonviolation following a 
violation is 1 − π11. If we observe a sample of T observations, then the likelihood 
function of the first-order Markov process can be written as: 

( ) ( ) ( )00 1001 11
01 01 11 111 1T TT T

tL π π π πΠ = − −  

where Tij, i, j = 0, 1 is the number of observations with a j following an i. Taking 
first derivatives with respect to π01 and π11 and setting these derivatives to zero, 
we can solve for the maximum likelihood estimates: 

( )( )01 01 00 01T T Tπ = +  and ( )( )11 11 10 11T T Tπ = + . 

Using the fact that the probabilities have to sum to one, we have: π00 = 1 − π01 
and π10 = 1 − π11, which can be used to determine the matrix of the estimated 
transition probabilities. 

In the case of the hits being independent over time, then the probability of a 
violation tomorrow does not depend on today being a violation or not, and we 
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can write π01 = π11 = π. In this case, we can test the independence hypothesis that 
π01 = π11 using a likelihood ratio test: 

( ) ( )1
ˆˆ2 lnindLR L Lπ = − Π                      (18) 

following a 2
1χ . Where L(π) is the likelihood under the alternative hypothesis 

from the LRuc test. 
Although the LRuc test can reject a model that either overestimates or unde-

restimates the true but unobservable VaR, it cannot examine whether the excep-
tions are randomly distributed. In a risk management framework, it is important 
that VaR exceptions be uncorrelated over time, which prompts independence 
and conditional coverage tests based on the evaluation of interval forecasts. 
Christoffersen [58] developed independence and conditional coverage tests that 
jointly investigates whether the total number of failures is equal to the expected 
one, and the VaR exceptions are independently distributed. In particular, the 
advantage of Christoffersen’s procedure is that it can reject a model that gene-
rates either too many or too few clustered exceptions. Since accurate VaR esti-
mates exhibit the property of correct conditional coverage, the hit sequence se-
ries must exhibit both correct unconditional coverage and serial independence. 

6.3. Conditional Coverage Testing 

Ultimately, we care about simultaneously testing if the VaR violations are inde-
pendent and the average number of violations is correct. We can test jointly for 
independence and correct coverage using the conditional coverage test: 

( ) ( )1
ˆ2 lnccLR L p L = − Π                   (19) 

again following a 2
2χ  distribution and correspond to testing that π01 = π11 = p. 

It can be proved that LRcc = LRuc + LRinp. The Christoffersen approach enables us 
to test both coverage and independence hypotheses at the same time. Moreover, 
if the model fails a test of both hypotheses combined, his approach enable us to 
test each hypothesis separately, and so establish where the model failure arises. 

The results for the unconditional and conditional coverage tests are reported 
in Table 6 and Table 7. Table 6 reports the results based on the stochastic vola-
tility model, and Table 7 reports those based on the regime switching model. 
The symbol * indicates that the test did reject the null hypothesis. We use two 
significance levels of 5% and 1%. If LRuc is statistically insignificant, it implies 
that the expected and the actual number of observations falling below the VaR 
estimates are statistically the same. Further, rejection of the null hypothesis in-
dicates that the computed VaR estimates are not sufficiently accurate. According 
to the LRuc test statistics, and at the 5% significance levels, VaR models based on 
both the stochastic volatility and regime switching models perform relatively the 
same for all markets, except for FTSE100, where the LRuc rejects the null hypo-
thesis. However, according to the LRind and LRcd, the VaR models based on the 
two volatility models perform again relatively in a similar fashion. The perfor-
mance of both models at the 5% significance level is the worst for the S & P/TSX; 
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Table 6. Unconditional, conditional and independence coverage tests based on log-normal 
stochastic volatility model. 

 Unconditional Independence Conditional 

 1% (LRuc) 5% (LRuc) 1% (LRind) 5% (LRind) 1% (LRcd) 5% (LRcd) 

S & P500 0.081 0.224 4.45* 0.479 4.53 0.704 

FTSE100 3.701* 1.371 0.368 0.0001 4.070 1.371 

NIKKEI225 1.951 0.003 0.552 0.904 2.503 0.907 

DAX 1.064 2.296 0.700 0.776 1.765 3.072 

S & P/TSX 0.721* 0.148 12.84* 16.01* 13.56* 16.15* 

CAC40 3.071* 0.224 10.51* 0.479 13.59 0.704 

SM 1.064 2.043 0.700 0.052 1.765 2.095 

The table reports the unconditional, conditional and independence coverage tests based on the Log-Normal 
Stochastic Volatility model. * indicates rejection of the VaR model. 

 
Table 7. Unconditional, conditional and independence coverage tests based on regime 
switching model. 

 Unconditional Independence Conditional 

 1% (LRuc) 5% (LRuc) 1% (LRind) 5% (LRind) 1% (LRcd) 5% (LRcd) 

S & P500 1.479 1.176 0.623 0.566 2.102 1.742 

FTSE100 5.171* 2.843* 2.252 0.010 7.424* 2.854 

NIKKEI225 1.94 0.021 0.552 2.523 2.497 2.545 

DAX 5.97* 2.296 2.102 0.035* 8.08* 2.33 

S & P/TSX 2.475 1.581 0.486 5.317* 2.962 6.898* 

CAC40 1.064 0.829 0.700 0.074 1.765 0.904 

SM 3.071* 0.995 2.746* 2.188 5.818* 3.184 

The table reports the unconditional, conditional and independence coverage tests based on the regime 
switching model. * indicates rejection of the VaR model. 

 
this is because of the rejection of both tests and the failure of both models to 
provide an accurate prediction of the downside risk at the 5% significance level. 
Further, the backtesting results indicate that the regime switching model per-
forms poorly for the DAX series using the LRind test. 

7. Conclusion 

This paper proposes two models, namely the log stochastic volatility model and 
regime switching model for calculating value at risk. The two models were ap-
plied for international equity markets and then used to forecast future daily vo-
latility. Then based on the forecasted daily volatility, we calculated the Value at 
Risk in each market. It was observed that the two models generate smaller VaRs 
than the unconditional distributional method. Then, based on each model, it was 
found that the Japanese market display lower values of Value at Risk under the 
stochastic volatility model than under the regime switching model. Considering 
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how the VaRs increase with time horizon, generally and according to the regime 
switching model, VaRs increase more slowly with horizon than the stochastic 
volatility model. Finally, we backtest each model and find that the performance 
of both models is the worst for the S & P/TSX, while the regime switching model 
does not perform well for the DAX series in some cases. The results have signif-
icant implications for risk management, trading and hedging activities as well as 
in the pricing of equity derivatives. 
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